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1 Podstawy

1.1 Podstawowe poje
↪
cia, stabilizatory, orbity, ilorazy

1.2 Odwzorowania ekwiwariantne, Map(G/H, Y ) = Y H

1.3 Typy orbitowe

1.4 Dla grupy zwartej odwzorowania dzia lania G × X → X i rzutowania X → X/G sa
↪

domknie
↪
te

2 Konstrukcje i struktura G-przestrzeni

2.1 Konstrukcje ekwiwariantne

– skre
↪
cony produkt X ×G Y

– indukowana przestrzeń G×H X

– produkty w lókniste i przestrzeń indukowana
f∗X −→ X
↓ f ↓
Y −→ X/G

2.2 G-wia
↪
zki g lówne E → B = E/G, kocykle definiuja

↪
ce wia

↪
zki

2.3 Każde przekszta lcenie G wia
↪
zek g lównych nad ustalona

↪
baza

↪
jest izomorfizmem

2.4 Dane wia
↪
zki g lówne E i F nad B × I. Jeśli E|B×{0} ' F|B×{0}, to E ' F

– dowód dla CW-kompleksów poprzez w lasność podnoszenia homotopii dla rozw lóknienia Map
G

(E,F )→
B × I

2.5 Jeśli f, g : B′ → B sa
↪
homotopijne, to f∗E ' g∗E

2.6 Zbiór klas izomorfizmów G-wia
↪
zek jako funktor hTop→ Set, reprezentowalność

2.7 Lokalna struktura G-przestrzeni: tuby i slajsy - definicje

2.8 Każda G-ekwiwariantna wia
↪
zka wektorowa nad G/H jest postaci G ×H V → G/H dla

pewnej reprezentacji V grupy H.

2.9 Jeśli zwarta grupa Lie dzia la g ladko na rozmaitości, to każda orbita ma slajs

Literatura: G. Bredon - Introduction to Compact Transformation Groups, roz I i II
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3 Lokalna struktura, uniwersalne wia
↪
zki

3.1 W lókno retrakcji do orbity jest slajsem

3.2 Twierdzenie o istnieniu slajsa jest prawdziwe dla dowolnej (normalnej) G-przestrzeni. Dowód

w oparciu o twierdzenie Chevalleya o zanurzaniu orbit i twierdzenie Tietza-Gleasona

3.3 Analog twierdzenia o slajsie w kategorii rozmaitości algebraicznych - twierdzenie Luny

3.4 Wnoisek: gdy G jest zwarta grupa
↪
Lie, dzia laja

↪
ca

↪
ga

↪
dko na G-rozmaitośći to jest skończenie

wiele typów orbitowych.

– dowód indukcyjny ze wzgle
↪
du na wymiar.

3.5 Jeśli S ⊂ X jest slajsem przez punkt x to [x] ∈ X/G ma otoczenie homeomorficzne z S/Gx

3.6 Każda orbita Gx ma otoczenie U takie, że Gy(≤)Gx dla y ∈ U . (Relacja (≤) oznacza

zawieranie z dok ladnościa
↪
do sprzeżenia.)

3.7 Jeśli zwarta grupa Lie G dzia la wolno na normalnej przestrzeni, to X → X/G jest wia
↪
zka

↪

g lówna
↪

3.8 Twierdzenie Mostowa o ekwiwariantnym zanurzaniu w reprezentacje grupy G pod warun-

kiem, że G zwarta, X ma skończenie wiele typów orbitowych i jest metryczna skończonego wy-

miaru (tzn. daje sie
↪
zanurzyć w Rn).

3.9 W kategorii rozmaitości algebraicznych analogiczne twierdzenie o zanurzaniu w projekty-

wizacje
↪
reprezentacji dowiód l Sumihiro.

Uniwersalne G-wia
↪
zki g lówne

3.10 Jeśl E → B jest G wia
↪
zka

↪
g lówna

↪
, E jest przestrzenia

↪
ścia

↪
galna

↪
, to dla każdej G wia

↪
zki

g lównej P → K nad CW -kompleksem istnieje odwzorowanie f : K → B takie, że f∗E = P .

Ponadto f jest jednoznaczne z dok ladnościa
↪
do homotopii.

– B reprezentuje funktor [Klasy izomorfizmu G-wia
↪
zek nad ?]

– typ homotopijny jest wyznaczony przez G, przestrzeń B jest oznaczana przez BG, a E przez

EG

Literatura: Husemoller - Fibre Bundles
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4 Przestrzenie Klasyfikuja
↪
ce i ekwiwariantne kohomologie 1.0

4.1 Każda domknie
↪
ta podgrupa grupy liniowej GLn(C) dopuszcza model BG, który jest wste

↪
puja

↪
ca

↪

suma
↪
rozmaitości.

4.2 Każda zestolona podgrupa grupy liniowej GLn(C) dopuszcza model BG, który jest wste
↪
puja

↪
ca

↪

suma
↪
rozmaitości zespolonych.

4.3 Modele przestrzeni klasyfikuja
↪
cej:

– dla T = (C∗)n: (P∞)n i Grassplit
n (C∞) = Stiefn(C∞)/T .

– cze
↪́
sciowa przestrzeń flag Grasfiltr

n (C∞) = Stiefn(C∞)/Tr jest modelem B(Tr)

– BSOn(C) jako wia
↪
zka nad grassmanianem

4.4 Dla cia
↪
gu dok ladnego K → G→ H rozw lóknienie BK ↪→ BG � BH.

4.5 Dla podgrupy K ⊂ G rozw lóknienie G/K ↪→ BK � BG

4.6 Jeśli grupa Lie zawiera torus, to przestrzeń klasyfikuja
↪
ca jest nieskończonego wymiaru.

4.7 Kohomologie nieskończonego grassmanianu H∗(BUn; Z) = H∗(BT ; Z)Σn = Z[c1, c2 . . . , cn],

gdzie ci = σi(t1, t2, . . . , tn).

4.8 Uogólnienie dla dowolnej grupy zwartej, kohomologie o wspó lczynnikach w Q:

H∗(BG; Q) = H∗(BT ; Q)W ,

gdzie W = NT/T jest grupa
↪
Weyla.

Ekwiwariantne kohomologie

4.9 Jeśli G dzia la wolno na X (oraz X → X/G jest wia
↪
zka

↪
g lówna

↪
) to H∗

G(X) := H∗(X/G)

4.10 Każda G-przestrzeń X jest homotopijnie równoważna wolnej G przestrzeni EG×X

– H∗
G(X) := H∗((EG×X)/G) = H∗(EG×G X)

– jeśli X → Y jest homotopijna
↪
równoważnościa

↪
, to indukuje izomorfizm ekwiwariantnych koho-

mologii.

4.11 Rozw lóknienie X ↪→ EG×G X � BG.

– H∗
G(X) jest algebra

↪
nad H∗(BG) = H∗

G(pt)

4.12 W lókno nad [x] odwzorowania EG×G X → X/G jest równe EG/Gx = BGx.
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5 Kohomologie BGLn(C) i przestrzenie flag

5.1 Gdy G spójna grupa Lie, K maksymalna zwarta podgrupa, wtedy BK → BG jest homo-

topijna
↪
równoważnościa

↪
(bo G/K ' Rn z rozk ladu G = KAN)

– B(S1)n ' B(C∗)n ' B(Tr), gdzie Tr oznacza grupe
↪
macierzy górnotrójka

↪
tnych w GLn(C)

– BU(n) = BSpn(R), gdzie Spn(R) ⊂ GL2n(R) jest podgrupa
↪
macierzy symplektycznych.

5.2 Kohomologie BT :

– przedstawienie T = (C∗)n zadaje izomorfizm H∗(BT ; Z) ' Z[t1, t2, . . . , tn]

– przedstawienie niezmiennicze H∗(BT ; Z) =
⊕

d≥0 Symd(T∨)

– lub jako wielomiany na algebrze Lie H∗(BT ; C) = C[ t ].

5.3 Pierwsza klasa Cherna wia
↪
zek liniowych poprzez urożsamienie

[X, BC∗] = [X, K(Z, 2)] = H2(X; Z).

5.4 Kohomologie BGLn(C) jako pierścień wielomianów od ci = ci(γ∗), gdzie γ jest wia
↪
zka

↪

uniwersalna
↪
na grassmannianie:

1. kohomologie rozmaitości flag Fn = {V1 ⊂ V2 ⊂ · · · ⊂ Vn = Cn} sa
↪

generowane przez pierwsze

klasy Cherna wia
↪
zek liniowych Vi/Vi−1 (dowód indukcyjny z tw Leray-Hirscha dla Fn−1 ⊂ Fn →

→ Pn−1).

2. z rozw lóknienia Fn ⊂ BT →→ BGLn i tw. L-H mamy

H∗(BT ) ' H∗(BGLn)⊗H∗(Fn).

Sta
↪
d H∗(BGLn)→ H∗(BT ) jest mono.

3. obraz H∗(BGLn) leży w H∗(BT )Σn ' Z[t1, t2, . . . , tn]Σn

4. liczenie wymiarów daje izomorfizm. Funkcji symetrycznej σi odpowiada ci

5.5 Klasy charakterystyczne wia
↪
zek poprzez Lemat Yonedy.

5.6 Jeśli wia
↪
zka E ma przekrój niezeruja

↪
cy sie

↪
nigdzie, to ctop(E) = 0 (z konstrukcji izomor-

fizmu).

5.7 H∗(Fn) = Z[t1, t2, . . . , tn]/(σ1, σ2, . . . , σn)

Literatura o klasach Cherna i inne obliczenie kohomologii nieskonczonego grassmanianu: Milnor-

Stashef, Characteristic classes.

6 Ekwiwariantne kohomologie 2.0

6.1 Aproksymacja: jeśli E → B jest wia
↪
zka

↪
g lówna

↪
, H̃k(E) = 0 dla k ≤ N , to Hk

G(X) =

Hk(E ×G X) dla k < N .

– dowód z lematu: Jeśli F ↪→ A � B jest rozw lóknieniem, H̃k(F ) = 0 dla k ≤ N , to Hk(A) =

Hk(B) dla k < N . Stosujemy dla A = (E × EG)×G X i B = E ×G X oraz dla B′ = EG×G X
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6.2 Obliczenie H∗
T (P(V )) dla reprezentacji T → GL(V ).

– twierdzenie Leray-Hirscha

– formu la rzutowa Grothendiecka: dla rozszczepialnej wia
↪
zli wektorowej L1 ⊕ · · · ⊕ Ln = E → B

spe lniona jest relacja
∏

(x + c1(Li)) = 0 ∈ H∗(P(E)), gdzie x = c1(O(1)), a O(1) jest sprze
↪
żona

↪

wia
↪
zka tautologiczna

↪
nad P(E). (Dow. O(1) ⊗ p∗(E) = Hom(O(−1), p∗(E)) ma przekrój, wie

↪
c

klasa cn znika.)

6.3 Lemat: C ⊂ A →→ B lokalnie trywialne rozw lóknienie algebraicznych rozmaitości, C

zwarte, K cia lo, to H∗(A; K) = H∗(B; K)⊗H∗(C; K) jako H∗(C; K)-modu l.

– dowód z tw. Leray-Hirscha: konstrukcja korespondencji Z ⊂ A × C zadaja
↪
cej transformacje

↪

Φ : H∗(C) → H∗(A), takiej, że dla otwartego zbioru U ⊂ B nad którym wia
↪
zka jest trywialna

z lożenie H∗(C)→ H∗(A)→ H∗(p−1(U)) = H∗(U × C) jest indukowane przez rzutownie na C.

Ekwiwariantna Formalność

6.4 Jeśli G = (C∗)n lub GLn(C) dzia la algebraicznie na zwartej, g ladkiej rozmaitości alge-

braicznej, to dla dowolnego cia la K kohomologie ekwiwariantne sa
↪
wolnym H∗(BG; K) modu lem

H∗
G(X; K) ' H∗(BG; K)⊗H∗(X; K) jako H∗(BG; K) modu l

– H∗(X; K) = H∗
G(X; K)⊗H∗(BG;K) K

– dowód dzia la dla grup, dla których EG → BG aproksymować można przez wia
↪
zki Zariski-

lokalnie trywialne; np Spn(C).

– dla K = Q uogólnienie dla dowolnej liniowej spójnej grupy algebraicznej.

Literatura: Fulton (notatki Andersona), Wyk lad 2

O krespondencjach: Fulton, Intersection theory, §16

7 Formalne w lasności ekwiwariantnych kohomologii

7.1 – f : X → Y , φ; G→ H t.ż: f(g.x) = φ(g).f(x) indukuje H∗
H(Y )→ H∗

G(X)

– dla Y = X, f(x) = g0.x, φ(g) = g−1
0 gg0 przekszta lcenie indukowane jest identycznościa

↪
.

– H∗
G(G×H X) = H∗

H(X) dla H-przestrzeni,

– w szczególności H∗
G(G/H) = H∗

H(pt) = H∗(BH) (zamiast aksjomatu wspó lczynników)

– Mayer-Vietoris

– jeśli ekwiwariantne przekszta lcenie f : X → Y indukuje izomorfizm na H∗(−), to indukuje

izomorfizm na H∗
G(−)

7.2 Klasy charakterystyczne dla ekwiwariantnych wia
↪
zek wektorowych.

7.3 Dla w laściwego odwzorowania X → Y G-rozmaitości funktorialny homomorfizm Gysina

f∗ : H∗
G(X)→ H∗+r

G (Y ), gdzie r = dim Y − dim X

– formula
↪
projekcji dla a ∈ H∗

G(X), b ∈ H∗
G(Y ):

f∗(f∗b.a) = b.f∗(a).
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– dla produktu w lóknistego, gdzie f lub g jest rozwóknieniem

g′

X ′ −→ X
f ′ ↓ ↓ f

Y ′ −→ Y
g

g∗f∗ = f ′∗g
′∗

– dla X ⊂ Y , to f∗f∗ jest mnożeniem przez ekwiwariantna
↪
klase

↪
Eulera wia

↪
zki normalnej.

– klasa fundamentalna [V ] dla ekwiwariantnej podrozmaitości V ⊂ X w grupie H
codim(V )
G (X).

Jeśli f(V ) = W , to f∗([V ]) = d[W ], gdzie d jest stopniem odwzorowania V →W .

– p ∈ V ∩XT , f : {p} → X, to f∗[v] = e(N(p))

Lokalizacja

7.4 Twierdzenie o lokalizacji: X zwarta przestrzeń skończonego wymiaru, na której dzia la

torus. Niech S ⊂ H∗(BT ) = Sym∗(t∗) system multiplikatywny zawieraja
↪
cy anihilatory algebr

Lie nietrywialnych grup izotropii Tx. Wtedy

S−1H∗
T (X; Q)→ S−1H∗

T (XT ; Q)

jest izomorfizmem.

(Dowód przy pewnych za lożeniach o regularności przestrzeni X.)

7.5 Lemat: pierścień S−1H∗(BT ; Q) jest p laski nad H∗(BT ; Q).

7.6 Krok 1: Y ⊂ X para T -przestrzeni, Y domknie
↪
ty, T dzia la wolno na X \Y , S = 〈T∨−{0}〉,

wtedy S−1H∗
T (X, Y ) = 0.

Dowód, gdy (*) Y ma otoczenie V , homotopijnie z nim równoważne

7.7 Krok 2: T1 → T2 nakrycie, to H∗
T2

(X, Y ; Q)→ H∗
T1

(X, Y ; Q) izomorfizm.

7.8 Krok 3: punkty z X \ Y maja
↪

taki sam typ orbitowy T/Tx, S ⊃ 〈anh(t)x〉, wtedy

S−1H∗
T (X, Y ; Q) = 0

7.9 Krok 4: Zak ladamy, że X ma filtracje
↪

zbiorami domknie
↪
tymi XT = X0 ⊂ X1 ⊂ · · · ⊂

Xn = X spe lniaja
↪
ca

↪
(*) oraz punkty w różnicy Xi \ Xi−1 maja

↪
taki sam typ orbitowy. (Np X

jest rozmaitościa
↪
.) Stosujemy cia

↪
g dok ladny pary Longrightarrow teza tweierdzenia.

Literatura:

Quillen, The Spectrum of an Equivariant Cohomology Ring: I , Ann. Math. Vol. 94, 1971, pp.

549-572

Fulton (notatki Andersona), Wyk lad 4

Eddidin-Graham
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8 Twierdzenie o lokalizacji cd

8.1 Przyk lad: X = P(La ⊕ Lb), wtedy H∗
T (X)→ H∗

T (XT ) jest mono

– obraz sk lada sie
↪
z par (x, y) ∈ H∗

T (XT ) = H∗
T (pt)⊕H∗

T (pt), takich, że (a− b)|(x− y);

– koja
↪
dro jest torsyjne.

8.2 Dowód p laskości S−1R dla dowolnego pierscienia i systemu multiplikatywnego.

Uwagi do dowodu twierdzenia o lokalizacji:

8.3 Jeśli XT ⊂ Y , to S−1H∗
T (X)→ S−1H∗

T (Y ) jest izo, gdzie S generowany przez Anh(tx)−{0}
dla x ∈ X \ Y .

8.4 Izomorfizm Thoma i klasa Eulera.

8.5 Jeśli X jest rozmaitościa
↪
, a dzia lanie g ladkie, to dla podgrupy G ⊂ T zbiór X(G) jest

podrozmaitośćia
↪
. Rozk ladaja

↪
c X na typy orbitowe indukcjnie dowodzimy, że i∗ : S−1H∗

T (XT )→
S−1H∗

T (X) jest izo

8.6 Jeśli rze
↪
dy |π0(Tx)| dziela

↪
liczbe

↪
d, to teza twierdzenia prawdziwa dla wspó lczynników w

Z[1/d];

Konstrukcja odwzorowania odwrotnego S−1H∗
T (XT )→ S−1H∗

T (X)

8.7 Dla podrozmaitości i : Y ↪→ X odwzorowanie i∗i∗ : H∗(Y )→ H∗(Y ) jest mnożeniem przez

klase
↪
Eulera wia

↪
zki normalnej e(NY ).

8.8 Jeśli X z trywialnym dzia laniem T , to każda ekwiwariantna wia
↪
zka rozpada sie

↪
na sume

↪

podwia
↪
zekE =

⊕
w∈T∨ Ew, gdzie T dzia la na Ew poprzez charakter w

8.9 Jeśli X z trywialnym dzia laniem T , dim X <∞, E ekwiwariantna wia
↪
zka, ET = 0, to e(E)

odwracalna w S−1H∗
T (X) = S−1H∗

T (pt)⊗H∗(X), gdzie S generowane przez charaktery E.

Dowód: można za lożyć, że w E wyste
↪
puje jeden charakter w. Istnieje wia

↪
zka dope lniaja

↪
ca F ,

taka, że E ⊕ F = (11w)N . Wtedy e(E)e(F ) = wN .

8.10 Twierdzenie o lokalizacji Atiyah-Bott x =
∑

α(iα)∗
(

i∗α(x)
e(NYα)

)
, gdzie XT =

⊔
Fα, a iα :

Fα → X jest w lożeniem.

Dowód: i∗i∗ : S−1H∗(XT ) → S−1H∗(X) '→ S−1H∗(XT ) jest mnożeniem przez odwracalny

element
⊕

e(N(Fα)).

Literatura:

Atiyah-Bott

Eddidin-Graham

Fulton §5
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9 Lokalizacja c.d.

Oznaczenie: Λ := H∗
T (pt) ' Q[t1, t2, . . . , tr]

9.1 Inne sformu lowanie tw o lokalizacji: ker i coker odwzorowania HT (X) → H∗
T (XT ) sa

↪

torsyjnymi Λ-modu lami.

9.2 Formu la ca lkowa Berline-Vergne. Gdy MT jest dyskretny, to∫
M

a =
∑

p∈MT

a|p

ep
,

gdzie ep jest iloczynem wag reprezentacji stycznej.

9.3 Obliczenia
∫
Pn c1(γ)n+k

9.4 Warunki na ekwiwariantna formalność (wspó lczynniki kohomologii w Q)

– Cia
↪
g spektralny Epq

2 = Λ⊗Hq(X)⇒ Hp+q
T (X) degeneruje sie

↪
,

– Hp+q
T (X)→ Hp+q(X) jest ,,na”,

– H∗
T (X) = Λ⊗H∗(X) jako Λ-modu l,

– H∗
T (X) = Λ⊗H∗(X) jako przestrzeń wektorowa z gradacja

↪
,

– H∗
T (X)⊗Λ Q = Hp+q(X).

9.5 GKM-przestrzenie (przestrzenie ba
↪
belkowe):

1. dzia lanie T = (C∗)r, które jest ekwiwariantnie formalne,

2. XT jest dyskretny,

3. orbity jednowymaiarowe (sa
↪
izomorficzne z P1 \ {0,∞}) jest ich skończenie wiele,

4. w każdym punkcie sta lym charaktery nie sa
↪
proporcjonalne.

4’. jeśli za lożyć, że X jest rozmaotościa
↪
, to 3⇒ 4.

9.6 Twierdzenie: X przestrzeń ba
↪
belkowa, wtedy naste

↪
puja

↪
cy cia

↪
g jest dok ladny:

0 −→ H∗
T (X) −→ H∗

T (XT ) δ−→ H∗+1
T (X1, X

T ) '
⊕

1-wymiarowe orbity O
H∗

T (O),

gdzie X1 jest suma
↪
orbit 1- i 0-wymiarowych, δ jest różniczka

↪
w d lugim cia

↪
gu pary (X1, X

T ).

Literatura:

Fulton §5
Goresky-Kottwitz-MacPherson

Guillemin-Sternberg §10-11
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10 GKM-graf, kohomologie grassmanianu

10.1 Gdy X = P1 z dzia
↪
 laniem T przez charakter χ, wtedy

H∗+1
T (P1, {0,∞}) ' H∗

T (P1 \ {0,∞} = Λ/(χ).

10.2 Przeformu lowanie: GKM graf i uk lad elementów (up) ∈
⊕

p∈XT Λ zadaja
↪
klase

↪
w H∗

T (X)

wtedy i tylko wtedy gdy dla każdej krawe
↪
dzi α  la

↪
cza

↪
cej p z q charakter χα dzieli up − uq. Tzn

naste
↪
puja

↪
cy cia

↪
g jest dok ladny:

0 −→ H∗
T (X) −→

⊕
p∈XT

Λ δ−→
⊕

1-wymiarowe orbity O
Λ/(χO),

gdzie δ((up))O = up − uqmodχO gdy p, q ∈ O.

Dowód: dla każdego charakteru χ suma orbit z charakterem proporcjonalnym do χ jest równa

XTχ , gdzie Tχ = ker(χ). Element spe lniaja
↪
cy GKM rozszerza sie

↪
do klasy w H∗

T (XTχ). zatem w

przedstawieniu a ∈ S−1H∗
T (X) można unikna

↪
c mianowników podzielnych przez χ. Z w lasności

arytmetycznych Λ wynika, że a ∈ H∗
T (X).

(*) Jeśli χ1, χ2, . . . , χn sa
↪

różne charaktery, to
⋂

ΛSi = Λ, gdzie ΛSi ⊂ (Λ) jest lokalizacja
↪

ze

wzglee
↪
du na system multiplikatywny generowany przez χj , j 6= i.. To samo zachodzi dla modu lu

Λn.

10.3 Przyk lad: GKM graf dla grasmanianu

Klasa Segre i odpowiadaja
↪
ce jej funkcja symetryczna

10.4 Definicja: sk(E) = ck(−E∗), tzn s(E) = (c(E∗))−1 pochodzi od funkcji symetrycznej

hk(x1, . . . , xn) =
∑

I=(i1,...,in),|I|=k xI .

10.5 W lasnosci (aksjomatycznie)

10.6 Wzór hn = det(e1+j−i)1≤i,j≤k, gdzie ei – elementarna funkcja symetryczna (Jacobi-Trudi)

Dowód: det


1 e1 e2 . . . en−1 en

1 e1 e2 . . . en−1 en

0 1 e1 . . . en−2 en−1
...

0 0 0 . . . 1 e1

 = 0

10.7 Wzór jako iloraz uogólnionych wyznaczników Vandermonda Vk+n−1,n−2,...,1,0/Vn−1,n−2,...,1,0.

Dowód z rozwinie
↪
cia Laplace’a i twierdzenia o reziduach.

Kohomologie grassmanianu H∗(Grask(Cn)

` = n− k, wia
↪
zka tautologiczna oznaczana tu za Fultonem przez S, ilorazowa przez Q

10.8 H∗(Grask(Cn)) = Z[e1, . . . e`]/(hj |j > k), gdzie ei = ci(Q) = si(S∗), hj = si(Q) = cj(S∗)
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10.9 Baza addytywna σλ = [Ωλ(F•)] dla λ = (λ1 ≥ λ2 ≥ · · · ≥ λk), t.ż. λ1 ≤ ` (podzia l)

Ωλ(F•) = {W : dim(W ∩ F`+i−λi
≥ i}

codim(Ωλ(F•)) = i

10.10 Formu la Pieri σ(1k)σλ =
∑

σµ, gdzie µ jest otrzymane z λ przez dorzucenie k pude lek,

ale żadne dwa nowe nie sa
↪
w jednym rze

↪
dzie.

Literatura

Fulton §6, i ksia
↪
żka Young tableaux

MacDonald - Symmetric Functions and Hall polynomials

Griffiths-Harris - Principles of algebraic geometry Ch I §5

11 Ekwiwariantny rachunek Schuberta

11.1 Dualność Poincaré λ∗ = (`− λk, . . . , `− λ1)

Ωλ(F•) · Ωλ(F op
• ) = {lin(ε`+i−λi

).}

11.2 Dodatniość: klasa a jest nieujemna
↪

kombinacja
↪

klas Schuberta wtedi i tylko wtedy, gdy

dla każdej klasy σλ iloczyn a · σλ =
∫
Grask(Cn

) a ∪ σλ ≥ 0.

– każda klasa kohomologii reprezentowana przez cykl algebraiczny jest dodatnia (dowód z tw

Kleinmana o po lożeniu ogólnym dla rozmaitości jednorodnych)

11.3 Formu la Giambelli

[Ωλ(F•)] = det(cλi+j−i)1≤i,j≤k,

gdzie ci = ci(Q) = si(S∗).

- wielomiany Sλ = det(sλi+j−i)1≤i,j≤k jako wielomiany symetryczne od pierwiastków Cherna

wia
↪
zki S∗ sa

↪
równe

Vk−1+λ1,k−2+λ2,...,λk
/Vk−1,k−2,...,0,

gdzie Va1,a2,...,ak
= det(xaj

i )1≤i,j≤k

11.4 Dla wia
↪
zki wektorowej E → B, dim(E) = n wia

↪
zka grassmanianów: z Leray-Hirscha

H∗(Grask(E)) jest wolnym modu lem nad H∗(B)

H∗(Grask(E)) = H∗(B)[c1, . . . c`]/ ∼

ci = ci(Q), relacje pochodza
↪
od sj(Q− E) = cj(S∗) = 0 dla j > k.

11.5 Jeśli E ma filtracje
↪
F•, to definiujemy klasy σλ, to jest baza addytywna H∗(B)-modu lu

H∗(Grask(E)).
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11.6 Formu la Kempfa-Laksova

σλ = det(cλi+j−i(i))1≤i,j≤k,

gdzie c•(i) = c•(Q− F`+i−λi
) = c•(E/F`+i−λi

− S) = s•(S∗ − (E/F`+i−λi
)∗).

(dow. c•(Q− F ) = c•(Q− E + E − F ) = c•(−S + E/F ) = s•(S∗ − (E/F )∗))

11.7 Zwia
↪
zek ,,miejsca degeneracji morfizmu wia

↪
zek” z klasami Cherna. Jesli dim(A) ≤ dim(B)

to

[deg.loc(A→ B)] = cdim(B)−dim(A)+1(B −A)

n.p.

[deg.loc(Cα → B)] = przeskoda do istnienia α-reperu w B = cdim(B)−α+1(B).

11.8 Dowód tw Kempfa-Laksova (cze
↪́
sć geometryczna): indukcja ze wzgle

↪
du na d lugość λ. Jeśli

λ = (a, 0, . . . , 0) to

Ωλ = {W : dim(W ∩ F`+1−a ≥ 1} = deg.loc(F`+1−a → Q).

Wtedy

σλ = cλ(Q− F`+1−a)

Krok indukcyjny - cze
↪́
sciowa przestrzeń flag jest wia

↪
zka

↪
nad P(E)

p : Flk,1(E) = Grask−1(E/taut) −→ P(E) .

Obcinamy ja
↪
do P(F`+1−λ1) i definiujemy

Ω̃λ = {L ⊂W : ( dim(W ∩ F`+i−λi
) ≥ i ) & L ⊂W∩F`+1−λ1} = Ωλ\λ1

(F•/taut) ⊂ p−1(P(F`+1−λ1))

To modyfikacja rozmaitości Schuberta z Grask(E) (wie
↪
c π∗([Ω̃λ]) = [Ωλ(F•)]) i jednoczesnie

rozmaitość Schuberta w Grask−1(E/taut) zadana przez krótszy podzia l (λ2, λ3, . . . , λk)

Ω̃λ −→ Ωλ(F•)⋂ ⋂
Pk−1 ↪→ Fk,1(E) −→ Grask(E)

π

Pozostaje skorzystać z za lożenia indukcyjnego i z w lsności π∗ dla wia
↪
zek z w lóknem Pk−1

11.9 Niech B = BT . Mamy bijekcje
↪

Grassk(Cn)T ←→ {I ⊂ {1, . . . , n} : |I| = k} ←→ podzia ly

Indeksujemy komórki Schuberta podzia lami, a punkty sta le podzbiorami k-elementowymi, lub

równoważnie podzia lami. Przej́scie od podzia low do podzbiorów via drogi NE → SE, które sa
↪

brzegami diagramów Younga. Dla podzia lu µ przez I(µ) ⊂ {1, . . . , n} oznaczamy odcinki drogi

na po ludnie, a J(µ) ⊂ {1, . . . , n} na zachód. Z twierdzenia o lokalizacji

H∗
T (Grask(Cn)) = {(aµ) ∈

⊕
podzia ly

Λ : spe lniaja
↪
ce warunek GKM}.
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11.10 Przyk lad: Gras2(C4), λ = (1, 0) = 2

µ I(µ) J(µ)
(22) 12 34 (σ2)|p12

= σ2|(22) = t3 + t4 − t1 − t2

(21) 13 24 (σ2)|p13
= σ2|(21) = t4 − t1

(20) 14 23 (σ2)|p14
= σ2|(20) = t3 − t1

(11) 23 14 (σ2)|p23
= σ2|(11) = t4 − t2

(10) 24 13 (σ2)|p24
= σ2|(10) = t3 − t2

(00) 34 12 (σ2)|p34
= σ2|(00) = 0

11.11 W przyk ladzie wykorzystujemy: jeśli X = {f = 0} ⊂ Cn to

[X]|0 = mult.deg(f) ∈ Hom(T, C∗) = H2
T (pt)

11.12 Ogólnie dla podzia lu µ

σ2|µ =
∑

j∈J(µ)

tj −
∑
i≤`

ti =
∑
j>`

tj −
∑

i∈I(µ)

ti

11.13 Problem: znaleźć σλ|µ. Odp: double Schubert polynomials. My wypiszemy wzór z tw

Kempfa-Laksova

σλ(x|t) = det(cλi+j−i(i))1≤i,j≤k

gdzie

c•(x|t)(i) = c•(E/F`+i−λi
− S) =

∏
j>`+i−λi

(1 + ti)∏k
i=1(1 + xi)

We wzorze podstawiamy za xi pierwiastki wia
↪
zki tautologicznej.

11.14 W szczególności

σ2 =
∑
j>`

tj − c1(S) .

Po obcie
↪
ciu do pI(µ)

σ2|µ =
∑
j>`

tj −
∑

i∈I(µ)

ti .

Literatura

Fulton §7 MacDonald - Symmetric Functions and Hall polynomials

Griffiths-Harris - Principles of algebraic geometry Ch I §5

12 Teoria de Rhama

G∗-algebry

12.1 Algebra różniczkowań algebry z gradacja
↪
. Algebry Lie z gradacja

↪
, modu ly i algebry z

gradacja
↪
nad algebra

↪
Lie z gradacja

↪
oraz dg-modu ly i algebry nad dg-algebrami Lie.
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12.2 Dzialanie algebry pól wektorowych na formach różniczkowych: w je
↪
zyku algebry z gradacja

↪

[ιX , d] =: LX

[d, LX ] = 0

[ιX , ιY ] = 0

[d, d] = 0

[ιX , LY ] = ι[X,Y ]

Dow. Opereacje te spe lniaja
↪
regu le

↪
Leibniza, Ω•(M) jest generowana przez 0 formy i 1-formy df :

[ιX , LY ]df = ιXdLY f − LY df(X) = LXLY f − LY LXf = L[X,Y ]f = ι[X,Y ]df

12.3 Algebra Ω•(M) dla G-rozmaitości przzk ladem algebry z gradacja
↪

nad algebra
↪

Lie (z

gradacja
↪
) g̃ = g[1]⊕ g⊕ R[−1], gdzie R[−1] = 〈d〉

12.4 Algebra Ω•(M) dla G-rozmaitości pryzkeladem dg-algebry nad ĝ = g[1]⊕ g.

12.5 Definicja G∗-algebry: dg-algebra z dzia laniem G i zgodnym dzia laniem algebry g̃.

12.6 Dla zwartych grup Lie H∗(A) = H∗(AG), w szczególności H∗(Ω•(M)G) = H∗(Ω•(M)).

Dowód w notacji dla torusa. H∗(A) =
⊕

H∗(A)χ =
⊕

H∗(Aχ). Niech a ∈ Aχ, da = 0.

Dla jednoparametrowej podgrupy generowanej przez λ ∈ t mamy exp(tλ) · a = t〈χ,λ〉a. Wtedy

Lλa = 〈χ, λ〉a. Z drugiej strony Lλa = dιλa. Jeśli 〈χ, λ〉 6= 0 to forma a jest dok ladna.

12.7 Lokalnie wolne dzia lanie - warunek (C). Forma koneksji θ ∈ Ω1(M ; g))G o sk ladowych θa

przy wyborze bazy {λa} przestrzeni g: θa(λb) = δa
b .

12.8 Elementy horyzontalne i bazowe G∗-algebry, dla wolnych dzia lań H∗(Ω∗(M)bas) = H∗(M/G)

Literatura: Guillemin-Sternberg §2

13 Teoria de Rhama II

13.1 Kompleks Koszula Λ(V ) ⊗ S(V ), d(x ⊗ 1) = 1 ⊗ x dla x ∈ V . Acyklicznosć: homoropia

Q(1⊗ x) = x⊗ 1, [Q, d] = (k + `)Id na Λk(V )⊗ S`(V ).

Za lożenie znacznie upraszczaja
↪
ce formu ly: G = T jest torusem

13.2 Acykliczny lokalnie wolna T ∗-algebra E = limn Ω•(S2n−1) i jego oszcze
↪
dny model - algebra

Weila W (t) = Λ(t∗)⊗S(t∗), która jest kompleksem Koszula dla V = t∗, ma strukture
↪
T ∗-algebra

z dzia laniem ιλ tylko na pierwszy czynnik.

13.3 Lokalnie wolna T ∗-algebra ma strukture
↪
W (t)-algebry.

13.4 Ekwiwariantne kohomologie H∗
T (B) := H∗((E ⊗B)bas) dla E lokalnie wolnej acyklicznej

T ∗-algebry. Zgodność z definicja
↪
topologiczna

↪
dla B = Ω•(M).
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13.5 Skre
↪
t Mathai-Quillena: dla T ∗-algebr A i B, A lokalnie wolna

φ = exp(γ) ∈ Aut(A⊗B)

γ =
∑

θa ⊗ ιλa .

Dobrze określony, bo γr+1 = 0 dla r = dim(T ).

13.6 γ wie
↪
c i φ sa

↪
T -niezmiennicze oraz

φ(ιξ ⊗ 1 + 1⊗ ιξ)φ−1 = ιξ ⊗ 1

φdφ−1 = d−
∑

dθa ⊗ ιλa +
∑

θa ⊗ Lλa

13.7 Po skre
↪
ceniu:

φ((A⊗B)hor) = Ahor ⊗B

Dla E = W (t)

φ((E ⊗B)bas) = S(t)⊗B

z różniczka
↪

d̃ = 1⊗ d−
∑

λa ⊗ ιλa

To jest model Cartana ekwiwariantnych kohomologii.

Literatura: Guillemin-Sternberg §3-4

Uzupe lnienie:

13.8 Dla lokalnie wolnej T ∗-algebry A oraz acyklicznej T ∗-algebry B mamy

H∗((A⊗B)bas) = H∗(Abas).

Dow: po skre
↪
ceniu przez φ filtrujemy podkompleksami F i = (A≥i

hor ⊗B)T . Kohomologie ilorazu

H∗(F i/F i+1) = H∗((Ai
hor ⊗B)T ) = (Ai

hor)T

zatem w lożenie A ↪→ A⊗B indukuje izomorfizm na kohomologiach bazowych.

13.9 Niezależność od wyboru acyklicznej T ∗-algebry E.

Dow: Niech E i E′ dwa acykliczne lokalnie wolne T ∗-algebry. Wtedy E ⊗ B jest lokalnie wolna
↪

T ∗-algebra
↪
, wie

↪
c H∗(E′ ⊗ (E ⊗B)bas) = H∗((E ⊗B)bas).
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14 Geometria symplektyczna

14.1 Przyk lad: S1 lub C dzia la na Cn+1 − 0 diagonalnie, Ω•(Cn+1 − 0) jest lokalnie wolnym

(S1)∗-modu lem. Wybór koneksji

θ = ∂ log(|z|2).

Sprawdzamy warunek

θ(λ) = ∂t log(|e2πitz|2) = ∂t(log(e2πit) + log(e2πit) + log(|z|2)) = ∂t log(e2πit) =
2πi e2πit

e2πit
.

Trzeba unormować, podzielić przez 2πi

14.2 Wniosek dθ = 1
2πi ∂̄∂ log(|z|2) jest forma

↪
bazowa

↪
, generatorem H2(Pn).

14.3 Rozamaitości symplektyczne (M,ω), wspó lrze
↪
dne Darboux, izomorfizm TM ' T ∗M , pole

hamiltonowskie Xf zdefiniowane przez ιXf
ω = df , czyli df(v) = ω(Xf , v) dla każdego v.

14.4 Przyk lad: M = Pn z forma
↪
symplektyczna

↪
dθ ∈ Ω2(Cn+1− 0)bas = Ω2(Pn), inny przyk lad

nie zwarty T ∗N , dla dowlnej n-wymiarowej rozmaitości N .

14.5 Nawias Poissona,

{f, g} := df(Xg) = ω(Xf , Xg) =
∂f

∂p

∂g

∂q
− ∂g

∂p

∂f

∂q

homomorfizm algebr Lie C∞(M)→ Γ(TM)

14.6 Potoki hamiltonowskie, dzia lania hamiltonowskie, odwzorowanie momentu µ̃ : g→ C∞(M)

C∞(M)
µ̃ ↗ ↓ X?

g → Γ(TM)

lub równoważnie g-niezmiennicza µ : M → g∗ taka, że dla λ ∈ g

ιλω = d〈µ, λ〉 ∈ Ω1(M).

W bazie µ = (f1, f2, . . . , fr) =
∑

fa ⊗ λa mamy

ιλaω = dfa.

14.7 Dzia lanie naturalne (C∗)n+1 na przestrzeni rzutowej ma odwzorowanie momentu

fa([z0 : z1 : · · · : zn]) =
|za|2∑n
i=0 |zi|2

dla a = 0, 1, . . . n..
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14.8 Zwia
↪
zek odwzorowania momentu z ekwiwariantnymi kohomologiami. Twierdzenie: Niech

T dzia la hamiltonowsko na rozmaitości symplektycznej z funkcja
↪
momentu µ. Wtedy ω# := ω+µ

jest zamknie
↪
ta

↪
forma

↪
w ekwiwariantnym kompleksie de Rhama (model Cartana).

Dow. Zapisujemu w bazie µ =
∑

fa ⊗ λa ∈ C∞(M ; t∗)T = t∗ ⊗ C∞(M)T

d̃(ω + µ) = −
∑

λa ⊗ ιλaω +
∑

λa ⊗ dfa

14.9 Twierdzenie Duistermaata-Heckmana jako szczególny przypadek twierdzenia o lokalizacji:

Za lóżmy, że S1 dzia la hamiltonowsko z funkcja
↪
Hamiltona H. Za lóżmy, że H ma izolowane punkty

krytyczne (równoważnie MS1
jest skończony). Wtedy dla każdego ~ ∈ C∫

M
e−~H ωn

n!
=

∑
p∈MS1

e−~H(p)

~neu(p)

gdzie eu(p) jest iloczynem wag reprezentacji stycznej TpM .

14.10 Twierdzenie Atiyah-Guillemina-Sternberga o obrazie odwzorowania momentu [GS2]

M zwarta, spójna, symplektyczna, z Hamiltonowskim dzia laniem torusa (tzn dopuszczaja
↪
ce odw-

zorowanie momentu), zadanym przez

µ : M → t∗.

Wtedy zbiór punktów sta lych jest suma
↪

podrozmaitości symplektycznych Ci, i ∈ I. Na każdej

sk ladowej odwzorowanie µ jest sta le, oraz

µ(M) = Conv{f(Ci) | i ∈ I}.

14.11 Przyk lad: przestrzeń rzutowa ze standardowym dzia laniem (C∗)n+1

µ(Pn) = standardowy sympleks w Cn+1.

14.12 Twierdzenie [McDuff] (dowód bardzo trudny): Jeśli dzia lnie torusa na zwartej roz-

maitości symplektycznej dopuszcza odwzorowanie momentu, to M jest ekwiwariantnie formalna.

14.13 Rozmaitości toryczne.

Literatura:

[AB] Atiyah-Bott

McDuff-Salamon, Introduction to symplectic Topology,

Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry
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15 Tematy na egzamin

1) Co to sa
↪
typy orbitowe?

•Jakie sa
↪
typy orbitowe dzia lania do la

↪
czonego SU(2) na algebrze Liego su(2)?

•Niech G zwarta grupa, X ma tylko jeden typ orbitowy G/H. Wykazać, że X → X/G jest

wia
↪
zka

↪
stowarzyszona

↪
z pewna wia

↪
zka

↪
g lówna

↪
o grupie strukturalnej N(H)/H.

2) Twierdzenie o slajsie

•Niech X be
↪
dzie rozmaitościa

↪
Schuberta (tzn domknie

↪
ciem komórki) kowymiaru 1 w Grass3(C6).

Opisać slajsy orbit dzia lania zwartego torusa.

3) Uniwersalne G-wia
↪
zki, kohomologie ekwiwariantne

•Cia
↪
g dok ladny grup K → G→ H indukuje rozw lóknienie BK ↪→ BG→→ BH.

•Wykazać, że H∗
G(X) nie zależy od modelu EG.

4) Przestrzenie klasyfikuja
↪
ce grup Lie: modele be

↪
da

↪
ce granicami rozmaitości

•Znaleźć przekszta lcenia klasyfikuja
↪
ce dla pote

↪
gi wia

↪
zki tautologicznej (γn)⊗k → Pn (dla k ∈ Z)

przyjmuja
↪
c model BC∗ = P∞.

5) Kohomologie przestrzeni flag

•Opisać kohomologie przestrzeni flag Fn dla n = 2, 3, 4, podać wymiary w poszczególnych gradac-

jach, opisać odzorowania indukowane na kohomologiach pomie
↪
dzy tymi przestrzeniami, oraz in-

dukowane z odwzorowań do Pn−1 i do BT .

6) Ekwiwariantna formalność

•Mnożenie przez klase
↪

z H1(T ) zadaje operacje
↪
H∗(X) → H∗+1(X) (lub H∗(X) → H∗−1(X)).

Wykazać, że jeśli X jest ekwiwariantnie formalna, to ta operacia jest zerowa. Podać przyk lad,

gdy ta operacja jest zerowa, ale przestrzeń nie jest ekwiwariantnie formalna.

•Jeśli X jest ekwiwariantnie formalna, skończonego wymiaru, zwarta, to H∗(X) ' H∗(XT ) z

zachowaniem gradacji modulo 2.

7) Twierdzenie o Lokalizacji (wersja dla przestrzeni topologicznej)

•Udowodnić, że teza Twierdzenia o Lokalizacji zachodzi dla kohomologii o wspó lczynnikach

ca lkowitych, jeśli stabilizatory punktów sa
↪
spójne.

8) Konstrukcja odwzorowania odwrotnego S−1H∗
T (XT )→ S−1H∗

T (X)

•Obliczyć
∫
X α ∈ H4

T (pt), gdzie X = Gras2(C4), dla α = c2(γ)c1(γ)4, c2(γ)2c1(γ)2, c1(γ)6.

•Przyk lad zastosowania twierdzenia o lokalizacji: X rozmaitość algebraiczna rzutowa z dzia laniem

C∗, C krzywa z samoprzecie
↪
ciem, która jest T -niezmiennicza, to C musi być zawarta w XT .

9) GKM-graf i opis kohomologii ekwiwariantnych bez lokalizowania

•Opisać GKM-graf (wraz z charakterami odpowiadaja
↪
cymi krawe

↪
dziom) dla grassmanianu La-

grange’a LG(n) ⊂ Grassn(C2n) dla n = 1, 2, 3.

10) Opis pierścienia kohomologii grassmanianu

•Podać opis pierścienia kohomologii H∗(Grassk(Cn)) poprzez generatory i relacje.
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11) Ekwiwariantny rachunek Schuberta

•Wykazać cν
λµ = 0 jesli λ 6⊂ ν lub µ 6⊂ ν

•Wykazać: cµ
λµ = σλ|µ

•Formu la Monka-Pieri:

σ2 · σλ =
∑

σλ+ + σ2|λ · σλ,

gdzie λ+ powstaje z λ przez dodanie jednego pude lka.

12) Dzia lania algebry Lie na Ω•(M) dla G-rozmaitości, G∗-modu ly i algebry.

•Niech A be
↪
dzie algebra

↪
z gradacja

↪
(niekoniecznie superprzemienna

↪
). Udowodnić, że A z operacja

↪

superkomutatora jest superalgebra
↪
Lie.

•Niech M be
↪
dzie rozmaitościa

↪
riemannowska

↪
z dzia laniem S1 przez izometrie, bez punktów

sta lych. Podać jawnym wzorem odwzorowanie W (t)→ Ω•(M).

13) Model Cartana ekwiwariantnych kohomologii dla dzia lania torusa.

•Udowodnić, że dla lokalnie wolnej T ∗-algebry A oraz acyklicznej T ∗-algebry B mamy

H∗((A⊗B)bas) = H∗(Abas).

•Sprawdzić, że d̃2 = 0 w modelu Cartana (dla torusa) nie odwo luja
↪
c sie

↪
do skre

↪
tu Mathai-Quillena

14) Zwia
↪
zek odwzorowania momentu z ekwiwariantna

↪
teoria

↪
de Rhama.

•na rozmaitości symplektyczniej dzia la torus zachowuja
↪
cy forme

↪
symplektyczna

↪
ω. Czy mamy

bijekcje
↪
pomie

↪
dzy dwoma konstrukcjami:

1) znalezienie odwzorowanie momentu

2) konstrukcja formy zamknie
↪
tej formy ω# ∈ S•(t∗)⊗Ω•(M)T , która odwzorowuje sie

↪
na ω przy

rzutowaniu na Ω•(M)?

•W Pn z dzia laniem liniowym C∗ nie ma zamknie
↪
tych  lańcuchów orbit dzia lania exp(R+).
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