TOPOLOGIA DZIALANIA TORUSA

23.1.2013

1 Podstawy
1.1 Podstawowe pojecia, stabilizatory, orbity, ilorazy
1.2 Odwzorowania ekwiwariantne, Map(G/H,Y) = Y
1.3 Typy orbitowe

1.4 Dla grupy zwartej odwzorowania dzialania G x X — X i rzutowania X — X/G sa

domkniete

2 Konstrukcje i struktura G-przestrzeni

2.1 Konstrukcje ekwiwariantne
— skrecony produkt X xgY

— indukowana przestrzen G x g X

fXx — X
— produkty witokniste i przestrzen indukowana | ¥ l
Y — X/G

2.2 G-wiazki gtéwne E — B = E/G, kocykle definiujace wiazki
2.3 Kazde przeksztalcenie G wiazek gléwnych nad ustalona baza jest izomorfizmem

2.4 Dane wiazki gléwne E' i F nad B X I. Jesli E\gy 0} ~ Fipx{o}, to B~ F
—dowdd dla CW-komplekséw poprzez wlasno$é podnoszenia homotopii dla rozwldéknienia M ap o (E,F) —
BxI

2.5 Jedli f,g: B’ — B sa homotopijne, to f*E ~ g*F
2.6 Zbior klas izomorfizméw G-wiazek jako funktor hTop — Set, reprezentowalnosc
2.7 Lokalna struktura G-przestrzeni: tuby i slajsy - definicje

2.8 Kazda G-ekwiwariantna wiazka wektorowa nad G/H jest postaci G xg V. — G/H dla
pewnej reprezentacji V' grupy H.

2.9 Jesli zwarta grupa Lie dziala gladko na rozmaitosci, to kazda orbita ma slajs

Literatura: G. Bredon - Introduction to Compact Transformation Groups, roz I'i II



3 Lokalna struktura, uniwersalne wiazki
3.1 Widkno retrakcji do orbity jest slajsem

3.2 Twierdzenie o istnieniu slajsa jest prawdziwe dla dowolnej (normalnej) G-przestrzeni. Dowdd

w oparciu o twierdzenie Chevalleya o zanurzaniu orbit i twierdzenie Tietza-Gleasona
3.3 Analog twierdzenia o slajsie w kategorii rozmaitosci algebraicznych - twierdzenie Luny

3.4 Wnoisek: gdy G jest zwarta grupa Lie, dzialajaca gadko na G-rozmaito$¢i to jest skoniczenie
wiele typow orbitowych.

— dowdd indukcyjny ze wzgledu na wymiar.
3.5 Jesli S C X jest slajsem przez punkt z to [z] € X/G ma otoczenie homeomorficzne z S/G,

3.6 Kazda orbita Gz ma otoczenie U takie, ze Gy(<)G, dla y € U. (Relacja (<) oznacza

zawieranie z dokladnoscia do sprzezenia.)

3.7 Jesli zwarta grupa Lie G dziala wolno na normalnej przestrzeni, to X — X /G jest wiazka

gléwna

3.8 Twierdzenie Mostowa o ekwiwariantnym zanurzaniu w reprezentacje grupy G pod warun-
kiem, ze G zwarta, X ma skonczenie wiele typéw orbitowych i jest metryczna skonczonego wy-

miaru (tzn. daje sie zanurzy¢é w R™).

3.9 W kategorii rozmaitosci algebraicznych analogiczne twierdzenie o zanurzaniu w projekty-

wizacje reprezentacji dowiodt Sumihiro.

Uniwersalne G-wiazki gléwne

3.10 Jesl E — B jest G wiazka gléwna, E jest przestrzenia $ciagalna, to dla kazdej G wiazki
gltéwnej P — K nad C'W-kompleksem istnieje odwzorowanie f : K — B takie, ze f*E = P.
Ponadto f jest jednoznaczne z dokladnoscia do homotopii.

— B reprezentuje funktor [Klasy izomorfizmu G-wigzek nad ?)

— typ homotopijny jest wyznaczony przez G, przestrzenn B jest oznaczana przez BG, a F przez
EG

Literatura: Husemoller - Fibre Bundles



4 Przestrzenie Klasyfikujace i ekwiwariantne kohomologie 1.0

4.1 Kazda domknieta podgrupa grupy liniowej G L,,(C) dopuszcza model BG, ktdry jest wstepujaca

suma rozmaitosci.

4.2 Kazda zestolona podgrupa grupy liniowej G L,,(C) dopuszcza model BG, ktéry jest wstepujaca

suma rozmaitosci zespolonych.

4.3 Modele przestrzeni klasyfikujacej:
—dla T = (C*)™: (P®)" i Grasi?"™(C>) = Stief,(C>)/T.
— czeSciowa przestrzen flag Gms#ltr((coo) = Stief,(C*)/Tr jest modelem B(T'r)

—~ BSO,(C) jako wiazka nad grassmanianem
4.4 Dla ciagu dokladnego K — G — H rozwidknienie BK — BG — BH.
4.5 Dla podgrupy K C G rozwléknienie G/K — BK — BG
4.6 Jesli grupa Lie zawiera torus, to przestrzen klasyfikujaca jest nieskoniczonego wymiaru.

4.7 Kohomologie nieskoniczonego grassmanianu H*(BU,;Z) = H*(BT;Z)*" = Z[ci,cz .. ., cal,
gdzie ¢; = oi(t1,ta, ..., tn).

4.8 Uogdlnienie dla dowolnej grupy zwartej, kohomologie o wspétczynnikach w Q:
H*(BG;Q) = H*(BT;Q)",

gdzie W = NT/T jest grupa Weyla.

Ekwiwariantne kohomologie
4.9 Jedli G dziala wolno na X (oraz X — X/G jest wiazka gléwna) to Hj(X) := H*(X/G)

4.10 Kazda G-przestrzen X jest homotopijnie rownowazna wolnej G przestrzeni EG x X
~HiH(X) = H((FG x X)/G) = H(EG xg X)
—jesli X — Y jest homotopijna réwnowaznoscia, to indukuje izomorfizm ekwiwariantnych koho-

mologii.

4.11 Rozwldknienie X — EG xg X — BG.
— H{(X) jest algebra nad H*(BG) = Hf(pt)

4.12 Wiékno nad [z] odwzorowania EG xg¢ X — X/G jest réwne EG/G, = BGy.



5 Kohomologie BGL,(c) i przestrzenie flag

5.1 Gdy G spdjna grupa Lie, K maksymalna zwarta podgrupa, wtedy BK — BG jest homo-
topijna réwnowaznoscia (bo G/K ~ R" z rozktadu G = K AN)
~ B(SYH)" ~ B(C*)" ~ B(Tr), gdzie Tr oznacza grupe macierzy gérnotréjkatnych w G L, (C)
— BU(n) = BSp,(R), gdzie Sp,(R) C GLay,(R) jest podgrupa macierzy symplektycznych.

5.2 Kohomologie BT"
— przedstawienie T' = (C*)" zadaje izomorfizm H*(BT;7Z) ~ Z[t1,ta, ..., ty]
— przedstawienie niezmiennicze H*(BT;Z) = Py Symd(TV)
— lub jako wielomiany na algebrze Lie H*(BT;C) = C[t].

5.3 Pierwsza klasa Cherna wiazek liniowych poprzez urozsamienie
[X, BC] = [X, K(Z,2)] = H*(X;2).

5.4 Kohomologie BGL,(C) jako piersciein wielomianéw od ¢; = ¢;(v*), gdzie v jest wiazka
uniwersalng na grassmannianie:
1. kohomologie rozmaitosci flag F,, = {V; C Vo C --- C V,, = C"} sa generowane przez pierwsze
klasy Cherna wiazek liniowych V;/V;_1 (dow6d indukeyjny z tw Leray-Hirscha dla F,,_y C F,, —
— P,

2. z rozwitdknienia F,, C BT — BGL, i tw. L-H mamy
H*(BT) ~ H*(BGL,) ® H*(F,).

Stad H*(BGL,) — H*(BT') jest mono.
3. obraz H*(BGLy,) lezy w H*(BT)™" ~ Z[t1,ta, ..., tn]>"

4. liczenie wymiaréow daje izomorfizm. Funkcji symetrycznej o; odpowiada ¢;
5.5 Klasy charakterystyczne wiazek poprzez Lemat Yonedy.

5.6 Jesli wiazka E ma przekrdj niezerujacy sie nigdzie, to ciop(E) = 0 (z konstrukeji izomor-

fizmu).

57 H*(Fn) = Z[tl,tg, e ,tn]/(dl,dg, N ,O'n)

Literatura o klasach Cherna i inne obliczenie kohomologii nieskonczonego grassmanianu: Milnor-

Stashef, Characteristic classes.

6 Ekwiwariantne kohomologie 2.0

6.1 Aproksymacja: jesli E — B jest wiazka gléwna, H¥(E) = 0 dla k < N, to Hg(X) =
HY(E xg X) dlak < N.
— dowéd z lematu: Jedli F < A — B jest rozwiéknieniem, H*(F) = 0 dla k < N, to H*(A) =
HF(B) dla k < N. Stosujemy dla A= (E x EG) xg X i B=FE xg X oraz dla B' = EG xg X



6.2 Obliczenie H}.(P(V)) dla reprezentacji T — GL(V).
— twierdzenie Leray-Hirscha
— formuta rzutowa Grothendiecka: dla rozszczepialnej wiazli wektorowej L1 & ---® L, = F — B
speliona jest relacja [[(x + ¢1(L;)) = 0 € H*(P(E)), gdzie © = ¢1(O(1)), a O(1) jest sprzezona
wiazka tautologiczna nad P(E). (Dow. O(1) ® p*(E) = Hom(O(—1),p*(E)) ma przekrdj, wiec

klasa ¢, znika.)

6.3 Lemat: C C A —— B lokalnie trywialne rozwldknienie algebraicznych rozmaitosci, C
zwarte, K cialo, to H*(A;K) = H*(B;K) ® H*(C;K) jako H*(C; K)-modut.
— dowdd z tw. Leray-Hirscha: konstrukcja korespondencji Z C A x C zadajacej transformacje
¢ : H*(C) — H*(A), takiej, ze dla otwartego zbioru U C B nad ktérym wiazka jest trywialna
zlozenie H*(C) — H*(A) — H*(p~*(U)) = H*(U x C) jest indukowane przez rzutownie na C.

Ekwiwariantna Formalnosé

6.4 Jesli G = (C*)" lub GL,(C) dziala algebraicznie na zwartej, gladkiej rozmaitosci alge-
braicznej, to dla dowolnego ciata K kohomologie ekwiwariantne sa wolnym H*(BG;K) modutem
H{(XK) ~ HY(BG;K) @ H* (X K) jako H*(BG; K) modul
- H*(X;K) = H5(X35K) @y« (pek) K
— dowdéd dziata dla grup, dla ktérych EG — BG aproksymowaé mozna przez wiazki Zariski-
lokalnie trywialne; np Sp,(C).

—dla K = Q uogdlnienie dla dowolnej liniowej spéjnej grupy algebraiczne;j.

Literatura: Fulton (notatki Andersona), Wyklad 2
O krespondencjach: Fulton, Intersection theory, §16

7 Formalne wlasnosci ekwiwariantnych kohomologii

71 - f:X—=Y,0;G— Htz f(9.x) = ¢(9).f(x) indukuje H(Y) — HE:(X)
~dlaY =X, f(z) = go.z, ¢(9) = 9o Lggo przeksztalcenie indukowane jest identycznoscia.
— H:(G xg X) = Hi;(X) dla H-przestrzeni,
— w szczegblnosci HY(G/H) = Hy(pt) = H*(BH) (zamiast aksjomatu wspélczynnikow)
— Mayer-Vietoris
— jesli ekwiwariantne przeksztalcenie f : X — Y indukuje izomorfizm na H*(—), to indukuje

izomorfizm na HE(—)
7.2 Klasy charakterystyczne dla ekwiwariantnych wiazek wektorowych.

7.3 Dla wilasciwego odwzorowania X — Y G-rozmaitosci funktorialny homomorfizm Gysina
fot HY(X) — HET(Y), gdzie r = dimY — dim X
— formula projekcji dla a € HE(X), b e HE(Y):

fo(f"b.a) = b.fi(a).



— dla produktu witéknistego, gdzie f lub g jest rozwdknieniem

/

g
X — X
"y I 7 g f=flg"
Y — Y
g

—dla X CY, to f*f, jest mnozeniem przez ekwiwariantna klase Eulera wiazki normalne;.
— klasa fundamentalna [V] dla ekwiwariantnej podrozmaitosci V' C X w grupie HgOdim(V) (X).
Jesli f(V)) =W, to fu([V]) = d[W], gdzie d jest stopniem odwzorowania V' — W.

—peVNnXT f:{p} — X, to f*[v] = e(N(p))

Lokalizacja

7.4 Twierdzenie o lokalizacji: X zwarta przestrzen skonczonego wymiaru, na ktérej dziala
torus. Niech S € H*(BT) = Sym*(t*) system multiplikatywny zawierajacy anihilatory algebr
Lie nietrywialnych grup izotropii 7. Wtedy

ST'H;(X;Q) — ST HH(XT; Q)

jest izomorfizmem.

(Dowéd przy pewnych zalozeniach o regularnosci przestrzeni X.)
7.5 Lemat: piericiern S~'H*(BT;Q) jest ptaski nad H*(BT;Q).

7.6 Krok 1: Y C X para T-przestrzeni, Y domkniety, T’ dziala wolno na X \Y, S = (T —{0}),
wtedy STPHA(X,Y) = 0.

Dowdéd, gdy (*) Y ma otoczenie V', homotopijnie z nim réwnowazne
7.7 Krok 2: Ty — T3 nakrycie, to Hy, (X,Y;Q) — Hf (X,Y;Q) izomorfizm.

7.8 Krok 3: punkty z X \ Y maja taki sam typ orbitowy T/T,, S D (anh(t),), wtedy
STIHZ(X,Y;Q) =0

7.9 Krok 4: Zakladamy, ze X ma filtracje zbiorami domknietymi X” = Xg C X; C --- C
X, = X speliajaca (*) oraz punkty w réznicy X; \ X;_; maja taki sam typ orbitowy. (Np X

jest rozmaitoscia.) Stosujemy ciag dokladny pary Longrightarrow teza tweierdzenia.

Literatura:

Quillen, The Spectrum of an Equivariant Cohomology Ring: 1, Ann. Math. Vol. 94, 1971, pp.
549-572

Fulton (notatki Andersona), Wyktad 4

Eddidin-Graham



8 Twierdzenie o lokalizacji cd

8.1 Przyklad: X = P(L, ® Ly), wtedy HA(X) — Hi(XT) jest mono
— obraz sklada sie z par (z,y) € Hi(XT) = Hx(pt) ® Hi(pt), takich, ze (a — b)|(z — y);

— kojadro jest torsyjne.

8.2 Dowdd plaskoéci S~'R dla dowolnego pierscienia i systemu multiplikatywnego.

Uwagi do dowodu twierdzenia o lokalizacji:

8.3 Jesli XT C Y, to STTHA(X) — STTHA(Y) jest izo, gdzie S generowany przez Anh(t,)—{0}
dlaze X\Y.

8.4 Izomorfizm Thoma i klasa Eulera.

8.5 Jesli X jest rozmaitoscia, a dzialanie gladkie, to dla podgrupy G C T zbiér X(g) jest
podrozmaitoséia. Rozkladajac X na typy orbitowe indukcjnie dowodzimy, ze i, : S *1H§i(X -
ST HZ(X) jest izo

8.6 Jesli rzedy |mo(T%)| dziela liczbe d, to teza twierdzenia prawdziwa dla wspélezynnikéw w
Z[1/d;

Konstrukcja odwzorowania odwrotnego S~ Hi(XT) — ST1HA(X)

8.7 Dla podrozmaitosci i : Y < X odwzorowanie i*i, : H*(Y) — H*(Y) jest mnozeniem przez

klase Eulera wiazki normalnej e(NY').

8.8 Jedli X z trywialnym dzialaniem T, to kazda ekwiwariantna wiazka rozpada sie na sume

podwiazekEl = @, v Ew, gdzie T dziala na E,, poprzez charakter w

8.9 Jedli X z trywialnym dziataniem 7', dim X < oo, E ekwiwariantna wiazka, ET = 0, to e(F)
odwracalna w S™'Hx(X) = ST Hi(pt) ® H*(X), gdzie S generowane przez charaktery E.
Dowéd: mozna zalozy¢, ze w E wystepuje jeden charakter w. Istnieje wiazka dopelniajaca F,
taka, ze E @ F = (1,)V. Wtedy e(E)e(F) = w™.

8.10 Twierdzenie o lokalizacji Atiyah-Bott x = ) (ia)« (62%7(2)), gdzie XT = | |F,, a i, :
F, — X jest wlozeniem.

Dowéd: i*iy : STTH*(XT) — S™'H*(X) = S~ 'H*(XT) jest mnozeniem przez odwracalny
element @ e(N(Fy)).

Literatura:
Atiyah-Bott
Eddidin-Graham
Fulton §5



9 Lokalizacja c.d.
Oznaczenie: A := H7(pt) ~ Q[t1,t2,. .., t;]

9.1 Inne sformulowanie tw o lokalizacji: ker i coker odwzorowania H'(X) — Hi(X7T) sa

torsyjnymi A-modulami.

9.2 Formula catkowa Berline-Vergne. Gdy M7 jest dyskretny, to

a
s 3
M (&

peMT p

gdzie e, jest iloczynem wag reprezentacji styczne;j.
9.3 Obliczenia [pn c1 ()"

9.4 Warunki na ekwiwariantna formalnosé (wspélczynniki kohomologii w Q)
~ Ciag spektralny E5? = A @ HY(X) = HE™(X) degeneruje sie,
~ HYF(X) — HPH9(X) jest ,na”,
- H}(X)=A®H*"(X) jako A-modut,
- Hp(X)
- Hp(X)

= A ® H*(X) jako przestrzen wektorowa z gradacja,
®a Q = HPHI(X).

9.5 GKM-przestrzenie (przestrzenie babelkowe):
1. dzialanie T' = (C*)", ktére jest ekwiwariantnie formalne,
2. XT jest dyskretny,
3. orbity jednowymaiarowe (sa izomorficzne z P!\ {0,00}) jest ich skoticzenie wiele,
4. w kazdym punkcie stalym charaktery nie sa proporcjonalne.

4’. jesli zalozy¢, ze X jest rozmaotoscia, to 3 = 4.
9.6 Twierdzenie: X przestrzen babelkowa, wtedy nastepujacy ciag jest doktadny:
0 — HH(X) — HH(XT) -5 H: (X, XT) ~ D H:(0),
1-wymiarowe orbity O
gdzie X1 jest suma orbit 1- i O-wymiarowych, § jest rézniczka w dhugim ciagu pary (X7, X7).

Literatura:

Fulton §5
Goresky-Kottwitz-MacPherson
Guillemin-Sternberg §10-11



10 GKM-graf, kohomologie grassmanianu

10.1 Gdy X = P! z dziatlaniem T przez charakter y, wtedy
Hy (P, {0,00}) =~ Hp(P'\ {0,00} = A/(x).

10.2 Przeformutowanie: GKM graf i uklad elementéw (up) € @, xr A zadaja klase w Hp(X)
wtedy i tylko wtedy gdy dla kazdej krawedzi a taczacej p z q charakter x, dzieli u, — uy. Tzn
nastepujacy ciag jest dokladny:

0— Hy(X) — P A D A/ (xo),
peXT l-wymiarowe orbity O

gdzie §((up))o = u, — ugmodyxo gdy p,q € O.

Dowéd: dla kazdego charakteru x suma orbit z charakterem proporcjonalnym do y jest réwna
XTx, gdzie T\ = ker(x). Element spemiajacy GKM rozszerza sie do klasy w Hi(X7x). zatem w
przedstawieniu a € S _IH}(X ) mozna uniknac mianownikéw podzielnych przez y. Z wihasnosci
arytmetycznych A wynika, ze a € H7(X).

(*) Jesli x1,x2,-.-,Xn sa rézne charaktery, to (Ag, = A, gdzie Ag, C (A) jest lokalizacja ze

wzgleedu na system multiplikatywny generowany przez ;, j # i.. To samo zachodzi dla modulu
A™.

10.3 Przyktad: GKM graf dla grasmanianu

Klasa Segre i odpowiadajgce jej funkcja symetryczna

10.4 Definicja: si(E) = ci(—E*), tzn s(E) = (c(E*))~! pochodzi od funkcji symetrycznej
hi(z1,...,2n) = ZI:(il

10.5 Wiasnosci (aksjomatycznie)

10.6 Wzor h, = det(eiyj—i)i<i j<k, gdzie e; — elementarna funkcja symetryczna (Jacobi-Trudi)

1 €1 €y ... €Ep_1 (&%

1 e1 e ... en1 en
Dowéd: det |0 1 e1 ... en—2 en—1]| =0

0 0 0 e 1 el

10.7 Wzér jako iloraz uogdlnionych wyznacznikéw Vandermonda Vi 1y, —1n—2.. 1,0/ Va—1n-2,..1,0-

Dowéd z rozwiniecia Laplace’a i twierdzenia o reziduach.
Kohomologie grassmanianu H*(Grasg(C™)

{ =n — k, wiazka tautologiczna oznaczana tu za Fultonem przez S, ilorazowa przez Q)

10.8 H*(Grasg(C")) = Zlex, . ..ed/(h;|j > k), gdzie e; = ¢;(Q) = 5;(S*), hj = 5i(Q) = ¢;(S¥)



10.9 Baza addytywna oy = [y (F.)] dla A = (A\; > Ag > --- > \g), t.z. Ay < £ (podzial)
O\(Fo) ={W : dim(W N Fypyi_y, > i}
codim(Q\(F,)) =i
10.10 Formutla Pieri O(1k) O = > ou, gdzie p jest otrzymane z A przez dorzucenie k pudelek,

ale zadne dwa nowe nie sa w jednym rzedzie.

Literatura
Fulton §6, i ksiazka Young tableaux
MacDonald - Symmetric Functions and Hall polynomials

Griffiths-Harris - Principles of algebraic geometry Ch I §5

11 Ekwiwariantny rachunek Schuberta
11.1 Dualnosé Poincaré A\* = (¢ — Mg, ..., L — A1)
QA(Fe) - QN(FP) = {lin(erqi-n,)-}

11.2 Dodatnio$é: klasa a jest nieujemna kombinacja klas Schuberta wtedi i tylko wtedy, gdy
dla kazdej klasy oy iloczyn a - o) = mesk(C") alUJoy > 0.
— kazda klasa kohomologii reprezentowana przez cykl algebraiczny jest dodatnia (dowdd z tw

Kleinmana o polozeniu ogdlnym dla rozmaitosci jednorodnych)

11.3 Formuta Giambelli
[CA(FL)] = det(exj—i)1<i <k
gdzie ¢; = ¢;(Q) = s;(S*).
- wielomiany Sy = det(sy,+j—i)1<ij<t jako wielomiany symetryczne od pierwiastkéw Cherna
wiazki S* sa rowne
V=141 k=240, 0/ Vi—1,k—2,...,05

. a;
gdzie Vo, as,....a, = det(x;” )1<ij<k

11.4 Dla wiazki wektorowej E — B, dim(E) = n wiazka grassmanianéw: z Leray-Hirscha
H*(Grasy(E)) jest wolnym modutem nad H*(B)

H*(Grasg(E)) = H*(B)[c1,...co]/ ~
¢ = ¢;(Q), relacje pochodza od s;(Q — E) = ¢;(S*) =0dla j > k.

11.5 Jesli E ma filtracje F,, to definiujemy klasy oy, to jest baza addytywna H*(B)-modutu
H*(Grasi(E)).

10



11.6 Formuta Kempfa-Laksova
ox = det(cx;45-i(0))1<ij<k,
gdzie co(i) = co(Q — Fipion,) = Co(E/Frpion, = §) = 56(5™ = (E/Fpyi-,)")-
(dow. co(Q — F) =ce(Q — E4+ E—F) =co(—S + E/F) = 54(S* — (E/F)"))

11.7 Zwiazek ,,miejsca degeneracji morfizmu wiazek” z klasami Cherna. Jesli dim(A) < dim(B)

to

[deg.loc(A — B)] = Cdim(B)—dim(A)+1(B — A)
n.p.

[deg.loc(C* — B)] = przeskoda do istnienia a-reperu w B = Cgim(B)—a+1(B)-
11.8 Dowdd tw Kempfa-Laksova (czes$¢ geometryczna): indukcja ze wzgledu na dtugosé A. Jesli
A= (a,0,...,0) to
O ={W:dim(W N Fpy1-q > 1} = deg.loc(Fpi1—q — Q).
Wtedy
ox=cx(Q — Fry1-a)

Krok indukeyjny - czesciowa przestrzen flag jest wiazka nad P(E)

p: Fl1(E) = Grasg—1(E/taut) — P(E) .
Obcinamy ja do P(Fpi1-y,) 1 definiujemy
fb\ = {L cW: (dlm(W N Fg_._i_)\i) > Z) & L C WﬂFg_H_)\l} = Q)\\)\l (F./taut) C pil(P(Fg_H_)\l))

To modyfikacja rozmaitosci Schuberta z Grasg(E) (wiec m.(][Qy]) = [Qa(F,)]) i jednoczesnie

rozmaitos¢ Schuberta w Grasi_1(E /taut) zadana przez krétszy podzial (A2, Az, ..., Ag)

Q. —  O(F)
N N

Pl [ (E) — Grasi(E)

Pozostaje skorzystaé z zalozenia indukeyjnego i z wisnosci 7, dla wiazek z widknem PF~!
11.9 Niech B = BT. Mamy bijekcje
Grassp(CT «—— {I c {1,...,n}: |I| = k} «— podzialy

Indeksujemy komérki Schuberta podziatami, a punkty state podzbiorami k-elementowymi, lub
réwnowaznie podzialami. Przejscie od podziatow do podzbioréw via drogi NE — SE, ktére sa
brzegami diagraméw Younga. Dla podzialu p przez I(n) C {1,...,n} oznaczamy odcinki drogi
na potudnie, a J(u) C {1,...,n} na zachéd. Z twierdzenia o lokalizacji

H7(Grasg(C")) = {(a,) € @ A : spehiajace warunek GKM}.
podzialy
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11.10 Przyklad: Grass(C*), A = (1,0) =0O

o I(p) J(p)
(22) 12 34 (0o)p, Oj(22) = t3 +ts — t1 — 1o
(21) 13 24 (UD)IPB = UD\(21) =ts— 1
(20) 14 23 (UD)IpM = 0g|0) = tz3 — 11
(11) 23 14 (UD)|p23 = O—D‘(ll) =14 — 19
(10) 24 13 (UD)|p24 = 0Ogj10) = t3 — o
(00) 34 12 (00)py = Oojoo) =0

11.11 W przykladzie wykorzystujemy: jesli X = {f =0} C C" to
[X]jo = mult.deg(f) € Hom(T,C*) = H2(pt)

11.12 Ogodlnie dla podziatu u
S SRS S SRS 3
JEJ (1) i<t j>t il (p)

11.13 Problem: znalez¢ oy|,. Odp: double Schubert polynomials. My wypiszemy wzor z tw
Kempfa-Laksova
ox(z|t) = det(cx;45-i()1<ij<k

gdzie

s (1+t
ca(t)(i) = cal B/ Fryion, — S) = an{(;i ;)t )

We wzorze podstawiamy za x; pierwiastki wiazki tautologicznej.

11.14 W szczegdlnosci

oo = th —61(5).

j>e
Po obcieciu do pr,)
O NED S
J>L iel(p)

Literatura
Fulton §7 MacDonald - Symmetric Functions and Hall polynomials

Griffiths-Harris - Principles of algebraic geometry Ch I §5

12 Teoria de Rhama

G*-algebry

12.1 Algebra rézniczkowan algebry z gradacja. Algebry Lie z gradacja, moduly i algebry z
gradacja nad algebra Lie z gradacja oraz dg-moduly i algebry nad dg-algebrami Lie.

12



12.2 Dzialanie algebry pdl wektorowych na formach rézniczkowych: w jezyku algebry z gradacja

[tx,d] =: Lx
d, LX}—O
[tx,0v] =
[d,d] =0

[

tx, Ly] = uxy]

Dow. Opereacje te speliaja regule Leibniza, Q°®(M) jest generowana przez 0 formy i 1-formy df:
[tx, Lyldf = uxdLy f — Lydf(X) = LxLy f — LyLx f = Lix y|f = t[x,y)df

12.3 Algebra Q°(M) dla G-rozmaitosci przzkladem algebry z gradacja nad algebra Lie (z
gradacja) § = g[1] & g ® R[-1], gdzie R[-1] = (d)

12.4 Algebra Q°*(M) dla G-rozmaitosci pryzkeladem dg-algebry nad g = g[1] @ g.
12.5 Definicja G*-algebry: dg-algebra z dzialaniem G i zgodnym dziataniem algebry g.

12.6 Dla zwartych grup Lie H*(A) = H*(A%), w szczegdlnosci H*(Q*(M)F) = H*(Q*(M)).
Dowéd w notacji dla torusa. H*(A) = @ H*(A)y = @ H*(Ay). Niech a € A,, da = 0.
Dla jednoparametrowej podgrupy generowanej przez A\ € t mamy exp(t)) - a = toNa. Wtedy
Lya = (x, \)a. Z drugiej strony Lya = diya. Jesli (x, \) # 0 to forma a jest dokladna.

12.7 Lokalnie wolne dzialanie - warunek (C). Forma koneksji 6 € Q'(M; g))“ o skladowych 62
przy wyborze bazy {\,} przestrzeni g: 6(\y) = 0j.

12.8 Elementy horyzontalne i bazowe G*-algebry, dla wolnych dziataii H*(Q*(M )pes) = H*(M/G)

Literatura: Guillemin-Sternberg §2

13 Teoria de Rhama II

13.1 Kompleks Koszula A(V) ® S(V), d(r® 1) =1 ® x dla x € V. Acyklicznosé: homoropia
Qler)=r®1,[Q,d = (k+£)Idna A*(V)® S (V).

Zalozenie znacznie upraszczajace formulty: G =T jest torusem

13.2 Acykliczny lokalnie wolna T*-algebra E = lim,, Q°(S?"~1) i jego oszczedny model - algebra
Weila W (t) = A(t*) @ S(t*), ktéra jest kompleksem Koszula dla V' = t*, ma strukture T*-algebra

z dziataniem ¢y tylko na pierwszy czynnik.
13.3 Lokalnie wolna T*-algebra ma strukture W (t)-algebry.

13.4 Ekwiwariantne kohomologie H}.(B) := H*((E ® B)pqs) dla E lokalnie wolnej acyklicznej
T*-algebry. Zgodno$¢ z definicja topologiczna dla B = Q°*(M).

13



13.5 Skret Mathai-Quillena: dla T*-algebr A i B, A lokalnie wolna

¢ =exp(y) € Aut(A® B)

V:ZO“@)L,\G.

Dobrze okreslony, bo 4"+! = 0 dla r = dim(T).
13.6 ~y wiec i ¢ sa T-niezmiennicze oraz
Plle®@1+1Qu)p ' =1 ®1
¢pdp ™' =d—> di"®ux, + Y _0°® Ly,

13.7 Po skreceniu:
¢((A ® B)hor) = Apor ® B

Dla E = W(t)
O((E ® Bpas) = S(t) @ B

7 roézniczka

d=1®d-Y \®u,
To jest model Cartana ekwiwariantnych kohomologii.
Literatura: Guillemin-Sternberg §3-4
Uzupelnienie:
13.8 Dla lokalnie wolnej T*-algebry A oraz acyklicznej T*-algebry B mamy
H*((A® B)pas) = H*(Apas)-

Dow: po skreceniu przez ¢ filtrujemy podkompleksami F* = (Azi ® B)T. Kohomologie ilorazu

hor
H*(F'[F™Y) = H* (4}, @ B)") = (Ahor)"

hor

zatem wlozenie A — A ® B indukuje izomorfizm na kohomologiach bazowych.

13.9 Niezalezno$é¢ od wyboru acyklicznej T*-algebry FE.
Dow: Niech F i E’' dwa acykliczne lokalnie wolne T*-algebry. Wtedy E ® B jest lokalnie wolna,
T*-algebra, wiec H*(E' ® (F ® B)pas) = H*((E @ B)pys)-
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14 Geometria symplektyczna

14.1 Przyklad: S! lub C dziala na C"*! — 0 diagonalnie, Q®(C"*! — 0) jest lokalnie wolnym
(S1)*-modutem. Wybér koneksji
6 = dlog(|2[2).

Sprawdzamy warunek

oI 627Tit

0(N) = Dy los(¥7'2P2) = 0y og(*™) + log(e7) + log(|=[%)) = Oy log(e*™) = .
Trzeba unormowaé, podzieli¢ przez 27

14.2 Whiosek df = 5--001log(|z|?) jest forma bazowa, generatorem H?(P").

14.3 Rozamaitosci symplektyczne (M, w), wspdlrzedne Darboux, izomorfizm T'M ~ T* M, pole
hamiltonowskie X zdefiniowane przez tx,w = df, czyli df (v) = w(X}y,v) dla kazdego v.

14.4 Przyklad: M = P" z forma symplektyczna df € Q?(C"F! — )y, = Q2(P"), inny przyklad

nie zwarty T*N, dla dowlnej n-wymiarowej rozmaitosci V.

14.5 Nawias Poissona,
0f 0g 0gof
{f,9} =df(Xy) =w(Xyp, Xg) = - — =
homomorfizm algebr Lie C*°(M) — I'(TM)

14.6 Potoki hamiltonowskie, dzialania hamiltonowskie, odwzorowanie momentu i : g — C*°(M)

C>(M)
/ ! X
~ I(TM)

i
g
lub réwnowaznie g-niezmiennicza u : M — g* taka, ze dla A € g
pw = d{u, \) € QLM).
W bazie = (f1, fo, -, fr) =D fa ® A mamy
ta,w = dfq.

14.7 Drzialanie naturalne (C*)"*! na przestrzeni rzutowej ma odwzorowanie momentu

fa([zotzw”-:zn])zzni dlaa=0,1,...n..

15



14.8 Zwiazek odwzorowania momentu z ekwiwariantnymi kohomologiami. Twierdzenie: Niech
T dziala hamiltonowsko na rozmaitosci symplektycznej z funkcja momentu p. Wtedy w# := w+pu
jest zamknieta forma w ekwiwariantnym kompleksie de Rhama (model Cartana).

Dow. Zapisujemu w bazie =3 f, @ A\* € C°(M; t)T = t* @ C°(M)T

J(w—i—u):—Z)\a@o\aw—FZ)\a@dfa

14.9 Twierdzenie Duistermaata-Heckmana jako szczegdlny przypadek twierdzenia o lokalizacji:
Zalézmy, ze S dziala hamiltonowsko z funkcja Hamiltona H. Zalézmy, ze H ma izolowane punkty

krytyczne (réwnowaznie M " jest skoniczony). Wtedy dla kazdego h € C

gdzie eu(p) jest iloczynem wag reprezentacji stycznej T, M.

14.10 Twierdzenie Atiyah-Guillemina-Sternberga o obrazie odwzorowania momentu [GS2]
M zwarta, spdjna, symplektyczna, z Hamiltonowskim dzialaniem torusa (tzn dopuszczajace odw-
zorowanie momentu), zadanym przez

e M — t5.

Wtedy zbiér punktéw statych jest suma podrozmaitosci symplektycznych C;,i € I. Na kazdej

sktadowej odwzorowanie p jest stale, oraz
u(M) = Conv{f(C;) | i€ I}.
14.11 Przyklad: przestrzen rzutowa ze standardowym dziataniem (C*)"*!

(P") = standardowy sympleks w C" L,

14.12 Twierdzenie [McDuff] (dowdéd bardzo trudny): Jesli dzialnie torusa na zwartej roz-

maitosci symplektycznej dopuszcza odwzorowanie momentu, to M jest ekwiwariantnie formalna.
14.13 Rozmaitosci toryczne.

Literatura:

[AB] Atiyah-Bott

McDuft-Salamon, Introduction to symplectic Topology,

Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry
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15 Tematy na egzamin

1) Co to sa typy orbitowe?

e Jakie sa typy orbitowe dzialania dolaczonego SU(2) na algebrze Liego su(2)?

eNiech G zwarta grupa, X ma tylko jeden typ orbitowy G/H. Wykazaé, ze X — X/G jest
wiazka stowarzyszong z pewna wiazka gtéwna o grupie strukturalnej N(H)/H.

2) Twierdzenie o slajsie

eNiech X bedzie rozmaitoscia Schuberta (tzn domknieciem komérki) kowymiaru 1 w Grasss(C%).
Opisaé slajsy orbit dziatania zwartego torusa.

3) Uniwersalne G-wiazki, kohomologie ekwiwariantne

oCiag dokladny grup K — G — H indukuje rozwiéknienie BK — BG —— BH.

eWykazaé, ze H:(X) nie zalezy od modelu EG.

4) Przestrzenie klasyfikujace grup Lie: modele bedace granicami rozmaitosci

eZnalez¢ przeksztalcenia klasyfikujace dla potegi wiazki tautologicznej (7,)®% — P (dla k € Z)
przyjmujac model BC* = P,

5) Kohomologie przestrzeni flag

eOpisa¢ kohomologie przestrzeni flag F), dla n = 2, 3,4, poda¢ wymiary w poszczegolnych gradac-
jach, opisa¢ odzorowania indukowane na kohomologiach pomiedzy tymi przestrzeniami, oraz in-
dukowane z odwzorowan do P"~! i do BT.

6) Ekwiwariantna formalnos$¢

eMnozenie przez klase z Hy(T) zadaje operacje H.(X) — H,y1(X) (lub H*(X) — H*1(X)).
Wykazaé, ze jesli X jest ekwiwariantnie formalna, to ta operacia jest zerowa. Podaé przyklad,
gdy ta operacja jest zerowa, ale przestrzen nie jest ekwiwariantnie formalna.

eJedli X jest ekwiwariantnie formalna, skoriczonego wymiaru, zwarta, to H*(X) ~ H*(XT) z
zachowaniem gradacji modulo 2.

7) Twierdzenie o Lokalizacji (wersja dla przestrzeni topologicznej)

eUdowodni¢, ze teza Twierdzenia o Lokalizacji zachodzi dla kohomologii o wspdlczynnikach
catkowitych, jedli stabilizatory punktéw sa spdjne.

8) Konstrukcja odwzorowania odwrotnego S~ HA(XT) — S™1HA(X)

eObliczy¢ [, a € Hi(pt), gdzie X = Grasy(C*), dla o = ca(v)e1(7)*, c2(7)?c1(7)?, er(7)°.
ePrzyklad zastosowania twierdzenia o lokalizacji: X rozmaitos$¢ algebraiczna rzutowa z dzialaniem
C*, C krzywa z samoprzecieciem, ktéra jest T-niezmiennicza, to C' musi by¢ zawarta w X7 .

9) GKM-graf i opis kohomologii ekwiwariantnych bez lokalizowania

eOpisaé¢ GKM-graf (wraz z charakterami odpowiadajacymi krawedziom) dla grassmanianu La-
grange’a LG(n) C Grass,(C?") dlan = 1,2,3.

10) Opis pierscienia kohomologii grassmanianu

ePodaé opis pierscienia kohomologii H*(Grassi(C")) poprzez generatory i relacje.
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11) Ekwiwariantny rachunek Schuberta
eWykazac ¢, = 0 jesli A Zviub pu v
eWykazaé: c’/\”u =0\
eFormuta Monka-Pieri:
oo o) = ZUH + Ogjx O,
gdzie AT powstaje z A przez dodanie jednego pudelka.
12) Dzialania algebry Lie na Q°*(M) dla G-rozmaitosci, G*-moduly i algebry.
eNiech A bedzie algebra z gradacja (niekoniecznie superprzemienna). Udowodnié, ze A z operacja
superkomutatora jest superalgebra Lie.
eNiech M bedzie rozmaitoscia riemannowska z dzialaniem S! przez izometrie, bez punktéw
statych. Poda¢ jawnym wzorem odwzorowanie W (t) — Q®*(M).
13) Model Cartana ekwiwariantnych kohomologii dla dzialania torusa.

eUdowodnié, ze dla lokalnie wolnej T*-algebry A oraz acyklicznej T*-algebry B mamy
H*((A ® B)bas) = H*(Abas)~

eSprawdzié, ze d? = 0 w modelu Cartana (dla torusa) nie odwolujac sie do skretu Mathai-Quillena
14) Zwiazek odwzorowania momentu z ekwiwariantna teoria de Rhama.

ena rozmaitosci symplektyczniej dziala torus zachowujacy forme symplektyczna w. Czy mamy
bijekcje pomiedzy dwoma konstrukcjami:

1) znalezienie odwzorowanie momentu

2) konstrukcja formy zamknietej formy w? € S*(t*) ® Q*(M)7, ktéra odwzorowuje sie na w przy
rzutowaniu na Q°(M)?

oW P" 7z dzialaniem liniowym C* nie ma zamknietych tancuchéw orbit dzialania exp(Ry).

18



Literatura do calosci:

[AB] M. Atiyah, R. Bott The moment map and equivariant cohomology, Topology, 23 (1984)
1-28.

[BV] N. Berline, M. Vergne. Classes caractéristiques equivariantes. Formule de localization en
cohomologie équivariante, C.R. Acad. Sc. Paris 295 (1982), 539-541.

[EAdGr] D. Edidin, W. Graham. Localization in equivariant intersection theory and the Bott
residue formula, Am. J. Math. 120, No.3, 619-636 (1998)

[Fu] W. Fulton. FEquivariant Cohomology in Algebraic Geometry, Notes by D. Anderson,
http://www.math.washington.edu/~dandersn/eilenberg

[YT] W. Fulton. Young tableaux with applications to representation theory and geometry, London
Mathematical Society Student Texts 35 (1997), Cambridge University Press, Cambridge.

[GKM] M. Goresky, R. Kottwitz, R. MacPherson, Equivariant Cohomology, Koszul Duality,
and the Localization Theorem, Invent. Math. 131, No.1, (1998), 25783

[GH] Griffiths-Harris, Principles of algebraic geometry

[GS] V. Guillemin, S. Sternberg (Author), Supersymmetry and Equivariant de Rham Theory,
Springer 1999

[GS2] V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Inv. Math.
67 (1982), 491513.

[Ki] F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical
Notes, vol. 31, Princeton University Press, Princeton N.J., 1984.

[McD] I. G. MacDonald, Symmetric Functions and Hall Polynomials, Oxford University Press,
1998

[MDS] MecDuff-Salamon, Introduction to symplectic Topology, Oxford University Press, 1998
[Qu] D. Quillen The Spectrum of an Equivariant Cohomology Ring: I, Ann. Math., Vol. 94,
No. 3, 549-572

19



