Some problems 2015

June 3, 2015

 \blacklozenge - leftovers from the lecture

1 Exercises for the first lecture

- 1.1 Let G be a topological group. Show that if a subgroup $H \subset G$ is open, then it is closed. Show that component of 1 is a subgroup.
 - **1.2** Show that $\pi_1(G)$ is abelian.
- **1.3** Let G be a connected topological group. Let $p: \widetilde{G} \to G$ be a connected covering. Choose an inverse image of 1. Show that \widetilde{G} has a natural group structure, such that p is a homomorphism.
- 1.4 Show that any discrete normal subgroup of a connected topological group G is in the center Z(G).
 - 1.5 Suppose G is a connected topological group, Z(G) is discrete. Then G/Z(G) has trivial center.
- **1.6** Let \mathbb{H} denote quaternions. Show that the set of the continuous maps of rings $map(\mathbb{C}, \mathbb{H})$ is parameterized by the 2-dimensional sphere.
- 1.7 Prove that $Aut(\mathbb{H})$, the group of continuous automorphisms of quaternions, is isomorphic to SO(3).
 - **1.8** What is the dimension of U(n) and SU(n)?
- **1.9** Let ϕ be a nondegenerate form in \mathbb{R}^n of the type (k,ℓ) , where $k+\ell=n$. Let $O(k,\ell)\subset GL_n(\mathbb{R})$ denote the group of linear transformations preserving ϕ . How many topological components has this group?
- **1.10** We identifying the quaternions with $\mathbb{C}^2 \simeq \mathbb{C} \oplus j\mathbb{C} = \mathbb{H}$ we have embedding $GL_n(\mathbb{H}) \subset GL_{2n}(\mathbb{C})$. Define the compact symplectic group as $Sp(n) = U(2n) \cap GL_n(\mathbb{H})$. Prove $Sp(n) \subset SU(2n)$. What is the dimension of Sp(n)?
- **1.11** Let ω be a standard symplectic form in \mathbb{C}^{2n} , and let $Sp_n(\mathbb{C})S$ (a.k.a. $Sp(n,\mathbb{C})$) denote the subgroup of $GL_{2n}(\mathbb{C})$ preserving the form ω . Show that $Sp(n) \simeq Sp_n(\mathbb{C}) \cap U(2n)$ (be careful with the order of coordinates). What is the dimension of $Sp_n(\mathbb{C})$?
- **1.12** Let $SO_n(\mathbb{C})$ (a.k.a. $SO(n,\mathbb{C})$) denote the subgroup of $GL_n(C)$ preserving the standard nondegenerate quadratic form. Construct nontrivial maps
- a) $SL_2(\mathbb{C}) \to SO_3(\mathbb{C})$
- b) $SL_2(\mathbb{C}) \times SL_2(\mathbb{C}) \to SO_4(\mathbb{C})$
- c) $SL_4(\mathbb{C}) \to SO_6(\mathbb{C})$
- d) $Sp_2(\mathbb{C}) \to SO_5(\mathbb{C})$
 - **1.13** Let $PGL_n(\mathbb{C}) = GL_n(\mathbb{C})/Z(GL_n(\mathbb{C}))$. Find an embedding $PGL_n(\mathbb{C}) \hookrightarrow GL_m(\mathbb{C})$ for some m.

- **1.14** \blacklozenge U(n), SU(N), SO(n), Sp(n) are connected, O(n) has two components
- **1.15** $\blacklozenge \pi_1(U(n)) = \mathbb{Z}, \pi_1(SU(n)) = 1, \pi_1(SO(n)) = \mathbb{Z}_2 \text{ for } n \geq 3 \text{ (long exact sequence of homotopy groups needed)}$
- **1.16** ♦ Check that every map $\mathbb{H}^n \to \mathbb{H}^n$ which is a map of left \mathbb{H} -modules is determined by a matrix $M_{n \times n}(\mathbb{H})$

$$(v_1, v_2, \ldots, v_n) \mapsto (v_1, v_2, \ldots, v_n) \cdot A$$

where \cdot denotes the matrix multiplication. Any map of right \mathbb{H} -modules is of the form

$$(v_1, v_2, \dots, v_n)^T \mapsto A \cdot (v_1, v_2, \dots, v_n)^T$$
.

- **1.17** ♦ Let's define the group Sp(n) as the automorphism of the left \mathbb{H} -module \mathbb{H}^n preserving the norm. Show that the elements of Sp(n) preserve the form $\mathbb{H}^n \times \mathbb{H}^n \to \mathbb{H}$ given by $(v, w) = \sum_{i=1}^n v_i \overline{w}_i$.
- **1.18** ♦ The real symplectic group $Sp_n(\mathbb{R}) \subset GL_{2n}(\mathbb{R})$ (appears in real symplectic geometry or in classical mechanics) is noncompact. Prove the Iwasawa decomposition for that group with K = U(n).

2 Exercises for the second lecture

- **2.1** Show that \mathbb{R}^3 with the vector product \times is a Lie algebra isomorphic to so(3).
- **2.2** Compare the Lie algebra of upper-triangular 3×3 matrices with 0's on the diagonal with the Lie algebra generated by x and $\frac{d}{dx}$ acting on the polynomial ring $\mathbb{C}[x]$.
 - **2.3** Let A be an algebra (not necessarily associative). The derivations of A are defined as

$$Der(A) = \{ \phi \in Hom_{Vect, spaces}(A, A) \mid \forall a, b \in A \ \phi(ab) = \phi(a)b + a\phi(b) \}.$$

Check that the commutator of two derivations is a derivation.

- 2.4 Compute few terms of Baker-Campbell-Hausdorff formula. (At least the third term.)
- **2.5** ♦ Show that for $X, Y \in M_{n \times n}(\mathbb{C})$ the $exp(tX)exp(tY) = exp(\sum_{n=0}^{\infty} t^n A_n)$, where A_n is a Lie polynomial in X, Y, ie. can be expressed by X, Y, +, -, [-, -] and scalar multiplication.
 - **2.6** Show that exp for SU(2) is surjective. At which points is it a submersion?
- **2.7** For which groups: $GL_n^+(\mathbb{R})$, $SL_n(\mathbb{R})$, $GL_n(\mathbb{C})$, $SL_n(\mathbb{C})$, B_n (upper triangular), N_n (upper triangular with 1's on the diagonal) exp is surjective?
 - **2.8** Show that if G is connected, [X,Y]=0 for any $X,Y\in\mathfrak{g}$, then G is abelian.

3 Exercises for the third lecture

- **3.1** Describe all real and complex Lie algebras of the dimension ≤ 3 . Which real algebras become isomorphic after tensoring with \mathbb{C} ?
- **3.2** Let $f: G \to H$ be a map of connected Lie groups. Show that if $Df: \mathfrak{g} \to \mathfrak{h}$ is an isomorphism, then f is surjective with discrete kernel contained in Z(G).
 - **3.3** What is the center of SO(n)?
 - **3.4** Check the formula

$$\frac{d}{dt}e^{A+tB} = e^A \left(B - \frac{[A,B]}{2!} + \frac{[A,[A,B]]}{3!} - \frac{[A,[A,[A,B]]]}{4!} + \dots \right).$$

- **3.5** ♦ Let $X \subset M_{n \times n}(\mathbb{R})$ be the space of symmetric positive definte matrices. Show that X is diffeomorphic to an affine space.
- **3.6** ♦ Let $X \subset M_{n \times n}(\mathbb{C})$ be the space of hermitian positive definte matrices. Show that X is diffeomorphic to a real affine space.
 - **3.7** Does there exist a compact Lie group with the Lie algebra isomorphic to $\mathfrak{sl}_2(\mathbb{R})$?
 - **3.8** The disc $\{z \in \mathbb{C} : |z| < 1\}$ does not admit a structure of a complex Lie group.
- **3.9** Compute the differential of the map $GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$, $A \mapsto A^2$ in the direction X. Show that it does not vanish if A and X are symmetric, A positive definite.
- **3.10** Does there exist a quaternionic determinant, i.e. a map $\phi: M_{n \times n}(\mathbb{H}) \to \mathbb{H}$ or $\phi: GL_n(\mathbb{H}) \to \mathbb{H}^*$ satisfying $\phi(AB) = \phi(A)\phi(B)$?
- what if we additionally assume that $\phi(diag(a, 1, 1, ..., 1)) = a$ for $a \in \mathbb{H}$?
- what if we additionally assume that ϕ is surjective?
- what if we additionally assume that $\phi(A) = \det(A)$ for $A \in GL_n(\mathbb{C})$?
 - **3.11** Describe the set $Tr(exp(\mathfrak{sl}_2(\mathbb{R}))) \subset \mathbb{R}$ and compare with $Tr(SL_2(\mathbb{R}))$.
- **3.12** Knowing the center of SU(n) and $\pi_1(SU(n))$ use Lie theorem to say how many Lie groups have the Lie algebra $\mathfrak{su}(n)$. (Of course count up to an isomorphism.)
- **3.13** Knowing the center of SO(n) and $\pi_1(SO(n))$ use Lie theorem to list all the Lie groups with the Lie algebra $\mathfrak{so}(n)$. Count up to an isomorphism preserving the Lie algebra. The answer depends on the parity of n.
- **3.14** Compute the center of Sp(n) and $\pi_1(Sp(n))$ (hint $Sp(n)/Sp(n-1) = S^{4n-1}$). Using Lie theorem list all the Lie groups with the Lie algebra $\mathfrak{sp}(n)$.
- **3.15** Let Q be the set of solutions of one quadratic equation in $\mathbb{P}^n(\mathbb{R})$ or in $\mathbb{P}^n(\mathbb{C})$. Assume the Q is smooth and nonempty. Show that Q is a homogenous space, i.e. there exist a Lie group G acting on Q in a transitive way. Show that the group G can be chosen to be compact. Find the stabilizer of a point.
- **3.16** Lagrangian Grassmanian $LG_n(\mathbb{K})$ is the set of isotropic subspaces of maximal dimension (isotropic with respect to the symplectic form) in \mathbb{K}^{2n} for $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Show that $LG_n(\mathbb{K})$ is a homogeneous space for $Sp_n(\mathbb{K})$. Show that $LG_n(\mathbb{R}) = U(n)/O(n)$. Show that LG(n) is homogeneous with respect to Sp(n). Find a stabilizer of a point.
- **3.17** Show that the map $\phi: U(n)/O(n) \to S^1$, $\phi([A]) = det^2(A)$ is well defined and that ϕ is a fibration. The fiber of ϕ is called the special lagrangian Grassmanian. Compute its dimension. Show, that the special lagrangian Grassmanian is a homogenous space for some connected compact Lie group. Say few words about what you get for n = 2.

4 Exercises for the fourth lecture

- **4.1** Lie algebra is simple if it does not admit any quotient Lie algebra. Show that for a compact simple Lie algebra there exists only one up to a constant invariant scalar product.
- **4.2** Let $\langle -, \rangle$ be a *G*-invariant scalar product (or any symmetric form). Show that $\phi(X, Y, Z) = \langle X, [Y, Z] \rangle$ is an antisymmetric trilinear form.
 - **4.3** Prove that $Der(\mathfrak{sl}_n(\mathbb{R})) \simeq \mathfrak{sl}_n(\mathbb{R})$. (See 2.3 for the definition.)

- **4.4** Show that $Aut(SL_n(\mathbb{R}))_0 = PSL_n(\mathbb{R})$ and $Out(SL_n(\mathbb{R})) = \pi_0(Aut(SL_n(\mathbb{R}))) = \mathbb{Z}/2$. (At least show that $A \mapsto (A^T)^{-1}$ is not an inner automorphism.)
- **4.5** \spadesuit Let $A^* = \overline{A}^T$. Let $G \subset GL_n(\mathbb{C})$ be a complex subgroup which is invariant with respect to the Cartan involution $A \mapsto (A^*)^{-1}$. Define a hermitian product in $\mathfrak{g} \subset M_{n \times n}(\mathbb{C})$ by the formula $\langle \langle X, Y \rangle \rangle = tr(XY^*)$. The hermitian product in \mathfrak{g} allows to define the Cartan involution Θ in $Aut(\mathfrak{g})$. Show that $Ad(G) \subset Aut(\mathfrak{g})$ is Θ -invariant. (Hint: Show that $(ad_X)^* = ad_{X^*}$.)
- **4.6** \spadesuit Let G be a connected (compact) semisimple Lie group with an involution $\sigma \in Aut(G)$. Then a symmetric space (of compact type) for G is a homogeneous space G/H where H is an open subgroup of the fixed point set of σ (in other words $G_0^{\sigma} \subset H \subset G^{\sigma}$).
- Show, that the following manifolds are symmetric spaces SU(n)/SO(n), SU(2n)/Sp(n), $SU(p+q)/S(U(p)\times U(q))$, $SO(p+q)/(SO(p)\times SO(q))$, SO(2n)/U(n), Sp(n)/U(n), $Sp(p+q)/(Sp(p)\times Sp(q))$.
- Show that σ induces an involution of the symmetric space. For $x = [g] \in G/H$ the composition $L_g \sigma L_g^{-1}$ defines an involution of G/H fixing x; denote it by σ_x . Compute the differential of σ_x at x.
- Show that for any $x, y \in G/H$ there exists z, such that $\sigma_z(x) = y$.

5 For the fifth lecture

- **5.1** \spadesuit Compute the Killing form $Tr(ad_X \circ ad_Y)$ for $sl_n(\mathbb{C})$ and $gl_n(\mathbb{C})$. Show, that for $sl_n(C)$ the Killing form is equal up to a constant to $B_0(X,Y) = Tr(XY)$.
- **5.2** \spadesuit Let $E \to X$ be a real symplectic vector bundle (ie. the transition functions in some trivialization atlas $\{U_i\}$ consists of $U_i \cap U_j \to Sp(n,\mathbb{R})$ or equivalently there is chosen a symplectic form ω_x in each fiber E_x in a continuous way). Show that E admits a scalar product, such that for $a, b \in E_x$ the endomorphism $J_x : E_x \to E_x$ satisfying $\langle J(a), b \rangle = \omega(a, b)$ is a complex structure (i.e. $J^2 = -1$). Show that any such scalar product can be deformed to a fixed one. (Hint $Sp(n,\mathbb{R})/U(n)$ is contractible.)
- **5.3** \spadesuit Show that for any element g of a topological group G $closure\langle g \rangle$ is abelian. For G = U(n) characterize those elements for which $closure\langle g \rangle$ is a n-dimensional torus.
- **5.4** \spadesuit Compute what are the maximal tori in U(n), SU(n), SO(n) and Sp(n). What are the normalizers N(T) and the Weyl groups.
- **5.5** \spadesuit Show that in U(n) every commutative subgroup is included in a maximal torus. This is not the case eg for SO(3).
- **5.6** \spadesuit Let T be a torus (compact connected commutative Lie group). Show that there exists $g \in T$ such that $\langle g \rangle$ is dense in T.
- **5.7** \spadesuit Consider the action of $GL_n(\mathbb{K})$ (for $\mathbb{K} = \mathbb{R}$ or \mathbb{C}) on $\Lambda^3\mathbb{K}^n$. For which n does there exist an open orbit? What can you say about the stabilizer of an element belonging to an open orbit. At least compute its dimension.
 - **5.8** Check, that Lie algebras $\mathfrak{sl}(n)$, $\mathfrak{so}(n)$ and $\mathfrak{sp}(n)$ are simple.
- **5.9** Prove that if G is compact, then $(\Lambda^k \mathfrak{g}^*)^G \simeq H^k(G; \mathbb{R})$. (see eg [Wojtyński, Grupy i Algebry Liego]) Is it true for noncompact groups?

6 Exercises for the sixth lecture

6.1 Suppose V, a representation G, can be decomposed as a sum of irreducible representations. Construct a natural isomorphism

$$\bigoplus Hom(V_{\alpha}, V) \otimes V_{\alpha} \to V ,$$

where the summation runs over all isomorphism classes of irreducible representations of G.

- **6.2** Prove that the category of graded complex vector spaces is equivalent to the category of complex spaces with S^1 action. Both categories admit a monoidal structure (\otimes of graded spaces, and \otimes of representations). Show that these categories are equivalent as monoidal categories.
- **6.3** Decompose Hom(V, V) into irreducible representations of G = GL(V), where G acts on Hom(V, V) conjugation.
- **6.4** Show that the natural representation of $SL_2(\mathbb{C})$ is isomorphic to its dual. (This is not true for $GL_2(\mathbb{C})$.)
 - **6.5** Show $\Lambda^{n-1}\mathbb{C}^n = (\mathbb{C}^n)^*$ as representations of $SL_n(\mathbb{C})$.
 - **6.6** Decompose bilinear forms on V into irreducible representations of GL(V).
- **6.7** Show that irreducible representations of $G \times H$ are of the form $V \otimes W$, where V is a irreducible representation of G and W is a irreducible representation of H.
 - **6.8** For V, a representation of G let us define λV , a representation of $G \times S^1$

$$\lambda V = \bigoplus_{k=0}^{\dim V} \Lambda^k V \otimes \mathbb{C}_1^{\otimes k} \,,$$

where \mathbb{C}_1 is the natural representation of $S^1 \subset \mathbb{C}$. Show that $\lambda(V \oplus W) \simeq \lambda V \otimes \lambda W$.

- **6.9** Let V be irreducible real representation of odd dimension. Show that $V_{\mathbb{C}}$ is irreducible. If the dimension is even it can happen that $V_{\mathbb{C}} \simeq W \oplus \overline{W}$.
- **6.10** Show that two real representation are isomorphic if and only if their complexification are isomorphic.

7 Seventh lecture

- **7.1** ♦ Let G be a complex reductive group with Cartan involution Θ . Show that G^{Θ} is a maximal compact subgroup of G.
- **7.2** Let $0 \to V_1 \to V_2 \to \cdots \to V_n \to 0$ be an exact sequence of representations. Show that $\sum_{i=1}^{n} (-1)^i [V_i] = 0 \in R(G)$.
 - **7.3** \blacklozenge Show what are the root spaces in $\mathfrak{sp}(n)$.
- **7.4** ♦ Show what are the root spaces in $\mathfrak{so}(n)$ for the standard quadratic form $\sum x_i^2$. (Do not change the quadratic form).
- **7.5** Adams operations [B-tD, p.105]: Assume $k \leq n$. Let $Q_k \in \mathbb{Z}[e_1, e_2, \dots, e_n]$ be polynomials satisfying

$$\sum_{i=1}^{n} x_i^k = Q_k(\sigma_1(x_1, x_2, \dots, x_n), \sigma_2(x_1, x_2, \dots, x_n), \dots, \sigma_n(x_1, x_2, \dots, x_n))$$

where σ_i is the elementary symmetric polynomial. The polynomial Q_k depends only on e_i , $i \leq k$ and Q_k does not depend on n, provided, that $n \geq k$. Define a map of the representation ring $\psi^k : R(G) \to R(G)$ by the formula $\psi^k(V) = Q_k(V, \Lambda^2 V, \dots, \Lambda^k(V))$.

- Show that $\chi_{\psi^k(V)}(g) = \chi_V(g^k)$
- Show that $\psi^{k}\psi^{\ell}(V) = \psi^{k\ell}(V)$

8 Eighth lecture

Representations of $SL_2(\mathbb{C})$

- **8.1** Let $v \in V$ satisfy Hv = nv and Xv = 0. Compute X^mY^mv .
- **8.2** Decompose $Sym^3(\mathbb{C}^2) \otimes Sym^2(\mathbb{C}^2)$. Find highest weight vectors for irreducible subrepresentations.
- **8.3** Find a general formula for multiplicities of irreducible subrepresentations of $Sym^m(\mathbb{C}^2) \otimes Sym^n(\mathbb{C}^2)$.
- **8.4** Decompose $Sym^2Sym^3(\mathbb{C}^2)$. Find highest weight vectors for irreducible subrepresentations.
- **8.5** Show that $Sym^n(Sym^2(\mathbb{C}^2)) \simeq \bigoplus_{s=0}^{[n/2]} Sym^{2n-4s}(\mathbb{C}^2)$.
- **8.6** What are the irreducible representations of $GL_2(\mathbb{C})$?
- **8.7** ★ For a Lie algebra \mathfrak{g} denote by $Der(\mathfrak{g})$ the set of linear maps $\phi: \mathfrak{g} \to \mathfrak{g}$ satisfying $\phi([X,Y]) = [\phi(X),Y] + [X,\phi(Y)]$. Show that if \mathfrak{g} is simple, then $Der(\mathfrak{g}) \simeq \mathfrak{g}$.
 - **8.8** Give the precise formula for the action of the Lie algebra \mathfrak{g} on $Hom_G(V, W)$.
 - **8.9** Show that $Sym^k Sym^\ell(\mathbb{C}^2) \simeq Sym^\ell Sym^k(\mathbb{C}^2)$.

9 The 9-th lecture

- **9.1** Which representations of SU(2) factors through SO(3)?
- 9.2 ♦ Fill the detail of the proof of 9.6 from lecture notes: suppose G is of rank one, then G contains a subgroup isomorphic to SU(2) or SO(3).
- **9.3** Show that the Heisenberg group N/Z (from short notes from the lectures 1.2) cannot be embedded to a matrix group. (See [Segal, Theorem 6.5])
 - **9.4** ♦ Decompose $Sym^2(\mathbb{C}^3) \otimes (\mathbb{C}^3)^*$ into irreducible representations of $SL_3(\mathbb{C})$.
 - **9.5** Study the examples of $\mathfrak{sl}_3(\mathbb{C})$ representations of Fulton-Harris: exercises §12-§13.

10 Tenth lecture

- **10.1** ♦ Suppose are given $X \in \mathfrak{g}_{\alpha}$, $Y \in \mathfrak{g}_{-\alpha}$. Show that one can rescale X and Y, such that together with H = [X, Y] they satisfy the standard relation of $\mathfrak{sl}(2)$.
- 10.2 Check that the $e_i e_j$, $\pm e_i$ in the space $\mathbb{R}^3/lin(e_1 + e_2 + e_3)$ is an abstract system of roots. Compute the group generated by the reflections.
 - 10.3 List all the abstract systems of roots in \mathbb{R}^2 .
- 10.4 Let V be an irreducible representation of $\mathfrak{sl}(n)$. Let $v \in V$ be a vector such that $E_{ij}v = 0$ for i < j. Show that every wector $w \in V$ can be written as a combination of vectors obtained from v by subsequent application of $E_{k+1,k}$ for $k = 1, 2, \ldots n 1$.
- 10.5 Let G be compact or reductive group. Suppose that the rank of G is equal to 2, dim G = 2(n+1). Show that there is an exact sequence

$$0 \to \mathbb{Z}_n \to W \to \mathbb{Z}_2 \to 0.$$

- **10.6** Let G be compact or reductive group. Suppose rank(G) = k, dim(G) = 3k, dim(Z(G)) = 0. Then $W = (Z_2)^k$.
- **10.7** Suppose $R \subset V$ is an abstract root system. Show that $\{\alpha^* = \frac{2}{(\alpha,\alpha)}\alpha \mid \alpha \in R\}$ is an abstract root system.

11 Eleventh

Def: Simple root = undecomposable root = it is not a sum of two positive roots.

- 11.1 Show that every positive root is a sum of simple roots.
- 11.2 Simple roots are linearly independent.
- 11.3 Compute $\beta_0 = \frac{1}{2} \sum_{\alpha \in R_+} \alpha$ for classical Lie algebras and for \mathfrak{g}_2 .
- **11.4** Let β_0 . Then for a positive root α we have $(\beta_0, \alpha) > 0$.
- 11.5 The edges of the distinguished Weyl chamber are spanned by vectors from Λ_{coroot}^* . Compute these vectors for classical Lie algebras (find the shortest). For $\mathfrak{sl}(n)$ their sum is equal to β_0 . Is it true for other groups?
 - **11.6** Is $\overline{K}_0 \cap \Lambda$ spanned by edge vectors? Check for classical groups.
 - 11.7 Let \mathfrak{g} be a Lie algebra. $U(\mathfrak{g})$ inherits the length filtration from the tensor algebra $T(\mathfrak{g})$. Precisely:

$$F_k U(\mathfrak{g}) = \text{image of } \bigoplus_{0 \le i \le k} \mathfrak{g}^{\otimes i}.$$

Show that the graded algebra $Gr^FU(\mathfrak{g})$ is commutative and isomorphic to $\bigoplus_{k=0}^{\infty} Sym^k(\mathfrak{g})$.

- **11.8** Describe the Verma modules M(w) for $\mathfrak{sl}(2)$. Find a base, the action of X, Y, H. Find the maximal proper submodules $w \in \mathbb{N}$. What breakes down for $w \in \mathbb{R} \setminus \mathbb{N}$.
- 11.9 Describe the Verma modules for $\mathfrak{sl}(3)$ for the weights L_1 and $3L_1 + L_2$. Find a convenient base. Find the maximal proper submodules. Are they generated by single eigenvectors for \mathfrak{t} ?
- 11.10 What are the highest weights of irreducible representations of $\mathfrak{sl}(4)$, $\mathfrak{so}(6)$, SL(4) and SO(6)? Find a representation which contains the irreducible representations of a given weight.
- 11.11 What are the highest weights of irreducible representations of SO(7) and SO(8)? Find representations which contain the irreducible representations of a given weight.

12 Twelfth

- **12.1** Show that for any Lie group $\pi_2(G)$ is trivial.
- 12.2 Let $G_{\mathbb{C}}$ a connected complex reductive group and G be its maximal compact subgroup. Show that $G/T = G_{\mathbb{C}}/B_+$, where B_+ is the is the connected Lie group with the Lie algebra $\mathfrak{b}_+ = \mathfrak{t} \oplus \bigoplus_{\alpha>0} \mathfrak{g}_{\alpha}$.
 - **12.3** Compute $\pi_1(SL_n(\mathbb{C}))$ and $Z(SL_n(\mathbb{C}))$ using the lattice in
- 12.4 Compute the lattices of roots an coroots for GL(n) (roots will be of smaller rank and Λ_{roots} will not be discrete). Check that the formulas for Z(G) and for $\pi_1(G)$ work.
- 12.5 Compute everything about the group with the Dynkin diagram G_2 : the center, π_1 , highest weights irreducible of representations.
- **12.6** $SL_4(\mathbb{C})$ acts on $\Lambda^2\mathbb{C}^4$ preserving the form $(\xi, \eta) = \xi \wedge \eta$. From this construction find maps $SL_4(\mathbb{R}) \to SO(3,3)$ and $SU(4) \to SO(6)$
 - **12.7** Do the same for $Sp_2(\mathbb{C})$ acting on $ker(\omega : \Lambda^2 \mathbb{C}^4 \to \mathbb{C})$.

13 For future

- **13.1** Show that dim $V_{\lambda} = \prod_{1 \leq i \leq j \leq n} \frac{\lambda_i \lambda_j + j i}{j i}$
- **13.2** Check the Weyl character formula for $\lambda = 1^k$ and $\lambda = k$
- **13.3** Irreducible representations of GL(n) are irreducible as representations of SL(n).
- 13.4 Show that the Schur function S_{λ} is a polynomial, and "does not depend" on the number of variables, provided that this number is sufficiently large (in the sense, that from the bigger n one passes to smaller by setting $t_i = 0$, and also knowing $S_{\lambda}(t_1, t_2, ;t_n)$ for fixed n determines the shape for bigger n if $deg \leq n$.
 - **13.5** Check how Weyl character formula works for sp(n).
- **13.6** Find Kostka numbers of the irreducible representation of $SL_n(\mathbb{C})$ corresponding to the diagram $\lambda = (n-1, n-2, n-3, \dots, 1, 0)$.

"Bott periodicity" for complex Clifford algebras: Check that $C_{n+2} \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to the algebra of 2×2 matrices with coefficients in $C_n \otimes_{\mathbb{R}} \mathbb{C}$.

- 13.7 Compute the group of invertible elements C_2^* of the real Clifford algebra and the Clifford group Γ_2 . Which two circles in Γ_2 form Pin(2)?
- 13.8 Find explicit isomorphisms or show that it does not exist between representations of Spin(n):
- spinors S and S^* for n odd
- spinors S^{\pm} and $(S^{\pm})^*$ for n even
- 13.9 Which spinors are complexifications of real representations of Spin(n)? The answer depends on the divisability of n by 8.
 - **13.10** Check the isomorphism of Spin(2n) representations

$$Sym^{2}(S^{+}) = (\lambda^{n})^{+} + \lambda^{n-4} + \lambda^{n-8} + \dots$$

$$\Lambda^{2}(S^{+}) = \lambda^{n-2} + \lambda^{n-6} + \lambda^{n-10} + \dots$$

$$Sym^{2}(S^{-}) = (\lambda^{n})^{-} + \lambda^{n-4} + \lambda^{n-8} + \dots$$

$$\Lambda^{2}(S^{-}) = \lambda^{n-2} + \lambda^{n-6} + \lambda^{n-10} + \dots$$

Here λ^k is the k-th exterior power of the natural representation of the orthogonal group.

13.11 Check the isomorphism of Spin(2n+1) representations

$$Sym^{2}(S) = \lambda^{n} + (\lambda^{n-3} + \lambda^{n-4}) + \dots + (\lambda^{n-4i-3} + \lambda^{n-4i-4}) + \dots$$
$$\Lambda^{2}(S) = (\lambda^{(n-1)} + \lambda^{n-2}) + (\lambda^{n-5} + \lambda^{n-6}) + \dots + (\lambda^{n-4i-1} + \lambda^{n-4i-2}) + \dots$$

14 Preparatory problems for practical test

- **14.1** Decompose $\Lambda^4 Sym^4\mathbb{C}^2$ into irreducible representations of $SL_2(\mathbb{C})$
- **14.2** Suppose that $H \subset G$ and rank H = rank G. Show that every root of H is a root of G. Give interesting examples $(GL_n(\mathbb{C}) \times GL_m(\mathbb{C}) \subset GL_{m+n}(\mathbb{C})$ is a trivial example). Compute Weyl groups.
- **14.3** We have an inclusion $GL(2,\mathbb{C}) \hookrightarrow Sp_2(\mathbb{C})$, $A \mapsto \begin{pmatrix} A & 0 \\ 0 & A^{-1} \end{pmatrix}$. Which representations of $GL(2,\mathbb{C})$ admit an extended action of $Sp_2(\mathbb{C})$?

8

- **14.4** Which representations of $SO(5,\mathbb{C})$ admit an extended action of $SL_5(\mathbb{C})$?
- **14.5** Which representations of $SL_5(\mathbb{C})$ factor through $PSL_5(\mathbb{C})$. The same question for $Sp_2(\mathbb{C})$ and $Sp_2(\mathbb{C})/center$.
 - **14.6** Let G be a group with the root system of the type G_2 . What can be the center and π_1 ?
 - **14.7** List all the weights of the representation $\Lambda^3 Sym^2\mathbb{C}^3$ of $SL_3(\mathbb{C})$.
 - **14.8** List all the weights of the representation $\Lambda^3\mathbb{C}^6$ of $Sp_3(\mathbb{C})$.
 - **14.9** Decompose into irreducible representations $Sym^2Sym^2\mathbb{C}^3$ of $SL_3(\mathbb{C})$.
 - **14.10** Show that $\Lambda^k \mathbb{C}^n$ is irreducible as a representation of $SL_n(\mathbb{C})$.
- **14.11** Decompose into irreducible representation $Sym^4\mathbb{C}^5 \otimes \Lambda^4\mathbb{C}^5$ ($SL_5(\mathbb{C})$ is acting). Find the highest weight vectors.
 - **14.12** Decompose into irreducible representation $\Lambda^2 \Lambda^3 \mathbb{C}^4$ ($SL_4(\mathbb{C})$ is acting).
- **14.13** List the possible highest weights of the representations of $\mathbb{C}^* \times SL_n(\mathbb{C})$ which come from $GL_n(\mathbb{C})$ via the surgective map $(t, A) \mapsto tA$.
- **14.14** Let V be the representation of $SL_7(\mathbb{C})$ with highest weight $3L_1 + 2L_2$. Find the coefficient in the character of the monomial $t_1^2 t_2^2 t_3$ (the Kostka number $K_{(3,2),(2,2,1)}$).
- **14.15** Let $V \simeq \mathbb{C}^4$ be the natural representation of $Sp_2(\mathbb{C})$ and $W = \ker(\omega : \Lambda^2 V \to \mathbb{C})$. List the weights of the representation $V \otimes Sym^2W$. Is it irreducible?
 - **14.16** Compute $\Lambda_{coroot}/\Lambda_{root}$ for SO(6).
- **14.17** Let $V \simeq \mathbb{C}^5$ be the natural representation of $SO(5,\mathbb{C})$. Find a nonzero map of representations $Sym^kV \to Sym^{k-2}V$. Is the kernel irreducible?