
Some problems 2015

June 3, 2015

� - leftovers from the lecture

1 Exercises for the first lecture

1.1 Let G be a topological group. Show that if a subgroup H ⊂ G is open, then it is closed. Show
that component of 1 is a subgroup.

1.2 Show that π1(G) is abelian.

1.3 Let G be a connected topological group. Let p : G̃ → G be a connected covering. Choose an
inverse image of 1. Show that G̃ has a natural group structure, such that p is a homomorphism.

1.4 Show that any discrete normal subgroup of a connected topological group G is in the center
Z(G).

1.5 Suppose G is a connected topological group, Z(G) is discrete. Then G/Z(G) has trivial center.

1.6 Let H denote quaternions. Show that the set of the continuous maps of rings map(C,H) is
parameterized by the 2-dimensional sphere.

1.7 Prove that Aut(H), the group of continuous automorphisms of quaternions, is isomorphic to
SO(3).

1.8 What is the dimension of U(n) and SU(n)?

1.9 Let φ be a nondegenerate form in Rn of the type (k, `), where k + ` = n. Let O(k, `) ⊂ GLn(R)
denote the group of linear transformations preserving φ. How many topological components has this
group?

1.10 We identifying the quaternions with C2 ' C⊕ jC = H we have embedding GLn(H) ⊂ GL2n(C).
Define the compact symplectic group as Sp(n) = U(2n) ∩ GLn(H). Prove Sp(n) ⊂ SU(2n). What is
the dimension of Sp(n)?

1.11 Let ω be a standard symplectic form in C2n, and let Spn(C)S (a.k.a. Sp(n,C)) denote the
subgroup of GL2n(C) preserving the form ω. Show that Sp(n) ' Spn(C) ∩ U(2n) (be careful with the
order of coordinates). What is the dimension of Spn(C)?

1.12 Let SOn(C) (a.k.a. SO(n,C)) denote the subgroup of GLn(C) preserving the standard nonde-
generate quadratic form. Construct nontrivial maps
a) SL2(C)→ SO3(C)
b) SL2(C)× SL2(C)→ SO4(C)
c) SL4(C)→ SO6(C)
d) Sp2(C)→ SO5(C)

1.13 Let PGLn(C) = GLn(C)/Z(GLn(C)). Find an embedding PGLn(C) ↪→ GLm(C) for some m.
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1.14 � U(n), SU(N), SO(n), Sp(n) are connected, O(n) has two components

1.15 � π1(U(n)) = Z, π1(SU(n)) = 1, π1(SO(n)) = Z2 for n ≥ 3 (long exact sequence of homotopy
groups needed)

1.16 � Check that every map Hn → Hn which is a map of left H-modules is determined by a matrix
Mn×n(H)

(v1, v2, . . . , vn) 7→ (v1, v2, . . . , vn) ·A ,

where · denotes the matrix multiplication. Any map of right H-modules is of the form

(v1, v2, . . . , vn)T 7→ A · (v1, v2, . . . , vn)T .

1.17 � Let’s define the group Sp(n) as the automorphism of the left H-module Hn preserving the
norm. Show that the elements of Sp(n) preserve the form Hn × Hn → H given by (v, w) =

∑n
i=1 viwi.

1.18 � The real symplectic group Spn(R) ⊂ GL2n(R) (appears in real symplectic geometry or in
classical mechanics) is noncompact. Prove the Iwasawa decomposition for that group with K = U(n).

2 Exercises for the second lecture

2.1 Show that R3 with the vector product × is a Lie algebra isomorphic to so(3).

2.2 Compare the Lie algebra of upper-triangular 3×3 matrices with 0’s on the diagonal with the Lie
algebra generated by x and d

dx acting on the polynomial ring C[x].

2.3 Let A be an algebra (not necessarily associative). The derivations of A are defined as

Der(A) = {φ ∈ HomV ect spaces(A,A) | ∀a, b ∈ A φ(ab) = φ(a)b+ aφ(b)}.

Check that the commutator of two derivations is a derivation.

2.4 Compute few terms of Baker-Campbell-Hausdorff formula. (At least the third term.)

2.5 � Show that for X,Y ∈ Mn×n(C) the exp(tX)exp(tY )) = exp(
∑∞

n=0 t
nAn) , where An is a Lie

polynomial in X,Y , ie. can be expressed by X, Y , +, −, [−,−] and scalar multiplication.

2.6 Show that exp for SU(2) is surjective. At which points is it a submersion?

2.7 For which groups: GL+
n (R), SLn(R), GLn(C), SLn(C), Bn (upper triangular), Nn (upper trian-

gular with 1’s on the diagonal) exp is surjective?

2.8 Show that if G is connected, [X,Y ] = 0 for any X,Y ∈ g, then G is abelian.

3 Exercises for the third lecture

3.1 Describe all real and complex Lie algebras of the dimension ≤ 3. Which real algebras become
isomorphic after tensoring with C?

3.2 Let f : G → H be a map of connected Lie groups. Show that if Df : g → h is an isomorphism,
then f is surjective with discrete kernel contained in Z(G).

3.3 What is the center of SO(n)?

3.4 Check the formula

d

dt
eA+tB = eA

(
B − [A,B]

2!
+

[A, [A,B]]

3!
− [A, [A, [A,B]]]

4!
+ . . .

)
.
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3.5 � Let X ⊂ Mn×n(R) be the space of symmetric positive definte matrices. Show that X is
diffeomorphic to an affine space.

3.6 � Let X ⊂ Mn×n(C) be the space of hermitian positive definte matrices. Show that X is
diffeomorphic to a real affine space.

3.7 Does there exist a compact Lie group with the Lie algebra isomorphic to sl2(R)?

3.8 The disc {z ∈ C : |z| < 1} does not admit a structure of a complex Lie group.

3.9 Compute the differential of the map GLn(R)→ GLn(R), A 7→ A2 in the direction X. Show that
it does not vanish if A and X are symmetric, A positive definite.

3.10 Does there exist a quaternionic determinant, i.e. a map φ : Mn×n(H)→ H or φ : GLn(H)→ H∗

satisfying φ(AB) = φ(A)φ(B)?
- what if we additionally assume that φ(diag(a, 1, 1, . . . , 1)) = a for a ∈ H?
- what if we additionally assume that φ is surjective ?
- what if we additionally assume that φ(A) = det(A) for A ∈ GLn(C)?

3.11 Describe the set Tr(exp(sl2(R))) ⊂ R and compare with Tr(SL2(R)).

3.12 Knowing the center of SU(n) and π1(SU(n)) use Lie theorem to say how many Lie groups have
the Lie algebra su(n). (Of course count up to an isomorphism.)

3.13 Knowing the center of SO(n) and π1(SO(n)) use Lie theorem to list all the Lie groups with the
Lie algebra so(n). Count up to an isomorphism preserving the Lie algebra. The answer depends on the
parity of n.

3.14 Compute the center of Sp(n) and π1(Sp(n)) (hint Sp(n)/Sp(n−1) = S4n−1). Using Lie theorem
list all the Lie groups with the Lie algebra sp(n).

3.15 Let Q be the set of solutions of one quadratic equation in Pn(R) or in Pn(C). Assume the Q is
smooth and nonempty. Show that Q is a homogenous space, i.e. there exist a Lie group G acting on
Q in a transitive way. Show that the group G can be chosen to be compact. Find the stabilizer of a
point.

3.16 Lagrangian Grassmanian LGn(K) is the set of isotropic subspaces of maximal dimension (isotropic
with respect to the symplectic form) in K2n for K = R or C. Show that LGn(K) is a homogenous space
for Spn(K). Show that LGn(R) = U(n)/O(n). Show that LG(n) is homogeneous with respect to Sp(n).
Find a stabilizer of a point.

3.17 Show that the map φ : U(n)/O(n) � S1, φ([A]) = det2(A) is well defined and that φ is a
fibration. The fiber of φ is called the special lagrangian Grassmanian. Compute its dimension. Show,
that the special lagrangian Grassmanian is a homogenous space for some connected compact Lie group.
Say few words about what you get for n = 2.

4 Exercises for the fourth lecture

4.1 Lie algebra is simple if it does not admit any quotient Lie algebra. Show that for a compact
simple Lie algebra there exists only one up to a constant invariant scalar product.

4.2 Let 〈−,−〉 be a G-invariant scalar product (or any symmetric form). Show that φ(X,Y, Z) =
〈X, [Y,Z]〉 is an antisymmetric trilinear form.

4.3 Prove that Der(sln(R)) ' sln(R). (See 2.3 for the definition.)
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4.4 Show that Aut(SLn(R))0 = PSLn(R) and Out(SLn(R)) = π0(Aut(SLn(R))) = Z/2. (At least
show that A 7→ (AT )−1 is not an inner automorphism.)

4.5 ♠ Let A∗ = A
T

. Let G ⊂ GLn(C) be a complex subgroup which is invariant with respect
to the Cartan involution A 7→ (A∗)−1. Define a hermitian product in g ⊂ Mn×n(C) by the formula
〈〈X,Y 〉〉 = tr(XY ∗). The hermitian product in g allows to define the Cartan involution Θ in Aut(g).
Show that Ad(G) ⊂ Aut(g) is Θ-invariant. (Hint: Show that (adX)∗ = adX∗ .)

4.6 ♠ Let G be a connected (compact) semisimple Lie group with an involution σ ∈ Aut(G). Then
a symmetric space (of compact type) for G is a homogeneous space G/H where H is an open subgroup
of the fixed point set of σ (in other words Gσ0 ⊂ H ⊂ Gσ).
– Show, that the following manifolds are symmetric spaces SU(n)/SO(n), SU(2n)/Sp(n), SU(p +
q)/S(U(p)×U(q)), SO(p+q)/(SO(p)×SO(q)), SO(2n)/U(n), Sp(n)/U(n), Sp(p+q)/(Sp(p)×Sp(q)).
– Show that σ induces an involution of the symmetric space. For x = [g] ∈ G/H the composition
LgσL

−1
g defines an involution of G/H fixing x; denote it by σx. Compute the differential of σx at x.

– Show that for any x, y ∈ G/H there exists z, such that σz(x) = y.

5 For the fifth lecture

5.1 ♠ Compute the Killing form Tr(adX ◦ adY ) for sln(C) and gln(C). Show, that for sln(C) the
Killing form is equal up to a constant to B0(X,Y ) = Tr(XY ).

5.2 ♠ Let E → X be a real symplectic vector bundle (ie. the transition functions in some trivializa-
tion atlas {Ui} consists of Ui ∩ Uj → Sp(n,R) or equivalently there is chosen a symplectic form ωx in
each fiber Ex in a continuous way). Show that E admits a scalar product, such that for a, b ∈ Ex the
endomorphism Jx : Ex → Ex satisfying 〈J(a), b〉 = ω(a, b) is a complex structure (i.e. J2 = −1). Show
that any such scalar product can be deformed to a fixed one. (Hint Sp(n,R)/U(n) is contractible.)

5.3 ♠ Show that for any element g of a topological group G closure〈g〉 is abelian. For G = U(n)
characterize those elements for which closure〈g〉 is a n-dimensional torus.

5.4 ♠ Compute what are the maximal tori in U(n), SU(n), SO(n) and Sp(n). What are the
normalizers N(T ) and the Weyl groups.

5.5 ♠ Show that in U(n) every commutative subgroup is included in a maximal torus. This is not
the case eg for SO(3).

5.6 ♠ Let T be a torus (compact connected commutative Lie group). Show that there exists g ∈ T
such that 〈g〉 is dense in T .

5.7 ♠ Consider the action of GLn(K) (for K = R or C) on Λ3Kn. For which n does there exist an
open orbit? What can you say about the stabilizer of an element belonging to an open orbit. At least
compute its dimension.

5.8 Check, that Lie algebras sl(n), so(n) and sp(n) are simple.

5.9 Prove that if G is compact, then (Λkg∗)G ' Hk(G;R). (see eg [Wojtyński, Grupy i Algebry
Liego]) Is it true for noncompact groups?

6 Exercises for the sixth lecture

6.1 Suppose V , a representation G, can be decomposed as a sum of irreducible representations.
Construct a natural isomorphism ⊕

Hom(Vα, V )⊗ Vα → V ,

where the summation runs over all isomorphism classes of irreducible representations of G.
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6.2 Prove that the category of graded complex vector spaces is equivalent to the category of complex
spaces with S1 action. Both categories admit a monoidal structure (⊗ of graded spaces, and ⊗ of
representations). Show that these categories are equivalent as monoidal categories.

6.3 DecomposeHom(V, V ) into irreducible representations ofG = GL(V ), whereG acts onHom(V, V )
conjugation.

6.4 Show that the natural representation of SL2(C) is isomorphic to its dual. (This is not true for
GL2(C).)

6.5 Show Λn−1Cn = (Cn)∗ as representations of SLn(C) .

6.6 Decompose bilinear forms on V into irreducible representations of GL(V ).

6.7 Show that irreducible representations of G×H are of the form V ⊗W , where V is a irreducible
representation of G and W is a irreducible representation of H.

6.8 For V , a representation of G let us define λV , a representation of G× S1

λV =
dimV⊕
k=0

ΛkV ⊗ C⊗k1 ,

where C1 is the natural representation of S1 ⊂ C. Show that λ(V ⊕W ) ' λV ⊗ λW .

6.9 Let V be irreducible real representation of odd dimension. Show that VC is irreducible. If the
dimension is even it can happen that VC 'W ⊕W .

6.10 Show that two real representation are isomorphic if and only if their complexification are iso-
morphic.

7 Seventh lecture

7.1 � Let G be a complex reductive group with Cartan involution Θ. Show that GΘ is a maximal
compact subgroup of G.

7.2 Let 0 → V1 → V2 → · · · → Vn → 0 be an exact sequence of representations. Show that∑n
i=1(−1)i[Vi] = 0 ∈ R(G).

7.3 � Show what are the root spaces in sp(n).

7.4 � Show what are the root spaces in so(n) for the standard quadratic form
∑
x2
i . (Do not change

the quadratic form).

7.5 Adams operations [B-tD, p.105]: Assume k ≤ n. Let Qk ∈ Z[e1, e2, . . . , en] be polynomials
satisfying

n∑
i=1

xki = Qk(σ1(x1, x2, . . . , xn), σ2(x1, x2, . . . , xn), . . . , σn(x1, x2, . . . , xn))

where σi is the elementary symmetric polynomial. The polynomial Qk depends only on ei, i ≤ k and Qk
does not depend on n, provided, that n ≥ k. Define a map of the representation ring ψk : R(G)→ R(G)
by the formula ψk(V ) = Qk(V,Λ

2V, . . . ,Λk(V )).
– Show that χψk(V )(g) = χV (gk)

– Show that ψkψ`(V ) = ψk`(V )
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8 Eighth lecture

Representations of SL2(C)

8.1 Let v ∈ V satisfy Hv = nv and Xv = 0. Compute XmY mv.

8.2 Decompose Sym3(C2)⊗Sym2(C2). Find highest weight vectors for irreducible subrepresentations.

8.3 Find a general formula for multiplicities of irreducible subrepresentations of Symm(C2)⊗Symn(C2).

8.4 Decompose Sym2Sym3(C2). Find highest weight vectors for irreducible subrepresentations.

8.5 Show that Symn(Sym2(C2)) '
⊕[n/2]

s=0 Sym2n−4s(C2).

8.6 What are the irreducible representations of GL2(C)?

8.7 F For a Lie algebra g denote by Der(g) the set of linear maps φ : g→ g satisfying φ([X,Y ]) =
[φ(X), Y ] + [X,φ(Y )]. Show that if g is simple, then Der(g) ' g.

8.8 Give the precise formula for the action of the Lie algebra g on HomG(V,W ).

8.9 Show that SymkSym`(C2) ' Sym`Symk(C2).

9 The 9-th lecture

9.1 Which representations of SU(2) factors through SO(3)?

9.2 � Fill the detail of the proof of 9.6 from lecture notes: suppose G is of rank one, then G contains
a subgroup isomorphic to SU(2) or SO(3).

9.3 Show that the Heisenberg groupN/Z (from short notes from the lectures 1.2) cannot be embedded
to a matrix group. (See [Segal, Theorem 6.5])

9.4 � Decompose Sym2(C3)⊗ (C3)∗ into irreducible representations of SL3(C).

9.5 Study the examples of sl3(C) representations of Fulton-Harris: exercises §12-§13.

10 Tenth lecture

10.1 � Suppose are given X ∈ gα, Y ∈ g−α. Show that one can rescale X and Y , such that together
with H = [X,Y ] they satisfy the standard relation of sl(2).

10.2 Check that the ei − ej , ±ei in the space R3/lin(e1 + e2 + e3) is an abstract system of roots.
Compute the group generated by the reflections.

10.3 List all the abstract systems of roots in R2.

10.4 Let V be an irreducible representation of sl(n). Let v ∈ V be a vector such that Eijv = 0 for
i < j. Show that every wector w ∈ V can be written as a combination of vectors obtained from v by
subsequent aplication of Ek+1,k for k = 1, 2, . . . n− 1.

10.5 Let G be compact or reductive group. Suppose that the rank of G is equal to 2, dimG = 2(n+1).
Show that there is an exact sequence

0→ Zn →W → Z2 → 0.

10.6 Let G be compact or reductive group. Suppose rank(G) = k, dim(G) = 3k, dim(Z(G)) = 0.
Then W = (Z2)k.

10.7 Suppose R ⊂ V is an abstract root system. Show that {α∗ = 2
(α,α)α |α ∈ R} is an abstract root

system.
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11 Eleventh

Def: Simple root = undecomposable root = it is not a sum of two positive roots.

11.1 Show that every positive root is a sum of simple roots.

11.2 Simple roots are linearly independent.

11.3 Compute β0 = 1
2

∑
α∈R+

α for classical Lie algebras and for g2.

11.4 Let β0. Then for a positive root α we have (β0, α) > 0.

11.5 The edges of the distinguished Weyl chamber are spanned by vectors from Λ∗coroot. Compute
these vectors for classical Lie algebras (find the shortest). For sl(n) their sum is equal to β0. Is it true
for other groups?

11.6 Is K0 ∩ Λ spanned by edge vectors? Check for classical groups.

11.7 Let g be a Lie algebra. U(g) inherits the length filtration from the tensor algebra T (g). Precisely:

FkU(g) = image of
⊕

0≤i≤k
g⊗i.

Show that the graded algebra GrFU(g) is commutative and isomorphic to
⊕∞

k=0 Sym
k(g).

11.8 Describe the Verma modules M(w) for sl(2). Find a base, the action of X, Y , H. Find the
maximal proper submodules w ∈ N. What breakes down for w ∈ R \ N.

11.9 Describe the Verma modules for sl(3) for the weights L1 and 3L1 +L2. Find a convenient base.
Find the maximal proper submodules. Are they generated by single eigenvectors for t?

11.10 What are the highest weights of irreducible representations of sl(4), so(6), SL(4) and SO(6)?
Find a representation which contains the irreducible representations of a given weight.

11.11 What are the highest weights of irreducible representations of SO(7) and SO(8)? Find repre-
sentations which contain the irreducible representations of a given weight.

12 Twelfth

12.1 Show that for any Lie group π2(G) is trivial.

12.2 Let GC a connected complex reductive group and G be its maximal compact subgroup. Show
that G/T = GC/B+, where B+ is the is the connected Lie group with the Lie algebra b+ = t⊕

⊕
α>0 gα.

12.3 Compute π1(SLn(C)) and Z(SLn(C)) using the lattice in .

12.4 Compute the lattices of roots an coroots for GL(n) (roots will be of smaller rank and Λroots will
not be discrete). Check that the formulas for Z(G) and for π1(G) work.

12.5 Compute everything about the group with the Dynkin diagram G2: the center, π1, highest
weights irreducible of representations.

12.6 SL4(C) acts on Λ2C4 preserving the form (ξ, η) = ξ ∧ η. From this construction find maps
SL4(R)→ SO(3, 3) and SU(4)→ SO(6)

12.7 Do the same for Sp2(C) acting on ker(ω : Λ2C4 → C).
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13 For future

13.1 Show that dimVλ =
∏

1≤i≤j≤n
λi−λj+j−i

j−i

13.2 Check the Weyl character formula for λ = 1k and λ = k

13.3 Irreducible representations of GL(n) are irreducible as representations of SL(n).

13.4 Show that the Schur function Sλ is a polynomial, and ,,does not depend” on the number of
variables, provided that this number is sufficiently large (in the sense, that from the bigger n one passes
to smaller by setting ti = 0, and also knowing Sλ(t1, t2, ,̇tn) for fixed n determines the shape for bigger
n if deg ≤ n.

13.5 Check how Weyl character formula works for sp(n).

13.6 Find Kostka numbers of the irreducible representation of SLn(C) corresponding to the diagram
λ = (n− 1, n− 2, n− 3, . . . , 1, 0).
,,Bott periodicity” for complex Clifford algebras: Check that Cn+2 ⊗R C is isomorphic to the algebra
of 2× 2 matrices with coefficients in Cn ⊗R C.

13.7 Compute the group of invertible elements C∗2 of the real Clifford algebra and the Clifford group
Γ2. Which two circles in Γ2 form Pin(2)?

13.8 Find explicit isomorphisms or show that it does not exist between representations of Spin(n):
– spinors S and S∗ for n odd
– spinors S± and (S±)∗ for n even

13.9 Which spinors are complexifications of real representations of Spin(n)? The answer depends
on the divisability of n by 8.

13.10 Check the isomorphism of Spin(2n) representations

Sym2(S+) = (λn)+ + λn−4 + λn−8 + . . .

Λ2(S+) = λn−2 + λn−6 + λn−10 + . . .

Sym2(S−) = (λn)− + λn−4 + λn−8 + . . .

Λ2(S−) = λn−2 + λn−6 + λn−10 + . . .

Here λk is the k-th exterior power of the natural representation of the orthogonal group.

13.11 Check the isomorphism of Spin(2n+ 1) representations

Sym2(S) = λn + (λn−3 + λn−4) + · · ·+ (λn−4i−3 + λn−4i−4) + . . .

Λ2(S) = (λ(n− 1) + λn−2) + (λn−5 + λn−6) + · · ·+ (λn−4i−1 + λn−4i−2) + . . .

14 Preparatory problems for practical test

14.1 Decompose Λ4Sym4C2 into irreducible representations of SL2(C)

14.2 Suppose that H ⊂ G and rankH = rank G. Show that every root of H is a root of G. Give
interesting examples (GLn(C)×GLm(C) ⊂ GLm+n(C) is a trivial example). Compute Weyl groups.

14.3 We have an inclusion GL(2,C) ↪→ Sp2(C), A 7→
(
A 0
0 A−1

)
. Which representations of GL(2,C)

admit an extended action of Sp2(C)?
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14.4 Which representations of SO(5,C) admit an extended action of SL5(C)?

14.5 Which representations of SL5(C) factor through PSL5(C). The same question for Sp2(C) and
Sp2(C)/center.

14.6 Let G be a group with the root system of the type G2. What can be the center and π1?

14.7 List all the weights of the representation Λ3Sym2C3 of SL3(C).

14.8 List all the weights of the representation Λ3C6 of Sp3(C).

14.9 Decompose into irreducible representations Sym2Sym2C3 of SL3(C).

14.10 Show that ΛkCn is irreducible as a representation of SLn(C).

14.11 Decompose into irreducible representation Sym4C5⊗Λ4C5 (SL5(C) is acting). Find the highest
weight vectors.

14.12 Decompose into irreducible representation Λ2Λ3C4 (SL4(C) is acting).

14.13 List the possible highest weights of the representations of C∗ × SLn(C) which come from
GLn(C) via the surgective map (t, A) 7→ tA.

14.14 Let V be the representation of SL7(C) with highest weight 3L1 + 2L2. Find the coeficient in
the character of the monomial t21t

2
2t3 (the Kostka number K(3,2),(2,2,1)).

14.15 Let V ' C4 be the natural representation of Sp2(C) and W = ker(ω : Λ2V → C). List the
weights of the representation V ⊗ Sym2W . Is it irreducible?

14.16 Compute Λcoroot/Λroot for SO(6).

14.17 Let V ' C5 be the natural representation of SO(5,C). Find a nonzero map of representations
SymkV → Symk−2V . Is the kernel irreducible?
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