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It is well known that for an n-dimensional algebrai
 
omplex variety X, the Poin
ar�e

morphism H

2n�i

(X) �! H

i

(X), 
ap-produ
t by the fundamental 
lass [X℄, is an isomor-

phism if X is a manifold but, in general, it is not. There is a fa
torization

H

2n�i

(X)

\[X℄

��! H

i

(X)

�& % !

IH

i

(X)

by interse
tion homology groups (we will use only middle perversity) and interse
tion

homology is the good theory for 
onsidering interse
tion produ
t of 
y
les.

On another hand the Chern 
lasses for singular varieties have been de�ned by M.H.

S
hwartz [S
℄ and by R. Ma
Pherson [MP1℄, they are de�ned in homology and in general

it is not possible to lift them to 
ohomology. A natural question arose : is it possible to

lift the Chern-S
hwartz-Ma
Pherson 
lasses to interse
tion homology?

Firstly J.L. Verdier [V℄ gave the example of a singular variety X su
h that the Chern-

S
hwartz-Ma
Pherson 
lass 


1

(X) 2 H

2

(X) 
an be lifted to IH

2

(X) as two distin
t Chern


lasses of small resolutions X

j

of X su
h that H

2

(X

1

)

�

=

! IH

2

(X)

�

=

 H

2

(X

2

). The


omputation shows that if we want to express 
lasses of singular varieties using small

resolution, we need 
orre
tion terms living not only in interse
tion homology of the singular

part.

The se
ond 
ounter-example, due to M. Goresky, is an example of a singular algebrai


variety su
h that the Chern-S
hwartz-Ma
Pherson 
lass is not in the image of interse
tion
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homology, using integer 
oeÆ
ients. In [BG℄ was explained the fa
t that both examples

of Verdier and Goresky are examples of Thom spa
es asso
iated to Segre and Veronese

embeddings respe
tively : PI

1

� PI

1

,! PI

3

and PI

2

,! PI

5

.

The question be
ame : is it possible to lift Chern-S
hwartz-Ma
Pherson 
lasses to

interse
tion homology with rational 
oeÆ
ients ? That time the answer was positive :

�rstly Yokura [Y℄ proved the result for isolated singularities, then [BBFGK℄ proved that

all algebrai
 
y
les (and in parti
ular Chern-S
hwartz-Ma
Pherson 
y
les) 
an be lifted to

interse
tion homology, for the middle perversity and with rational 
oeÆ
ients (see [We℄ for

a simpler proof). Unfortunately, the lifting is not unique, in general. Due to the Verdier

example, it is not obvious that there exists a 
anoni
al lifting.

Among ingredients of Ma
Pherson 
onstru
tion are the Chern-Mather 
lasses, in fa
t

Ma
Pherson 
lasses are 
ombination of Mather ones. Zhou [Z℄ proved existen
e of lifting

of Chern-Mather 
lasses in interse
tion homology for total perversity. In this paper, we

show, that, for quasi-proje
tive 
omplex varieties, there exists a 
anoni
al lifting of Mather


lasses to interse
tion homology, as soon as the embedding is �xed. The idea of the proof

is the following : The Chern{Mather 
lasses are represented by polar varieties. Su
h polar

variety 
an be 
onsidered as an element of a sequen
e of in
lusions of polar varieties. The

in
lusions are of 
odimension one and in this 
ase there exists an unique lifting at ea
h

step. As an appli
ation, we obtain 
anoni
al lift of Chern-S
hwartz-Ma
Pherson 
lasses to

interse
tion homology for isolated singularities.

1. Re
olle
tion of fa
ts about the geometry of Grasmannians

Let G(n;m) be the Grassmannian of n{dimensional spa
es in CI

m

and let

V

�

= fV

0

= f0g � V

1

� V

2

� : : : � V

m

= CI

m

g

be a 
ag. The 
ag manifold, set of su
h 
ags, will be denoted by F(m). De�ne for i � 0

the S
hubert variety [Ch℄, [Eh℄

M

i

(V

�

) = fW 2 G(n;m) :W + V

m�n+i�1

6= CI

m

g

of 
odimension i in G(n;m). The 
y
le (�1)

i

M

i

(V

�

) represents the Poin
ar�e dual of the i{

th Chern 
lass 


i

2 H

2i

(G(m;n)). Ea
h M

i

(V

�

) has a natural strati�
ation whose smooth

strata are:

M

i;k

(V

�

) = fW 2 G(n;m) : 
odim (W + V

m�n+i�1

) = k + 1g :

The regular stratum of M

i

(V

�

) is M

i;0

(V

�

).
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Proposition 1.1. The S
hubert varieties M

i

(V

�

) have the following properties:

1. M

i+1

(V

�

) �M

i

(V

�

);

2. M

i+1

(V

�

) \M

i;0

(V

�

) �M

i+1;0

(V

�

);

3. for i < n the regular part of M

i+1

(V

�

) is not 
ontained in the singularities of M

i

(V

�

);

4. M

0

(V

�

) = G(n;m), M

n+1

(V

�

) = ;.

Proof. The proof of 1 and 2 is 
lear, sin
e V

m�n+i�1

� V

m�n+i

.

For proving 3, suppose V

m�n+i

= V

m�n+i�1

+ linf�g where linf�g denotes the line

generated by � 2 CI

m

. This spa
e is not equal to CI

m

and there exists W 2 M

i;0

(V

�

)

su
h that � 2 W . Then dim (V

m�n+i

+ W ) = dim (V

m�n+i�1

+ W ) = m � 1 and

W 2M

i+1;0

(V

�

).

The proof of 4 follows by dimension 
onsiderations.

Sin
e M

i+1

(V

�

) is irredu
ible, then a generi
 point of M

i+1

(V

�

) is in M

i;0

(V

�

).

2. The Gauss map and polar varieties

Let X

n

� CI

m

be an aÆne variety. Let us denote by �

X

the singular part of X and

by X

reg

= X n �

X

the regular one. There is a natural map s : X

reg

! G(n;m) � CI

m

de�ned by s(x) = (T

x

(X

reg

); x). The Nash blowup is the 
losure of the image of s. We

have the diagram:

^

X ,! G(n;m)� CI

m

p

1

��! G(n;m) ;

s

%

?

y

�

?

y

p

2

X

reg

,! X ,! CI

m

where � = p

2j

^

X

and g = p

1j

^

X

:

^

X ! G(n;m) is the Gauss map. For a general 
ag V

�

we

de�ne a 
y
le

N

i

(V

�

) = �[g

�1

M

i

(V

�

)℄ = 
losuref�[g

�1

(M

i

(V

�

)) \ s(X

reg

)℄ g:

We will state the generi
ity 
onditions.

De�nition 2.1. We say that the map g :

^

X ! G(n;m) is general if it is transverse to all

strataM

i;k

(V

�

). This means that g restri
ted to s(X

reg

) and to ea
h stratum of the spe
ial

�ber is transverse to the strata M

i;k

(V

�

).

Let us 
onsider the standard 
ag

V

0

�

= ff0g � linfe

1

g � linfe

1

; e

2

g � : : : � CI

m

g :

The group Gl(m) a
ts on ea
h G(n;m) transitively. By Kleinman's theorem ([Kl℄ 2.

Theorem) there exists an open algebrai
 subset U of Gl(m) su
h that for any a 2 U the

3



map a � g is transverse to the strata M

i;k

(V

�

). For an open subset U 2 F(m) de�ne the

total polar variety

N

i

(U) = f(x; V

�

) 2 X � F(m) : x 2 N

i

(V

�

); V

�

2 Ug :

It is an algebrai
 set over U . The proje
tion on U is not a �bration in general. We �x

a suÆ
iently small U � F(m) su
h that the proje
tions N

i

(U) ! U are �brations for all

i � 0 and U � U � V

0

�

for U as in the Kleinman's theorem.

De�nition 2.2. The 
ag V

�

is 
alled good if V

�

2 U .

For any good 
ag V

�

2 U the 
y
le (�1)

i

N

i

(V

�

) is 
alled the polar variety [LT℄, [Pi℄,

it represents the Chern{Mather 
lass 


M

n�i

(X) [MP1℄. It is the 
losure of 
riti
al points of

the proje
tion X

reg

! V

?

m�n+i�1

.

3. Constru
tion of a lift of Chern 
lasses to interse
tion homology

Let us denote by D

X

the dual sheaf (Borel-Moore homology sheaf) of an algebrai



omplex variety, and IC

X

its interse
tion homology sheaf. All 
oeÆ
ients of homology

and interse
tion homology are rationals.

The dual proof of [BBFGK℄ (x3.5) shows that for 
losed embedding of 
odimension

one W ,! X, there exists a lift � of the natural morphism � : D

W

��! D

X

providing a


ommutative diagram

IC

W

�

��! IC

X

# #

D

W

�

��! D

X

and then

IH

�

(W )

�

�

��! IH

�

(X)

# #

H

�

(W )

�

�

��! H

�

(X) :

It is unique as soon as there exists an unique lift on the smooth part of W (lo
. 
it. p. 167).

Here IC

W

is the interse
tion homology sheaf of W 
onsidered as a sheaf on X supported

by W and D

W

is the Borel{Moore homology sheaf also 
onsidered as a sheaf on X.

Let N

�

(V

�

) be the sequen
e of polar varieties asso
iated to a good 
ag:

N

n

(V

�

) � : : : � N

1

(V

�

) � N

0

(V

�

) = X

n

:

Then, for ea
h j, N

j

(V

�

) has 
odimension one in N

j�1

(V

�

) and no 
omponent of N

j

(V

�

) is


ontained in the singularities of N

j�1

(V

�

). In this situation, by the previous result, there

exist unique sheaf morphisms

IC

N

n

(V

�

)

��! : : : ��! IC

N

1

(V

�

)

��! IC

N

0

(V

�

)

= IC

X

whi
h are lifts of the natural morphisms

D

N

n

(V

�

)

��! : : : ��! D

N

1

(V

�

)

��! D

N

0

(V

�

)

= D

X

:
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We obtain the indu
ed diagram of morphisms of interse
tion homology and homology

groups:

IH

�

(N

n

(V

�

)) ��! : : : ��! IH

�

(N

1

(V

�

)) ��! IH

�

(N

0

(V

�

)) = IH

�

(X)

# # # #

H

�

(N

n

(V

�

)) ��! : : : ��! H

�

(N

1

(V

�

)) ��! H

�

(N

0

(V

�

)) = H

�

(X) :

The fundamental 
lass of the polar variety [N

i

(V

�

)℄ belongs to IH

2(n�i)

(N

i

(V

�

)).

De�nition 3.1. We de�ne an element ~


i

(X) = ~


n�i

(X) 2 IH

2(n�i)

(X) as the image

(under the 
onsidered sequen
e of morphisms) of the fundamental 
lass of the polar variety

(�1)

i

[N

i

(V

�

)℄ 2 IH

2(n�i)

(N

i

(V

�

)).

Proposition 3.2. The 
lass ~


i

(X) does not depend on the 
hoi
e of the good 
ag.

Proof. We have two sequen
es of morphisms:

IH

�

(N

n

(U)) ! : : : ! IH

�

(N

1

(U)) ! IH

�

(N

0

(U)) = IH

�

(X)
H

�

(U)

" " " "

IH

�

(N

n

(V

�

)) ! : : : ! IH

�

(N

1

(V

�

)) ! IH

�

(N

0

(V

�

)) = IH

�

(X) ;

where the top row is written for the total polar variety of good 
ags and the bottom

row is written for a �xed 
ag. The diagram 
ommutes sin
e N

i

(V

�

) ,! N

i

(U) is nor-

mally nonsingular. The 
lass (�1)

i

[N

i

(V

�

)℄ 2 IH

2n�2i

(N

i

(U)) does not depend on the


hoi
e of the good 
ag V

�

2 U and is the 
lass of a �ber in the bundle N

i

(U) ! U .

Applying the sequen
e of maps of interse
tion homology groups we obtain an element

(�1)

i

[N

i

(V

�

)℄ 2 IH

2n�2i

(X � U) whi
h is independent on V

�

. It 
an be written as

~


i

(X)
 [pt℄ 2 IH

2n�2i

(X)
H

0

(U).

4. Chern 
lass for quasi{proje
tive variety

Let X

n

� PI

m

be a smooth quasi{proje
tive variety. Let T

CX

be the tangent bundle

of the aÆne 
one CX � CI

n+1

over X away of origin. The bundle T

CX

is indu
ed from a

bundle � ! X. The polar varieties of X are de�ned to be the proje
tivization of the ones

of CX. They represent the Chern 
lasses of the bundle � . To re
over the Chern 
lasses of

X we use the following formulas:

1. a formula for bundles (see [MS : 14.10℄ for the 
ase X

n

= PI

n

):

T

X

�� ' � 
 


�

;

where � is the trivial bundle and 
 = O(�1) is the tautologi
al bundle.

2. a formula for Chern 
lasses of a tensor produ
t: let E be a k{dimensional bundle and

let L be a line bundle, 


i

= 


i

(E) and a = 


1

(L) then

5






�

(E 
 L) = 1 + 


1

+ ka+ (4:1)




2

+

�

k � 1

1

�

a


1

+

�

k

2

�

a

2

+




3

+

�

k � 2

1

�

a


2

+

�

k � 1

2

�

a

2




1

+

�

k

3

�

a

3

+




4

+

�

k � 3

1

�

a


3

+

�

k � 2

2

�

a

2




2

+

�

k � 1

3

�

a

3




1

+

�

k

4

�

a

4

+ : : :

If we put k = n+1, E = � , L = 


�

then a 2 H

2

(X) is the 
lass of hyperplane se
tion

and we obtain a formula for the Chern 
lass of X.

Suppose X is singular. There is no tangent bundle to CX nor a bundle � . Instead

we set 


i

= (�1)

i

[N

i

(V

�

)℄ 2 H

2n�2i

(X) where N

i

(V

�

) � X is the proje
tivization of the

polar variety of CX. Then the formula (4.1) 
omputes the Chern{Mather 
lass of X, [Pi℄.

By the same formula we de�ne a lift of the Chern{Mather 
lass to interse
tion homology

of X, but now 


i

is the lift of (�1)

i

[N

i

(V

�

)℄ to IH

2n�2i

(X) 
onstru
ted in x3.

5. A lift of Chern-Mather 
lasses

The Proposition 3.2 and the formula 4.1 provides us with a method of de�ning a


anoni
al lift of Chern-Mather 
lasses:

Theorem 5.1. The Chern-Mather 
lasses of a quasi-proje
tive 
omplex variety 
an be

lifted to interse
tion homology, in a 
anoni
al way, as soon as the embedding is �xed.

The Chern-S
hwartz-Ma
Pherson 
lass is a 
ombination:




�

(X) =

X

n

�

in
l

�




M

�

(S

�

) ;

where fS

�

g is the minimal strati�
ation (see [Te℄). Thus we obtain a 
anoni
al lift of

Chern-S
hwartz-Ma
Pherson 
lasses to

M

IH

�

(S

�

) :

Suppose X admits only isolated singularities fa

i

g, then the total Chern-S
hwartz-

Ma
Pherson 
lass is equal to :




�

(X) = 


M

�

(X) +

X

(1�Eu

a

i

)[a

i

℄ :

It 
an be lifted to IH

�

(X) as soon as we lift the 
lass [a

i

℄. Few 
anoni
al liftings 
an be

de�ned but they 
oin
ide if X is irredu
ible.

Theorem 5.2. The Chern-S
hwartz-Ma
Pherson 
lasses of an irredu
ible quasi-proje
-

tive 
omplex variety whi
h has only isolated singularities 
an be lifted to interse
tion ho-

mology, in a 
anoni
al way, as soon as the embedding is �xed.
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6. The 
lass ~


1

(X) and a small resolution

Let us re
all that a small resolution $ :

~

X ! X is a resolution for whi
h there exists

a strati�
ation S

�

of X su
h that for any x 2 S

�

, dim$

�1

(x) < 1=2 
odim(S

�

). In this


ase, there is an identi�
ation of perverse sheaves R$

�

QI

~

X

�

=

IC

X

and the interse
tion

homology groups of X are identi�ed with homology groups of

~

X ([GM℄, x6.2 and [MP2℄

x5).

We will show that:

Proposition 6.1. For a small resolution we have:

1. The lift

~

N

1

(V

�

) of the 
y
le N

1

(V

�

) to

~

X (proper inverse image) represents the 
lass

�~


1

(X) 2 H

2n�2

(

~

X) ' IH

2n�2

(X);

2. If X does not have singularities in 
odimension one (e.g. if X is normal), then ~


1

(X)


oin
ides with 


1

(

~

X) 2 H

2n�2

(

~

X).

Proof of 1. We have the following diagram of sheaves over X:

R$

�

QI

~

X

'

��! IC

X

x

?

x

?

� unique

R$

�

QI

~

N

1

(V

�

)

 - IC

N

1

(V

�

)

dire
t summand

Wemay assume that it 
ommutes away of singularities ofN

1

(V

�

) andX. Then it 
ommutes

on the whole X sin
e � is unique. Thus the 
lass �[

~

N

1

(V

�

)℄ 2 H

2n�2

(

~

X) 
orresponds to

~


1

(X) 2 IH

2n�2

(X).

The result is not true for higher 
lasses (see Observation 7.2).

Proof of 2. Suppose that 
odim�

X

� 2. Then H

2n�2

(X) ! IH

2

(X) is surje
tive and

thus H

2n�2

(

~

X) = IH

2n�2

(X)! H

2n�2

(X) is inje
tive. In H

2n�2

(X) we have:

$

�




1

(

~

X) = 


1

(X) +

X

n

�

[S

n�1

�

℄ :

Sin
eX has no singularities in 
odimension one, then all S

n�1

�

= ;. Thus$

�




1

(

~

X) = 


1

(X)

in H

2n�2

(X). The indu
ed morphism $

�

is inje
tive. The 
orresponding equality 
learly

holds in homology of

~

X.

In general the �rst Chern 
lass ~


1

(X) di�ers from the Chern 
lass of a small resolution.

Let us 
onsider two examples.

Example 6.2. Let X � PI

2

be given by an equation f(x; y) = xy = 0 : It admits a small

resolution whi
h is its normalization

~

X ' PI

1

1

t PI

1

2

$

��! X :
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The Chern 
lass of

~

X, in H

�

(

~

X), is [

~

X℄+2[

~

pt

1

℄+2[

~

pt

2

℄, where

~

pt

1

is a point in PI

1

1

and

~

pt

2

is a point in PI

1

2

. Let us 
ompute ~


1

(X). The aÆne 
one CX 
onsists of two planes. The

proje
tion of it along a general dire
tion is nonsingular. Thus N

1

(V

�

) = ;. To 
ompute

~


1

(X) we use the formula 4.1:

~


�

(X) = 1 + (�[N

1

(V

�

)℄ + 2a) + : : : ;

where a = [pt

1

℄+[pt

2

℄ is the 
lass of a hyperplane se
tion. We obtain ~


1

(X) = 2[pt

1

℄+2[pt

2

℄.

In this 
ase the 
lass ~


1

(X) 
oin
ides with 


1

(

~

X).

Example 6.3. Let X � PI

2

be given by the equation f(x; y; z) = x

3

+ y

2

z = 0 : It has an

singular point denoted by fx

o

g. It admits a small resolution whi
h is also its normalization:

~

X ' PI

1

$

��! X :

The Chern 
lass of

~

X, in H

�

(

~

X), is [

~

X℄+2[pt℄. The 
lass ~


1

(X) is the homologi
al Chern{

Mather 
lass sin
e X is a topologi
al manifold. We 
ompute the Chern{Mather 
lass




M

�

(X) from the formula:

$

�

(


�

(

~

X)) = 


M

�

(X) + k in
l

�




M

�

(fx

o

g) ;

where k is given by the following expression in terms of lo
al Euler obstru
tion [MP1℄ :

$

�

(1

~

X

) = Eu

X

+ k Eu

fx

o

g

i:e: k = �1 :

We obtain ~


�

(X) = 


M

1��

(X) = [X℄ + 3[pt℄. In this 
ase the di�eren
e between ~


1

(X) and




1

(

~

X) is the 
lass [pt℄.

Let us give a general expression of the di�eren
e between ~


1

(X) and the �rst Chern


lass of a small resolution.

We remind that X � PI

m

. Let U � PI

m

, U ' CI

m

be one of the standard aÆne 
harts.

Let W be a irredu
ible 
omponent of $

�1

�

X

with dimW = dimX � 1 = n � 1. Sin
e

$ :

~

X ! X is a small resolution thus dim$(W ) = n� 1. To ea
h su
h W we will assign

a number.

De�nition 6.4. Assume that U \ $(W ) 6= ;. We de�ne the Ja
obian multipli
ity of W ,

denoted by n

W

, as the order of zeros on W of the Ja
obian of the 
omposition:

$

�1

(U \X)

$

��! U \X

p

��! CI

n

;

where p is a general proje
tion from U ' CI

m

to CI

n

.
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Remark 6.5. For a small resolution $ :

~

X ! X let us de�ne by C

Æ

~

X the pull-ba
k (�bred

produ
t):

C

Æ

~

X

C

Æ

$

��! C

Æ

X = CX n f0g � CI

m+1

# #

~

X

$

��! X � PI

m

:

Then, in the De�nition 6.4, instead of a lo
al general proje
tion p we 
an take a general

global proje
tion p : CI

m+1

! CI

n+1

and use the 
omposition ~p = p Æ C

Æ

$:

C

Æ

~

X

C

Æ

$

��! C

Æ

X

p

��! CI

n+1

to 
ompute the multipli
ity of W .

The Ja
obian multipli
ity 
an be expressed by the lo
al Euler obstru
tion. For X

lo
ally irredu
ible, the Ja
obian multipli
ity of W equals Eu

X

(x)�1, where x is a generi


point of $(W ). If X is not lo
ally irredu
ible, we should take a suitable lo
al 
omponent

of X. For proving this, it is suÆ
ient to look at the 
ase where X is a 
urve.

Theorem 6.6. Let $ :

~

X ! X be a small resolution. Then 


1

(

~

X) = ~


1

(X)�

P

n

W

[W ℄,

where the sum runs over the set of irredu
ible 
omponents of $

�1

(�

X

) su
h that dimW =

n� 1.

Remark 6.7. The 
orresponding relation between Chern-Mather 
lasses in homology 
an

be found in [MP1℄.

Proof. Firstly noti
e that the polar variety C

Æ

~

N

1

(V

�

) of C

Æ

~

X is the 
losure of zeros of the

Ja
obian of a generi
 proje
tion ~p : C

Æ

~

X ! CI

n+1

. If the map ~p is not generi
, then we

should take into a

ount the multipli
ity of the zeros of the Ja
obian. The singularities of

~p 
onsist of the singularities of p and of the singularities of C

Æ

$. Thus the 
omponents of

the polar variety in C

Æ

~

X 
ome from C

Æ

N

1

(V

�

) � C

Æ

X or from the singularities of C

Æ

X.

If p is general then these two sets of 
omponents are disjoint. The 
omponents of $

�1

�

X

should be 
ounted with multipli
ities n

W

. The Chern 
lass of

~

X is




1

(

~

X) = �([

~

N

1

(V

�

)℄ +

X

n

W

[W ℄) + (n+ 1)~a = ~


1

(X)�

X

n

W

[W ℄ :

where ~a is the 
lass of a hyperplane se
tion of

~

X whi
h is the inverse image of the 
lass of

a hyperplane se
tion of X.

Explanation of the examples. In the �rst 
ase the 
omponents of$

�1

�

X

are two points, but

with zero Ja
obian multipli
ity. In the se
ond example 
onsider a general lo
al proje
tion

from X n fz 6= 0g to CI . A point t of normalization

~

X ' PI

1

is sent to [t

2

: t

3

: 1℄ and then

proje
ted to a point at

2

+ bt

3

. Thus the Ja
obian multipli
ity is one for t = 0.
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7. The example of J. L. Verdier (see [V℄ and [BG℄)

Let B = PI

1

x

� PI

1

y

,! PI

3

be the Segre embedding:

([x

0

: x

1

℄; [y

0

: y

1

℄) 7! [x

0

y

0

: x

0

y

1

: x

1

y

0

: x

1

y

1

℄ :

The quadri
 B is des
ribed by the equation:

z

0

z

3

� z

1

z

2

= 0 :

Denote by X the proje
tive 
one over B:

X = 
B � PI

4

de�ned by the same equation in PI

4

. Topologi
ally X is the Thom spa
e of the bundle 


jB

;

where 
 is the tautologi
al bundle over PI

3

. The variety X admits two small resolutions.

To see them 
onsider the bundle 


jB

! B = PI

1

x

� PI

1

y

as the family of bundles over PI

1

y

parameterized by PI

1

x

. For ea
h x the bundle 


jfxg�PI

1

y

is equivalent to the tautologi
al

bundle over PI

1

y

. We apply the 
onstru
tion of Thom spa
e for ea
h x. We obtain a smooth

spa
e X

1

�bered over PI

1

x

with �ber 
 PI

1

y

' PI

2

. The spa
e X

1

is a small resolution of

X; the inverse image of the singular point is the set of in�nity points of the family of the

Thom spa
es, i.e. it is PI

1

. The se
ond small resolution X

2

is obtained by 
hanging the

role of x and y.

We have the 
anoni
al isomorphisms:

H

�

(X

1

) ' IH

�

(X) ' H

�

(X

2

) :

We will 
al
ulate the interse
tion homology groups of X with rational 
oeÆ
ients. Sin
e

it is the Thom spa
e, therefore

~

H

�

(X) ' H

��2

(B) ' 0 ; 0 ; QI ; 0 ; QI

2

; 0 ; QI ;

and

IH

�

(X) '

8

<

:

H

6��

(X) for � < 3

imPD for � = 3

H

�

(X) for � > 3

;

where PD : H

3

(X)! H

3

(X) is the Poin
ar�e homomorphism, 
ap-produ
t by the funda-

mental 
lass [X℄, thus

IH

�

(X) ' QI ; 0 ; QI

2

; 0 ; QI

2

; 0 ; QI :

10



We will des
ribe the generators (see the �gures 1{6):

IH

2

(X) is generated by the proje
tive lines: [PI

1

x

℄ = d

1

and [PI

1

y

℄ = d

2

.

IH

4

(X) is generated by the 
ones: 
(d

1

) = p

1

and 
(d

2

) = p

2

.

The 
orresponding generators in X

1

and X

2

are the proper inverse images of those in X

and will be denoted by the same letter. The homologi
al Chern 
lass of X

1

and X

2

were


al
ulated in [BG℄ and they are the following:




�

(X

1

) = [X

1

℄ + (3p

1

+ 3p

2

) + (3d

1

+ 5d

2

) + 6fptg ;




�

(X

2

) = [X

2

℄ + (3p

1

+ 3p

2

) + (5d

1

+ 3d

2

) + 6fptg :

This shows, that the Chern 
lass of X 
annot be 
al
ulated using small resolution without


orre
tion terms in H

2

(X

i

).

Now we will 
al
ulate ~


�

(X) straightforward. Firstly we �nd suitable polar varieties.

The 
one over X in CI

5

is des
ribed by the equation:

f(z) = z

0

z

3

� z

1

z

2

= 0 :

The gradient �eld of f is

grad f(z) = (z

3

;�z

2

;�z

1

; z

0

; 0) :

Fix the 
ag

V

�

= ff0g; linfe

0

� e

3

g; linfe

0

� e

3

; e

1

� e

2

g; linfe

0

; e

1

� e

2

; e

3

g; linfe

0

; e

1

; e

2

; e

3

g; CI

5

g :

Let CX

o

= C(X

reg

) n f0g = CX n fz

4

= 0g. Then

CN

1

(V

�

) = 
lfz 2 CX

o

: grad f(z)

?

� linfe

0

� e

3

g 6= CI

5

g ;

= 
lfz 2 CX

o

: grad f(z) ? (e

0

� e

3

)g ;

= 
lfz 2 CX

o

: z

0

� z

3

= 0g ;

CN

2

(V

�

) = 
lfz 2 CX

o

: grad f(z)

?

� linfe

0

� e

3

; e

1

� e

2

g 6= CI

5

g ;

= 
lfz 2 CX

o

: grad f(z) ? (e

0

� e

3

); grad f(z) ? (e

1

� e

2

)g ;

= 
lfz 2 CX

o

: z

0

= z

3

; z

1

= z

2

g ;

CN

3

(V

�

) = 
lfz 2 CX

o

: grad f(z)

?

� linfe

0

; e

1

� e

2

; e

3

g 6= CI

5

g ;

= 
lfz 2 CX

o

: grad f(z) ? e

0

; grad f(z) ? (e

1

� e

2

); grad f(z) ? e

3

g ;

= 
lfz 2 CX

o

: z

0

= z

3

= 0; z

1

= z

2

g = ; ;

see the �gures 7{9. The Chern 
lasses of the bundle � over X

reg

(see x4) are represented by

the 
y
les (�1)

i

N

i

(V

�

). The 
y
le N

1

(V

�

) is allowable in X. It is the proje
tive 
one over
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the hyperplane se
tion of B. Thus ~


1

(�) = �[N

1

(V

�

)℄ = �(
(d

1

) + 
(d

2

)) = �(p

1

+ p

2

).

To 
al
ulate ~


2

(�) we have �rstly to �nd the 
lass [N

2

(V

�

)℄ 2 IH

2

(N

1

(V

�

)). The 
y
le

[N

2

(V

�

)℄ itself is not allowable in N

1

(V

�

). To see how it lifts to IH

2

(N

1

(V

�

)) let us examine

the only singular point of N

1

(V

�

). In the aÆne 
hart fz

4

6= 0g the set N

1

(V

�

) is des
ribed

by the equations

fz

0

z

3

� z

1

z

2

= 0; z

0

= z

3

g = fz

2

3

� z

1

z

2

= 0; z

0

= z

3

g :

It is a singularity of the type A

1

.

Fa
t 7.1. The surfa
e in CI

3

with a singularity of type A

1

: fz

2

3

� z

1

z

2

= 0g is a rational

homology manifold.

Proof. We 
ompute the 
ohomology of the link L of the singular point. We use the Gysin

sequen
e of the �bration p : L! L=S

1

= K, where K is a quadri
 in PI

2

:

H

1

(K)

p

�

��! H

1

(L)

R

��! H

0

(K)

2�

��! H

2

(K)

k k k

0 QI QI

We see that H

1

(L) = H

2

(L)

�

= 0.

The spa
e N

1

(V

�

) is the proje
tive 
one over K. It is a rational homology mani-

fold. The polar variety N

2

(V

�

) is the proje
tive 
one over two points in K. The group

IH

2

(N

1

(V

�

)) = H

2

(N

1

(V

�

)) is generated by [K℄. Thus [N

2

(V

�

)℄ is a multiple of [K℄. To

�nd the multiplier we interse
t [N

2

(V

�

)℄ and [K℄ with [K℄:

[N

2

(V

�

)℄ � [K℄ = 2,

[K℄ � [K℄ = degK = 2.

We 
on
lude that [N

2

(V

�

)℄ = [K℄ in H

2

(N

1

(V

�

)) = IH

2

(N

1

(V

�

)).

Now K is allowable in N

1

(V

�

) and in X; it is the hyperplane se
tion of B. Thus

[K℄ = d

1

+ d

2

. We �nd that

~


�

(�) = [X℄� (p

1

+ p

2

) + (d

1

+ d

2

) :

The 
lass 


1

(


�

) is represented by b = [B℄ 2 H

2

(X) { the hyperplane se
tion of X. To


al
ulate the 
lass ~


�

(X) we use the formula 4.1:

~


�

(X) = 1� (p

1

+ p

2

) + 4b+

+ (d

1

+ d

2

)� 3b(p

1

+ p

2

) + 6b

2

+

+ 0 + 2b(d

1

+ d

2

)� 3b

2

(p

1

+ p

2

) + 4b

3

.

We have the following relations:

1. b � p

i

= d

i

in IH

2

(X);
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2. b � d

i

= [pt℄ in IH

0

(X);

3. p

i

� b

i

= 0 and p

i

� b

j

= [pt℄ in H

0

(X) for i 6= j;

hen
e

4. the image of b in IH

4

(X) is p

1

+ p

2

(from 2 and 3);

5. the image of b

2

in IH

2

(X) is d

1

+ d

2

(from 1 and 4);

6. b

2

� p

i

= [pt℄ in IH

0

(X) (from 1 and 2);

7. b

3

= b � (d

1

+ d

2

) = 2[pt℄ in IH

0

(X) (from 2 and 5).

We obtain:

~


�

(X) = [X℄ + (3p

1

+ 3p

2

) + (4d

1

+ 4d

2

) + 6[pt℄ 2 IH

�

(X) :

The Chern-S
hwartz-Ma
Pherson 
lass is




�

MS

(X) = [X℄ + (3p

1

+ 3p

2

) + (4d

1

+ 4d

2

) + 6[pt℄� [vertex℄ 2 IH

�

(X)� IH

�

(fvertexg) :

If we 
ompare it with 


�

(X

i

), then we see that the di�eren
e is supported by imH

�

($

�1

�

X

)

� H

�

(

~

X). In homology, the di�eren
e is supported only by the image of H

�

(�

X

) in H

�

(X).

Let us 
ome ba
k to the remark we made after Proposition 6.1.

Observation 7.2. The proper inverse image of the 
y
le N

2

(V

�

) in the small resolution

X

1

does not represent the same 
lass as ~


2

(�) 2 IH

4

(X), so it 
an not be used to 
ompute

the Chern 
lass of X.

Proof. We remind that X

1

is �bered over PI

1

x

. Sin
e N

2

(V

�

) is the proje
tive 
one over

two points in B, thus

~

N

2

(V

�

) is 
ontained in the disjoint sum of two �bers in X

1

. The

element p

2

is represented by a �ber. Hen
e

[

~

N

2

(V

�

)℄ � p

2

= 0.

We have also

[

~

N

2

(V

�

)℄ � p

1

= 2[pt℄,

see the �gures 10{12. This shows, that [

~

N

2

(V

�

)℄ = 2d

2

6= d

1

+ d

2

= [N

2

(V

�

)℄.

If one 
omputes the Chern 
lass of X using [

~

N

2

(V

�

)℄ 2 H

4

(X

1

) instead of [N

2

(V

�

)℄ 2

IH

2

(X

1

) one obtains the Chern 
lass of X

1

.
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Cy
les in X

The quadri
 B in PI

3

with two families of generatri
es 1) and 2).

The proje
tive 
one X = 
B and the generators of IH

2

(X): 3) d

1

, 4) d

2

.

The generators of IH

4

(X): 5) p

1

, 6) p

2

.
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Cy
les in X and X

1

The polar variety N

1

is the 
one over K: 7) N

1

, 8) K.

The polar variety N

2

and its proper inverse image in X

1

: 9) N

2

, 10)

~

N

2

.

Proper inverse image in X

1

of the generators of IH

4

(X): 11) p

1

, 12) p

2

.
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