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Abstra
t. We present 
lassi
al and generalized Riemann-Hilbert problem in several


ontexts arising from K-theory and bordism theory. The language of Fredholm pairs

turns out to be useful and unavoidable. We propose an abstra
t formulation of a

notion of bordism in the 
ontext of Hilbert spa
es equipped with splittings.

x1. Introdu
tion

The 
on
ept of a Fredholm pair P = (H

�

; H

+

) of 
losed subspa
es H

�

, H

+

of

a Hilbert (or Bana
h) spa
e was introdu
ed in 1966 by T. Kato in his studies of

stability properties of 
losed, mainly unbounded operators, [19℄.

Re
all that the pair P = (H

�

; H

+

) is a Fredholm pair if the algebrai
 sum H

�

+

H

+

is 
losed and the numbers �

P

= dim(H

�

\H

+

) and �

P

= 
odim(H

�

+H

+

)

are both �nite. We also assume that H

�

and H

+

are of in�nite dimensions. The

di�eren
e �

P

� �

P

was de�ned in [19℄ as the index of the pair, IndP , and the


ru
ial observation of T. Kato was that Ind(H

�

; H

+

) is not 
hanged by ,,small"

deformations of the pair. More pre
isely, the set FGr

2

(H) of all Fredholm pairs of

a Hilbert spa
e appears then as an open subset of the Cartesian produ
t Gr(H)�

Gr(H) of the Grassmannian of 
losed subspa
es of H supplied with the usual

,,minimal gap" metri
, see [17, 19℄. In this 
ontext the notation FGr

2

(H) 
an

be interpreted as the Fredholm bi-Grassmannian of the Hilbert spa
e H whi
h

generalizes in a natural way to the Fredholm multi-Grassmannian FGr

n

(H), when

instead of pairs of subspa
es we 
onsider n-tuples (M

1

; : : : ;M

n

) of 
losed subspa
es

forming Fredholm fans, [4, 6℄.

There was no doubt from the outset that the theory of Fredholm pairs and

their generalizations should be studied in 
lose relationship with the theory of

Fredholm operators. Thus Fredholm pairs in Kato's [19℄ were 
onsidered as a


onvenient extension of the theory of Fredholm operators. For a Fredholm, possibly

unbounded, 
losed operator A : H

1

! H

2

a
ting between Hilbert (Bana
h) spa
es,

the pair P

A

= (graphA;

e

H

1

) was in [19℄ the basi
 example of a Fredholm pair. Here

1991 Mathemati
s Subje
t Classi�
ation. Primary 58J55, 55N15; Se
ondary 58J32, 35J55.

Key words and phrases. Riemann-Hilbert problem, boundary value, Fredholm pair, K-theory,

bordism.

Both authors are supported by the European Commission RTN HPRN-CT-1999-00118, Geo-

metri
 Analysis. The se
ond author is supported by KBN 2P03A 00218 grant. The se
ond author

also thanks Instytut Matematy
zny PAN for hospitality.

Typeset by A

M

S-T

E

X

1



2 BOGDAN BOJARSKI AND ANDRZEJ WEBER

the ,,
oordinate" subspa
e

e

H

1

= H

1

� 0 and the graph of A are 
losed subspa
es

in the dire
t sum H = H

1

�H

2

. Moreover,

IndP

A

= indA

where indA denotes here and in the sequel the index of the Fredholm operator A.

Also in [4℄ the bi-Grassmannian FGr

2

(H), understood there also as the spa
e of

abstra
t Riemann-Hilbert transmission problems, was parameterized by a family

of Fredholm operators L

P

asso
iated with proje
tors (P

�

; P

+

), not ne
essarily

orthogonal, onto the spa
es of the pair P .

The theory of Fredholm operators in Hilbert spa
e turned out to be an important

tool for studying topology of manifolds andK-theory, espe
ially the geometri
al and

topologi
al invariants de�ned by ellipti
 di�erential and pseudodi�erential operators

in spa
es of se
tions of smooth ve
tor bundles on manifolds. The highlight along

that road was the famous solution by M. Atiyah and I. Singer, [2℄, of the index

problem for ellipti
 operators. In the abstra
t fun
tional analyti
 setting the spa
e

F(H) of Fredholm operators in the Hilbert spa
e H , topologized as a subset of the

Bana
h algebra B(H) of bounded operators in H , turned out to be the 
lassifying

spa
e for the fun
tor K

0

(�), the 0-th term of the generalized 
ohomology theory

K

�

(�), [1℄. Later the K-homology K

�

(X) of a topologi
al spa
e X (or K

�

(A)

for a C

�

-algebra in the non
ommutative 
ase) was introdu
ed, [18℄. A

ording

to Kasparov the generators of K

�

(X) are realized by 
ertain Fredholm operators

a
ting in Hilbert spa
e, whi
h is equipped with an a
tion of the algebra of fun
tions

C(X).

The roots of the extremely su

essful appli
ations of the Fredholm operators

in global analysis, geometry of ellipti
 operators and K-theory, undoubtedly are

related with the following basi
 features of the 
lass F(H):

(i) The set F(H) is stable under suÆ
iently small perturbations in B(H) i.e.

A 2 F(H)) A+B +K 2 F(H)

for B 2 B(H), kBk < "

A

(for a suÆ
iently small "

A

) and K 2 K(H), where

K(H) denotes the ideal of 
ompa
t operators in H ;

(ii) Composition law:

A 2 F(H) ; B 2 F(H)) A ÆB 2 F(H)

and indA ÆB = indA+ indB : The index homomorphism

ind : F(H)! Z

is surje
tive and des
ribes the set of 
omponents �

0

(F(H));

(iii) In interesting and important 
ases, arising in the theory of partial di�erential

equations and boundary value problems, the Hilbert spa
e appears as a fun
tion

spa
e over a manifold, usually a fun
tion spa
e of Sobolev type. Therefore it

was natural to 
onsider Hilbert spa
es equipped with an a
tion of the algebra

of fun
tions B = C(X) over a topologi
al spa
e (usually a manifold) X . More
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generally, it was assumed in [18℄ that the 
onsidered Hilbert spa
es are Hilbert

modules with some C

�

-algebra B a
tion

r : B ! B(H) :

The 
ondition

8b 2 B : [r(b); A℄ 2 K

distinguishes a 
lass of operators A 2 B whi
h is of spe
ial interest. In 
on-

sequen
e it restri
ts also the 
lass of Fredholm operators. It is a remarkable

fa
t, that the ellipti
 pseudodi�erential operators belong to the des
ribed above


lass for the standard multipli
ation representation of the algebra of 
ontinuous

fun
tions.

The 
al
ulus of 
ommutators and their tra
es was the starting point for A. Connes

for introdu
ing 
y
li
 
ohomology and pro
laiming the program of non
ommutative

geometry, [12℄.

The natural and intimate 
onne
tion of the 
lassi
al Riemann-Hilbert transmis-

sion problems and the theory of Fredholm pairs in a Hilbert spa
e H was �rst

des
ribed in middle seventies by the �rst author, [4℄. In parti
ular the mentioned

above basi
 properties (i), (ii) and (iii) appear in a de
isive way in [4℄. In the linear

transmission problems for Cau
hy-Riemann systems, generalized Cau
hy-Riemann

systems, Dira
 operators as well as higher dimensional transmission problems re-

lated with the Cau
hy data spa
es for higher order ellipti
 operators in ve
tor

bundles on manifolds, the Fredholm pair approa
h is more dire
t then the usual

redu
tion pro
ess to systems of ellipti
 	DO's on the boundary or the splitting

submanifold. In [4℄ a variety of 
on
epts have been introdu
ed. Besides the named

above Fredholm bi-Grassmannian and the abstra
t Riemann-Hilbert transmission

problem let's mention here the dis
ussion of the role of Calder�on proje
tors on the

Cau
hy data spa
es in general ve
tor bundle setting, Green formulas and pairing

between Cau
hy data spa
es for D and the formally adjoint operator D

�

, splitting

index formulas. In the 
ase when H = H

1

�H

2

Fredholm pairs were dis
ussed as

pairs of 
orresponden
es (relations), whi
h may be 
omposed, leading to a general-

ization of 
omposition rules for Fredholm operators. This is 
ru
ial for the 
ase of

bordisms, [8℄ and x5 below.

Appli
ations to topology of Fredholm pairs are not enough investigated so far.

Ex
ept for the arti
les [Bo1-4℄, there are very few papers exploring this subje
t.

One should mention [9-10℄.

The purpose of this note and its expanded version [8℄ is to give an introdu
tion

to a systemati
 treatment of the Fredholm pairs theory applied to geometry and

topology. In terms of boundary values of solutions the Riemann-Hilbert problem

translates dire
tly to the language of Fredholm pairs. One 
an re
over the index of

the original problem as well as the kernel and the 
okernel. Developing this idea

we study an appli
ation of Fredholm pairs to bordisms. We 
onsider a bordism of

smooth manifolds

M

1

�

X

M

2

equipped with an ellipti
 di�erential operator D a
ting on the se
tions of a ve
tor

bundle � over X . Let H

i

= L

2

(M

i

; �). The generalized boundary values of the

solutions of Du = 0 form a subspa
e L 
ontained in the dire
t sum H

1

� H

2

.
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This spa
e 
annot be represented as a graph of an operator H

1

! H

2

, but it may

be treated as a morphism from H

1

to H

2

. It transports 
ertain family of linear

subspa
es of H

1

to H

2

. The 
orresponden
e L allows to 
ouple spa
es H

�

1

� H

1

with spa
es H

+

2

� H

2

. In general the index is de�ned when (L;H

�

1

� H

+

2

) is a

Fredholm pair.

As in the 
ase of Fredholm operators, the properties (i){(iii) play the de
isive

role:

(i) The index of Fredholm pairs is stable under deformations;

(ii) Although the index is not additive under the 
omposition of 
orresponden
es,

but the defe
t is well understood;

(iii) The 
onstru
tions are motivated and illustrated by examples 
oming from the

boundary value problems of ellipti
 operators.

It appears that the 
on
ept of Fredholm pairs and 
orresponden
es 
reates a natural

analyti
al setting for an abstra
t theory of bordisms, expressed in terms of linear

fun
tional analysis.

The 
on
ept of Fredholm pairs and its generalizations provide a 
onvenient ap-

proa
h to a variety of problems in partial di�erential equations: both lo
al, as


lassi
al boundary value problems, or non-lo
al, when in the boundary 
onditions

a global operator (e.g. spe
tral restri
tion or additional pointwise translation) is

present. In the setting of Fredholm pairs the given di�erential operators and their

parametri
es exist on the same footing. Families of Fredholm pairs and the bi-

Grassmannian FGr

2

appear as a 
lassifying spa
e for K-fun
tor. The algebrai



onstru
tion of K-homologyK

�

(X) suggested by Atiyah and realized by Kasparov,

based on the theory of ellipti
 or Fredholm operators in C(X) (or C

1

(X)) mod-

ules, have dire
t analogies in the Fredholm pairs setting. Some 
onstru
tion e.g.

des
ription of the di�erential

Æ : K

0

(X)! K

1

(M)

in theK-homology for the Mayer-Vietoris exa
t sequen
e for a splittingX = X

�

[

M

X

+

is easier then in the Fredholm operator setting, [8℄. In some situations, like the

Cau
hy data spa
es for ellipti
 operators or the bordism 
ategory, the language of

Fredholm pairs and 
orresponden
es seems unavoidable. The 
on
ept of abstra
t

Fredholm pairs and bordisms admits natural and well motivated generalizations:

Fredholm fans, [6℄, also treated in [8℄.

x2. Classi
al and abstra
t Riemann-Hilbert problem

The 
lassi
al Riemann-Hilbert problem is understood as follows. Let C P

1

=

D

�

[

S

1

D

+

be the usual de
omposition of the Riemann sphere (i.e. the 
omplex

proje
tive line). Here D

+

is the unit disk and D

�

is the 
omplementary disk 
on-

taining in�nity. Given a fun
tion (a loop) � : S

1

! GL(C

n

), des
ribe the totality of

holomorphi
 ve
tor-valued fun
tions s

�

: D

�

! C

n

, su
h that s

+

(z) = �(z)s

�

(z)

for z 2 S

1

. Due to Birkho� de
omposition, [22, 26℄, if � is di�erentiable then the

Riemann-Hilbert problem is the same as looking for a se
tion of the holomorphi


bundle de�ned by �, [21, 5, 7, 9, 10℄. If � is pie
ewise 
onstant, then this is the 21

st

problem, as stated by Hilbert, see [11℄. It's a question about existen
e of a system

of singular di�erential equations with pres
ribed monodromy.
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Denote by H

�

the spa
e of boundary values of holomorphi
 ve
tor-fun
tions on

D

�

. This is a Fredholm pair in H = L

2

(S

1

; C

n

). The pair (�(H

�

); H

+

) is also

Fredholm, where �(H

�

) is the image of H

�

with respe
t to the obvious multipli-


ation representation of the loop group 
GL(C

n

) on H .

If we normalize s

�

by the 
ondition s

�

(1) = 0, then we obtain a subspa
e

H

[

� H

�

. Set H

℄

= H

+

. Then H = H

[

� H

℄

. A

ording to [4℄ the question

about the pair (�(H

�

); H

+

) being Fredholm is redu
ed to the abstra
t problem of

studying the operator

L

�

= �P

[

+ P

℄

: H ! H

or the Toeplitz operator

P

[

� : H

[

! H

[

:

The proje
tors P

[

and P

℄

are the proje
tors in the dire
t sum H = H

[

�H

℄

, but

they 
an be substituted by the proje
tors of Sohotski-Plemelj, [25, 15℄, whi
h are

singular integral operators.

In order to explain the deep meaning of the operator L

�

let us summarize some

fa
ts about Fredholm pairs. We will follow [4℄ and [6℄. Suppose that H is de
om-

posed into a dire
t sum

H = H

[

�H

℄

;

both summands 
losed of in�nite dimension. We 
an say that this de
omposition

is given by a symmetry S: a ,,sign" or ,,signature" operator with S

2

= 1. Let P

[

and P

℄

be the 
orresponding proje
tors and S = P

℄

� P

[

. This is the basi
 one-

dimensional singular integral operator. It is well known that for any 
ontinuous

loop � the 
ommutator [�; S℄ = �S � S� is a 
ompa
t operator (Mikhlin lemma,

[26℄).

Let I � B(H) be an ideal 
ontaining the ideal of �nite rank operators and


ontained in the ideal of 
ompa
t operators. De�ne GL(S; I) � GL(H) to be the

set of all invertible authomorphisms of H 
ommuting with S up to the ideal I:

GL(S; I) = f� 2 GL(H) : [�; S℄ 2 Ig :

We have the following 
lassi�
ation result.

Theorem 2.1. [4℄ Let H

�

be a Fredholm pair with H

+

= H

℄

. Suppose, that H

�

is given by a proje
tor P

�

satisfying P

[

�P

�

2 I. Then there exists � 2 GL(S; I),

su
h that H

�

= �(H

[

). Moreover, the operator L

�

= �P

[

+ P

℄

is Fredholm and

ind(L

�

) = Ind(H

�

; H

+

) :

The map

e� : GL(S; I)! Z

e�(�) = ind(L

�

)

is a group homomorphism

e�(� Æ  ) = e�(�) + e�( ) :

We remark that the 
orresponden
e � 7! L

�

between the group GL(S; I) and

the Fredholm operators is an ,,almost" homomorphism, i.e.

L

�Æ 

= L

�

Æ L

 

+ T (�;  )
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with T (�;  ) =

1

4

(1 � �)[S;  ℄(1 � S) 2 I. If we write � 2 GL(S; I) in a matrix

form with respe
t to the splitting H = H

[

�H

℄

:

� =

�

� �


 Æ

�

;

then �, Æ are Fredholm operators, �, 
 are in I and e�(�) = ind(�) = �ind(Æ). It

follows that

Ind(H

�

; H

+

) = ind(P

[

� : H

[

! H

[

) = ind(P

℄

�

�1

: H

℄

! H

℄

) :

Note, that if � is arbitrary, possibly not invertible, then �P

[

+ P

℄

: H ! H

and P

[

� : H

[

! H

[

are Fredholm operators of equal indi
es, provided that � is

Fredholm. These indi
es are not ne
essarily equal to Ind(�(H

[

); H

℄

). The equality

holds if and only if �

jH

[

is inje
tive. It is better to distinguish between the domain

of � (we write H

1

) and its target (H

2

). There is another expression for e�(�), whi
h

will be useful later:

Proposition 2.2. The pair (graph�;H

[

1

� H

℄

2

) in H

1

� H

2

is Fredholm and its

index is equal to e�(�).

We have introdu
ed a splitting of the Hilbert spa
e H = L

2

(S

1

; C

n

) = H

[

�H

℄

.

It's a good moment now to expose its fundamental role. The splitting 
omes from

the division of the Fourier exponents into subsets

Z= Z

<0

[ Z

�0

:

A �nite perturbation of this set is also an admissible de
omposition. The need of

introdu
ing a splitting was 
lear already in [4℄:

� It was used to the study of Fredholm pairs with appli
ation to Riemann-Hilbert

problem in [4℄.

� Splitting also 
ame into light in the paper of Kasparov, [18℄ who introdu
ed

homologi
al K-theory built from Hilbert modules. The program of non
ommu-

tative geometry of A.Connes develops this idea.

� Splitting plays an important role in the theory of loop groups in [26℄.

� There is also a number of papers in whi
h surgery of the Dira
 operator is studied.

Splitting serves as a boundary 
ondition, see e.g. [14, 27℄. These papers originate

from [3℄.

Let us 
ome ba
k to the de
omposition of L

2

(S

1

; C

n

) originating from the 
lassi-


al Riemann-Hilbert problem. It is given by a pair of pseudodi�erential proje
tors.

Suppose that the authomorphism � is the multipli
ation by a matrix with entries

being 
ontinuous fun
tions. Then � 2 GL(S;K) and the Theorem 2.1. applies.

x3. Fredholm bi-Grassmannian

We will des
ribe the homotopy types of the spa
es involved in our 
onstru
tions.

3.1. The Grassmannian of the 
losed linear subspa
es M � H with dim(M) =


odim(M) = 1. We denote this set by Gr

1

(H). The linear group GL(H) a
ts



RIEMANN-HILBERT PROBLEM, FREDHOLM PAIRS, BORDISMS 7

on it transitively. Let S 2 GL(H) be a symmetry de
omposing H into dire
t

sum H

[

� H

℄

of 
losed subspa
es of in�nite dimensions. The stabilizer of H

℄

2

Gr

1

(H) 
onsists of linear isomorphisms, whi
h 
an be written in the blo
k form

�

� 0


 Æ

�

with �, Æ being isomorphisms and 
 arbitrary linear map. We 
an write

Gr

1

(H) = GL(H)=Stab(H

℄

). We endow this set with the quotient topology. By

a result of Kuiper, [20℄, the topologi
al spa
es GL(H) and Stab(H

℄

) = GL(H

[

)�

Hom(H

[

; H

℄

)�GL(H

℄

) are 
ontra
tible. Hen
e Gr

1

(H) is 
ontra
tible as well.

3.2. The set of Fredholm pairs (H

�

; H

+

) in H. We denote this set by FGr

2

(H).

This is a subset of Gr

1

(H) �Gr

1

(H). The proje
tion on the se
ond fa
tor (for-

getting about H

�

) is a �bration. Denote the �ber over H

℄

by Gr

H

℄
(H)

Gr

H

℄
(H) ,�! FGr

2

(H)�!!Gr

1

(H) :

Sin
e the base of the �bration is 
ontra
tible by x3.1, the in
lusion of the �ber is a

homotopy equivalen
e.

3.3. The �ber Gr

H

℄
(H) is identi�ed with the subset of Gr

1

(H) 
onsisting of the


losed linear subspa
es H

�

� H, su
h that the pair (H

�

; H

℄

) is Fredholm. It is

the orbit of H

[

with respe
t to the a
tion of the ,,paraboli
 up to K" subgroup

P (S;K) � GL(H)

Gr

H

[

(H) = P (S;K) �H

[

� Gr

1

(H) :

The group P (S;K) 
onsists of isomorphism of the form

�

� �


 Æ

�

with �, Æ being

Fredholm operators and � 
ompa
t operator. Consider the proje
tion P (S;K) !

F(H

[

) sending an element of � 2 P (S;K) to the operator � = P

[

�

jH

[

. Arguing as

in [26℄ 6.2.4 we prove that this map has the 
ontra
tible �bers. Therefore it is a

homotopy equivalen
e.

Let us sum up the results and 
ompare it with [26℄, where the restri
ted Grass-

mannian was studied.

Theorem 3.4. The following maps are homotopy equivalen
es:

GL(S;K) ,�! P (S;K) �!! F(H

[

)

#

#

#

#

Gr

res

(S;K) ,�! Gr

H

℄ (H) ,�! FGr

2

(H) ;

where Gr

res

(S;K) 
onsists of the subspa
es H

�

� H of the form H

�

= �(H

[

) for

� 2 GL(S;K).

In our 
onstru
tions the ideal of 
ompa
t operators K 
an be substituted by any

smaller ideal 
ontaining the ideal of the �nite rank operators. In fa
t in [26℄ the

ideal of Hilbert-S
hmidt operators appears.

x4. Some general remarks and 
omments

We re
apitulate: there are several aspe
ts of the general Riemann-Hilbert prob-

lem.
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4.1. The underlying geometri
 and 
ombinatorial setting. The simplest example of

the Riemann-Hilbert problem deals with the operator � on the Riemannian sphere

S

2

= C P

1

(or a Riemann surfa
e) divided into two 
omplementary domains by a


urve �, say � = S

1

, as des
ribed. In the literature mu
h more general situations

have been studied, [25, 15, 22℄.

Suppose that there is given an oriented 
ontour M on a Riemann surfa
e X .

It may 
onsist of a �nite number of parameterized 
urves admitting transversal

interse
tions and self-interse
tions. We have on ea
h 
omponent of M positive and

negative side (i.e. an orientation of the normal bundle).

Configuration of 
urves and its 
ombinatorial model.

If

� :M ! GL(C

n

)

is a 
ontinuous map, then for a ve
tor-fun
tion s(z) holomorphi
 on ea
h 
omponent

U ofXnM , admitting in some natural sense boundary extension to U , the Riemann-

Hilbert transmission 
ondition

s

+

(z) = �(z)s

�

(z) ; for z 2M

is meaningful. Here s

�

(z) are boundary values of s(z) on positive and negative side

of M .

If M =

S

m

i=0

�

i

is the sum of boundaries of disjoint dis
s �

i

= �D

i

, i = 0, : : :

m, then we have the 
lassi
al Riemann-Hilbert problem in a non-simply
onne
ted

domain. Splitting M into two disjoint parts M = M

1

tM

2

provides an example

of a bordism. Su
h bordisms admit 
ompositions, if the boundaries are mat
hing.

One 
an formulate lo
al and global index formulas in the realm of 
onformal �eld

theory. For details see x6 and [8℄.

In higher dimensions one 
onsiders manifolds with a 
on�gurations of hypersur-

fa
es (of 
odimension one) non-interse
ting or with transversal interse
tions. The

most relevant here is the 
ase of submanifolds realizing a de
omposition of X into

bordisms

X

0

[

M

1

X

1

[

M

2

� � � [

M

m

X

m

:

Re
all that, as beautifully des
ribed in [24℄, the bordisms form a 
ategory with

oriented n � 1-dimensional manifolds as obje
ts and bordisms as morphisms. In

our abstra
t bordism model ea
h splitting manifold M

i

has an asso
iated Hilbert

spa
e H

i

supplied with an involution S

i

also 
alled signature operator. These

de�ne splittings H

i

= H

[

i

�H

℄

i

into in
oming and outgoing 
omponents and should

be 
onsidered as a part of the stru
ture. The bordism M

i�1

�

X

1

M

i

together

with an ellipti
 �rst order operator D on X

i

gives rise to a 
losed linear subspa
e

L � H

i�1

� H

i

, the spa
e of Cau
hy data on �X

i

= M

i�1

tM

i

of solutions of

homogeneous equation D = 0 on X

i

. The spa
e L is a 
orresponden
e from H

i�1

to H

i

. We will illustrate our point of view by a simple but instru
tive Example 5.1.
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4.2. The generalized Riemann-Hilbert problem. In the simplest 
ase m = 1

X

�

[

M

X

+

Fredholm pair arises from 
onsideration of the Cau
hy data on X

�

and X

+

. More

pre
isely let

D : C

1

(X ; �)! C

1

(X ; �)

be an ellipti
 operator of the �rst order. The Dira
 operator is of spe
ial interest.

One de�nes the spa
es H

�

(D) � H = L

2

(M ; �), whi
h are the spa
es of boundary

values of solutions of homogeneous equations Ds = 0 on the manifolds X

�

. The

pair H

�

(D) is Fredholm. In order to study kerD and 
okerD it is 
onvenient to

assume that D and D

�

have the unique extension property, i.e. the solutions of D

and D

�

are determined by the boundary values on M . Then

kerD = H

+

(D) \H

�

(D) ; 
okerD = H=(H

+

(D) +H

�

(D)) :

As in the 
ase des
ribed in x2 
orresponding Cau
hy data spa
es admit proje
tors.

There are asso
iated Calder�on proje
tors P

�

(D) onto H

�

(D). They are 
omple-

mentary up to a 
ompa
t operator: P

�

(D) + P

+

(D) � 1 2 K : The operation S

given by

S = P

+

� P

�

is the fundamental singular operator. The group GL(S;K) is naturally involved.

4.3. The Riemann-Hilbert problem in an abstra
t Hilbert spa
e H: suppose we have

an involution S 2 B(H) de�ning a splitting H

[

� H

℄

. We 
onsider the following

obje
ts:

� the group of GL(S;K) of the linear isomorphisms of H 
ommuting with S up to

K,

� the bi-Grassmannian FGr

2

res


onsisting of pairs of the form (�(H

[

); H

℄

), with

� 2 GL(S;K), 
alled restri
ted Grassmannian in [26℄.

� the bi-Grassmannian FGr

2

(H), the set of all Fredholm pairs in H .

These spa
es are homotopy equivalent, they are 
lassifying spa
es of K-theory

BU � Z. A family of Fredholm pairs (say over T ) de�nes an element of K

0

(T ).

Moreover, the 
lassi
al Riemann-Hilbert problem gives us a way of 
onstru
ting

a Fredholm pair in H

n

= L

2

(S

1

; C

n

) out of a given loop in U

n

� GL(C

n

). The

assignment


U

n

! FGr

2

(H

n

) ' BU �Z

passes to a map


U

1

! FGr

2

(H

1

) ' BU �Z ;

whi
h 
an be interpreted as the Bott periodi
ity map.

4.4. Quantum Riemann-Hilbert problem: There is another stru
ture whi
h one


annot forget keeping in mind geometri
 appli
ations. The Hilbert spa
e H 
omes

with an a
tion of the algebra C(M) of fun
tions on M = �X

�

. The pseudodi�er-

ential operator P

+

(D)� P

�

(D) almost 
ommutes with the algebra a
tion. Hen
e

it de�nes an element in the odd K-homology K

1

(M). From the point of view of
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Kasparov theory we 
an repla
e P

+

(D) � P

�

(D) by the almost equal operator

S = P

℄

� P

[

, S

2

= 1. But now as in [13℄, pp 287-289, it is easier to express

the pairing with K

1

(M). If � 2 GL(S

�n

;K) is de�ned by a matrix of fun
tions

e

� : M ! GL(C

n

) (i.e.

e

� is a generator of K

1

(M)), then the e�e
t of the pairing

of [

e

�℄ 2 K

1

(M) with [S℄ 2 K

1

(M) is equal to e�(�). One 
an ask what element of

K

1

(M) is de�ned by S. It's not hard to guess that:

Theorem 4.5. The Fredholm module (H = L

2

(M ; �); S) is the image of [D℄ with

respe
t to the di�erential Æ : K

0

(X) ! K

1

(M) in homologi
al Mayer-Vietoris se-

quen
e of the triple (X;X

�

; X

+

).

Sin
e our proof in [8℄ is obtained by means of duality, the result holds modulo

torsion in K

1

(M).

It is 
lear that the algebra of fun
tions C(S

1

) (or C(M)) may be repla
ed by

an arbitrary C

�

-algebra, possibly non
ommutative. The framework of non
ommu-

tative geometry, [12, 13℄, is another possible setup for studying Riemann-Hilbert

problem and 
orresponding Fredholm pairs.

x5. Bordisms

Now we would like to des
ribe more general obje
ts than the operators � 2

GL(S;K) 
onsidered so far. We study relations in H or 
orresponden
es from H

1

to H

2

. Our approa
h is motivated by the geometri
 theory of bordisms, [24℄. First,

let us present an example:

Example 5.1. For 0 < r < R 
onsider the ring

X = fz 2 C : r � jzj � Rg :

Then

�X =M

1

tM

2

= S

1

R

t S

1

r

:

The fun
tions e

i

= z

i

:M

1

! C and �

i

= z

i

:M

2

! C for i 2 Z form a basis of the

Hilbert spa
es

H

1

= L

2

(M

1

; C ) =

�

P

i2Z

a

i

e

i

:

P

i2Z

a

2

i

R

2i

<1

	

and

H

2

= L

2

(M

2

; C ) =

�

P

i2Z

b

i

�

i

:

P

i2Z

b

2

i

r

2i

<1

	

:

Consider the Cau
hy-Riemann operator a
ting on the 
omplex-valued fun
tions on

X . The spa
e of the boundary values of solutions L is the graph of the unbounded

operator

� : H

1

��! H

2

; �

�

P

i2Z

a

i

e

i

�

=

P

i2Z

a

i

�

i

:

The maximal domain of � is

�

P

i2Z

a

i

e

i

:

P

i2Z

a

2

i

(R

2i

+ r

2i

) <1

	

:

The above 
ondition 
an be substituted by

P

i<0

a

2

i

r

2i

+

P

i�0

a

2

i

R

2i

<1. Set

H

[

1

= spanfe

i

: i < 0g ; H

℄

1

= spanfe

i

: i � 0g ;

H

[

2

= spanf�

i

: i < 0g ; H

℄

2

= spanf�

i

: i � 0g :
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Now � restri
ted to H

℄

1

is bounded and moreover, it is 
ompa
t. Indeed, �

jH

℄

1

is

given by Cau
hy integral

�(f)(�) =

1

2�i

Z

jzj=R

f(�)d�

z � �

:

Similarly �

�1

restri
ted to H

[

2

is a 
ompa
t operator. The spa
e of the boundary

values of the solutions is the dire
t sum of the graphs

L = graph(�

1

)� graph(�

2

) ;

where

�

1

= �

jH

℄

1

: H

℄

1

! H

℄

2

; �

2

= �

�1

jH

[

2

: H

[

2

! H

[

1

:

Note, that

� The pair (L;H

[

1

�H

℄

2

) spans H

1

�H

2

as a dire
t sum,

� the proje
tion of L onto H

℄

1

�H

[

2

along H

[

1

�H

℄

2

is an isomorphism,

� L is a dire
t sum of graphs of the 
ompa
t operators �

1

= �

jH

℄

1

and �

2

= �

�1

jH

[

2

.

Now 
onsider the Cau
hy-Riemann operator D on the proje
tive line C P

1

de
om-

posed into the subsets

X

1

=fz 2 C : jzj � Rg [ f1g;

X =fz 2 C : r � jzj � Rg;

X

2

=fz 2 C : jzj � rg :

We have the spa
es of boundary values of holomorphi
 fun
tions on X

1

and X

2

H

�

1

=spanfe

i

: i � 0g = H

[

1

� he

0

i;

H

+

2

=spanf�

i

: i � 0g = H

℄

2

:

The spa
e L � H

1

�H

2

is not a graph of a bounded operator, but as in the 
ase

of Riemann-Hilbert transmission problem, we 
an write

ind(D) = Ind(L(H

�

1

); H

+

2

) ;

where L(H

�

1

) = fy 2 H

2

: 9x 2 H

1

; (x; y) 2 Lg.

The situation des
ribed in the example is quite general. Consider a manifold

X with boundary, whi
h is the sum of two 
omponents �X = M

1

t M

2

. Let

D : C

1

(X ; �) ! C

1

(X ; �) be an ellipti
 operator of the �rst order. Set H

i

=

L

2

(M

i

; �) for i = 1; 2 and let L be the 
losure in L

2

(�X ; �) = H

1

�H

2

of the spa
e

fu

j�X

: Du = 0 ; u 2 C

1

(X ; �)g. Let P

L

be the Calder�on proje
tor

P

L

: H

1

�H

2

�!!L :

Let

e

�

i

be the pull ba
k of � to T

�

M

i

nf0g. The symbol �(P

L

)

jM

i

is an endomorphism

of the bundle

e

�

i

. Let us 
hoose pseudodi�erential proje
tors P

i

a
ting on H

i

with

�(P

i

) = �(P

L

)

jM

i

. Then

P

1

� P

2

� P

L

: H

1

�H

2

! H

1

�H

2

:
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Set P

℄

1

= P

1

, P

[

2

= P

2

. These operators de�ne split Hilbert spa
es H

i

= H

[

i

�H

℄

i

(i = 1; 2). It follows that

� the pair (L;H

[

1

�H

℄

2

) is a Fredholm pair,

� the proje
tion P

℄

1

� P

[

2

from L onto H

℄

1

� H

[

2

along H

[

1

� H

℄

2

is a Fredholm

operator.

It 
an be shown that, as in Example 5.1, there are 
ompa
t operators:

� �

1

transforming the restri
tions on M

1

of some solutions Du = 0 to the restri
-

tions on M

2

� and �

2

a
ting in the opposite dire
tion,

su
h that up to �nite dimensional perturbation the spa
e L is equal to the sum of

their graphs.

Note, that Calder�on proje
tors are well de�ned if we restri
t our 
onsiderations

to the spa
e of smooth se
tions. That means that we work on a pre-Hilbert level.

To obtain the abstra
t Hilbert spa
e model the 
ompletion operation should be

applied. In the 
ompletion pro
ess di�erent Sobolev type metri
s have to be used

a

ording to the Sobolev tra
e type imbedding theorems. It requires 
aution and

involves some additional te
hni
alities, whi
h have been skipped here. For details

see [8℄. The remarks above 
an be 
learly seen in our basi
 
obordism example of

the Cau
hy-Riemann operator in the ring domain.

We want to de�ne an index of D, regardless of all the possible 
hoi
es of man-

ifolds 
losing X . It will be de�ned with respe
t to the splittings. The index

Ind(L(H

[

1

); H

℄

2

) is not stable under a 
ompa
t perturbation. If we twist L with

an authomorphism of the form 1 +K, K 2 K the index may 
hange. Instead it is

wiser to 
onsider the pair (L;H

[

1

�H

℄

2

). Its index is stable under su
h twists. It is

worth to say when the 
onsidered indi
es are equal:

Proposition 5.2. Ind(L;H

[

1

�H

℄

2

) = Ind(L(H

[

1

); H

℄

2

) provided that both following


onditions hold

� L is inje
tive on H

[

1

, i.e. if (x; y) 2 L and (x

0

; y) 2 L, x; x

0

2 H

[

1

, then x = x

0

,

� H

[

1

+ domL = H

1

, where domL = fx 2 H

1

: 9y 2 H

2

; (x; y) 2 Lg.

Consider again the 
ase of a bordism X , this time 
losed from both sides by

manifolds X

1

and X

2

. That is: there is a 
losed manifold Y with a �rst order

ellipti
 operator D and Y is de
omposed

Y = X

1

[

M

1

X [

M

2

X

2

:

By Theorem 2.1 there exist authomorphisms �

i

of H

i

almost 
ommuting with

Calder�on proje
tors, su
h that

H

[

1

= �

1

H

�

1

(D) and H

+

2

(D) = �

2

(H

℄

2

) :

Then (provided that D and D

�

have the unique extension property)

Ind(D) = Ind(L;H

�

1

�H

+

2

) = e�(�

1

) + Ind(L;H

[

1

�H

℄

2

) + e�(�

2

) :

We see that L plays a role of the twist �

i

: H

i

! H

i

, but here L allows us

to 
ouple ,,the lower half" of H

1

with ,,the upper half" of H

2

. We 
an treat
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it as a morphism

1

from H

1

to H

2

. Note, that H

1

and H

2

are not 
anoni
ally

identi�ed. Indeed the manifolds M

1

and M

2

joined by the bordism X 
an be

quite di�erent. There are also two di�erent algebras C(M

1

) and C(M

2

) a
ting.

The a
tions 
ommute with the splittings up to 
ompa
t operators. The obje
t

des
ribed here is an abstra
t substitute of a geometri
 bordism.

De�nition 5.3. A restri
ted bordism H

1

L

 H

2

between split Hilbert spa
es

H

i

= H

[

i

�H

℄

i

(for i = 1; 2) is a 
losed linear subspa
e L � H

1

�H

2

, whi
h is the

image of a proje
tor P

L

� P

℄

1

� P

[

2

.

The widest 
lass of linear 
orresponden
es, whi
h allows us to de�ne the index

is the following:

De�nition 5.4. A Fredholm bordism H

1

L

 H

2

between split Hilbert spa
es is

a 
losed linear subspa
e L � H

1

�H

2

, su
h that the pair (L;H

[

1

�H

℄

2

) in H

1

�H

2

is Fredholm. The index of L is the index of this pair. It is denoted by �(L) or

�(H

[

1

jLjH

℄

2

) to expose the role of splittings.

Note, that by Proposition 2.2 the graph of an isomorphism � 2 GL(S;K) is a

Fredholm bordism and �(graph�) = e�(�).

We 
an say that the 
lass of Hilbert spa
es with involutions (splittings) and Fred-

holm bordisms H

1

�

L

H

2

form a 
ategory, whi
h may be 
onsidered as an abstra
t

fun
tional theoreti
 
ounterpart of of the 
ategory of geometri
 bordisms. Ea
h el-

lipti
 di�erential operator on any geometri
 bordism, the Calder�on proje
tors and

the 
orresponding involutions gives rise to a Fredholm bordism.

x6. Riemann surfa
es with boundary

Let us 
onsider another example whi
h is 
lassi
al, now also studied under the

name of 
onformal �eld theory. We 
onsider the Hilbert spa
e of 
omplex fun
tions

on the 
ir
le: H = L

2

(S

1

; C ). Let Y

g

be a Riemann surfa
e of genus g. Suppose we

have k+ l disjoined holomorphi
 disks D

i

(i = 1; : : : ; k), D

0

j

(j = 1; : : : ; l) 
ontained

in Y

g

. Let X be the 
omplement of the disks. We think of X as of a bordism

between k 
ir
les and l 
ir
les. Let L � H

k

�H

l

be the spa
e of boundary values of

the holomorphi
 fun
tions on X . Denote by H(�) (for � 2 Z) the spa
e H equipped

with the splitting

H

[

(�) = z

�

H

[

= spanhz

i

: i < �i ;

H

℄

(�) = z

�

H

℄

= spanhz

i

: i � �i :

For sequen
es of integers �

�

= (�

1

; : : : ; �

k

) and �

�

= (�

1

; : : : ; �

l

) we have splittings

H

1

= H

k

(�

�

) =

�

H

[

(�

1

)� � � � �H

[

(�

k

)

�

�

�

H

℄

(�

1

)� � � � �H

℄

(�

k

)

�

;

H

2

= H

l

(�

�

) =

�

H

[

(�

1

)� � � � �H

[

(�

k

)

�

�

�

H

℄

(�

1

)� � � � �H

℄

(�

k

)

�

:

We will 
ompute the index of L with respe
t to these splittings. An element of

the interse
tion L \ (H

[

1

� H

℄

2

) de�nes a meromorphi
 fun
tion on Y

g

with zeros

1

A di�erent approa
h to bordisms, based on quantum �eld theory point of view, is presented

in [28℄, Le
ture 2. Dira
 operators are of spe
ial interest.
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(resp. poles) at the 
enters of D

i

's (resp. D

0

j

's) of the order at least �

i

(resp. smaller

then �

j

). This is a se
tion of a sheaf

O

�

�

P

k

i=1

�

i

d

i

+

P

l

j=1

(�

j

� 1)d

0

j

�

:

Here d

i

and d

0

j

are the 
enters of the disks. The index is equal to the Euler 
har-

a
teristi
 of Y with 
oeÆ
ients in this sheaf, that is

1� g �

P

k

i=1

�

i

+

P

l

j=1

�

j

� l :

In parti
ular, if we want to 
ompute the index of the Cau
hy-Riemann operator

on Y , then we set �

i

= 0, �

j

= 1. These splittings agree with the spa
es of

boundary values of solutions on the disks: the index is 1� g. Again we 
an write

Ind(L;H

[

1

� H

℄

2

) = Ind(L(H

[

1

); H

℄

2

). This number is denoted by �(H

[

1

jLjH

℄

2

) a
-


ording to De�nition 5.4.

Note, that the bordisms, as well as 
orresponden
es 
an be 
omposed. We 
on-

sider the 
omposition with the splittings 
oin
iding. If we deal only with 
onne
ted

surfa
es then

�(L

1

Æ L

2

) = �(L

1

) + �(L

2

) :

If we admit dis
onne
ted bordism, then it may happen, that a 
losed 
omponent

is 
reated while sewing the bordisms. The defe
t � = �(L

1

) + �(L

2

)� �(L

1

Æ L

2

)

equals to the index on this 
omponent. This remark generalizes to an arbitrary

ellipti
 di�erential operator D of the �rst order. In 
onsequen
e a de
omposition

of a 
losed manifold

X = ; �

X

0

M

1

�

X

1

� � � �

X

n�1

M

n

�

X

n

;

gives rise to a sequen
e of restri
ted bordisms

0

L

0

 H

1

L

1

 : : :

L

n�1

 H

n

L

n

 0 :

Theorem 6.1. [8℄ Suppose D and D

�

have the unique extension property. Fix

splittings S

i

of H

i

. Then the global index of D is equal to the sum of partial indi
es:

indD =

n

X

i=0

�(H

[

i

jL

i

jH

℄

i+1

) :

We refer to [8℄ for further dis
ussion of `lo
al to global' formulas.
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