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Abstra
t. We 
onsider a meromorphi
 form with a �rst order pole along a hyper-

surfa
eK. We ask when the Leray residue form determines an element in interse
tion

homology of K. We 
on
entrate on K with isolated singularities. We �nd that the

mixed Hodge stru
ture on vanishing 
y
les plays a de
isive role. We give various


onditions on the singularities of K whi
h guaranties that residues lie in interse
tion

homology. For dimK > 1 all simple singularities satisfy these 
onditions.
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0. Introdu
tion

Let M be a 
omplex manifold of dimension n+1 and let K be a smooth hypersur-

fa
e. Let TubK be a tubular neighbourhood of K. Let us 
onsider a 
ommutative

diagram:

H

�

(M nK)

Æ

����! H

�+1

(M;M nK) H

�+1

(TubK; TubK nK)

\[M ℄

?

?

y

�

x

?

?

H

BM

2n+1��

(K)

\[K℄

 ���� H

��1

(K) :
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In the diagram H

BM

�

denotes Borel{Moore homology, i.e. homology with 
losed

supports. All 
oeÆ
ients are in C . The map � is the Thom isomorphism, the

remaining maps in the square are also isomorphisms by Poin
ar�e duality for K and

M . The residue map

res = �

�1

Æ Æ : H

�

(M nK) �! H

��1

(K)

is de�ned to be the 
omposition of the di�erential with the inverse of the Thom

isomorphism.

Now suppose that K is singular. Then there is no tubular neighbourhood of K

nor Thom isomorphism, but we 
an still de�ne a residue morphism

res : H

�

(M nK) �! H

BM

2n+1��

(K)

res 
 = Æ
 \ [M ℄

If K was nonsingular, then this de�nition would be equivalent to the previous one

sin
e � 7! �\[K℄ is Poin
ar�e duality isomorphism and the diagram above 
ommutes.

In general there is no hope to lift the residue morphism to 
ohomology. For M =

C

n+1

the morphism res is the Alexander duality isomorphism and \[K℄ may be not

onto. Instead we ask if the residue of an element lifts to the interse
tion homology

of K. The interse
tion homology groups, de�ned by Goresky and Ma
Pherson

[GM℄, are the fun
tors that 'lie between' homology and 
ohomology; i.e. there is a

fa
torization:

H

�

(K)

\[K℄

���! H

BM

2n��

(K)

& %

IH

p

2n��

(K) :

For K with isolated singularities the interse
tion homology is just homology or


ohomology or the image of the Poin
ar�e morphism.

Let ! be a 
losed form with a �rst order pole on K. Then the residue form

Res! 
an be de�ned at the regular points of K. (We use the 
apital letter for

Res! 2 


�

K

reg

to distinguish it from res ! 2 H

BM

2n+1��

(K). Mostly we dis
uss the


ase when ! is a holomorphi
 n + 1{form:

! =

g

s

dz

0

^ � � � ^ dz

n

;

where the fun
tion s des
ribes K. The spa
e of su
h forms is denoted by O

(n+1)

M

(K).

Then the residue form is a holomorphi
 n{form:

Res! 2 O

(n)

K

reg

:

The purpose of this paper is to give few 
onditions whi
h guarantee that the residue

form de�nes an element in interse
tion homology provided that K has isolated

singularities.

The paper is organized as follows. In x1 re
all the 
onstru
tion of Leray residue

form. Next we des
ribe interse
tion homology for K with isolated singularities. For

the middle perversity m and the middle dimension n we have

IH

m

n

(K) = im

�

H

n

(K)

\[K℄

���! H

n

(K)

�

:

2



We negle
t the 
ase n = 1. The residue form determines an element in IH

m

n

(K) if

and only if it vanishes in 
ohomology when restri
ted to the link of ea
h singular

point.

In the paragraph 2 we des
ribe the topologi
al stru
ture of a neighbourhood

of a singular point. We stress the importan
e of the Milnor �bration and the

monodromy. This is also a sour
e of our examples. We re
all the forms of simple

and unimodal paraboli
 singularities.

In x3 we dis
uss the mixed Hodge stru
ture on vanishing 
y
les and the notion

of the spe
trum of an isolated singularity. Spe
trum is a set of rationals asso
iated

with a singular point. It arises from a set of possible exponents in os
illating

integrals of Arnold and Var
henko. The following theorem shows its importan
e

for our problem:

Theorem 0.1. I�f ea
h residue 
lass lifts to the interse
tion homology of K, then

the number 0 does not belong to the spe
tra of the singular points of K.

In xx4-6 and x8 we 
onsider K with quasihomogeneous singularities. T� hen the


onverse of 0.1 holds. Suppose a fun
tion s des
ribing K in lo
al 
oordinates is

quasihomogeneous of degree 1 with respe
t to weights a

0

, a

1

, : : : a

n

. Let � =

a

0

+ a

1

+ � � �+ a

n

. In x4 we formulate a 
ondition whi
h is equivalent to the one in

0.1:

Condition 0.2. For any 
hoi
e of nonnegative integers k

i

2 N [ f0g, i = 0; : : : ; n

we have � +

P

k

i

a

i

6= 1.

In the next paragraph we prove without use of the theory of os
illating integrals

that 0.3 implies the existen
e of a lift. In x6 we show that in fa
t 0.3 is a ne
essary


ondition. We dis
over an obstru
tion to lift, 'se
ond residue', whi
h does not

vanish for the forms of weight 1.

Next we start to investigate more 
on
rete method of lift. In x7 we re
all the

isomorphism of interse
tion homology and L

p

-
ohomology. Our goal is to �nd a


onelike metri
 in neighbourhoods of singular points for whi
h the residue form

would have its norm in L

p

. In x8 we prove the following:

Theorem 0.3. Let s be a polynomial in n + 1 variables. Suppose it is quasiho-

mogeneous of the weight 1 with respe
t to weights a

0

; : : : ; a

n

. Assume that 0 is the

only 
riti
al point of s. If � > 1 then there exists a 
onelike metri
 on K = fs = 0g

su
h that the norms of the residue forms Res! are in L

p

(K).

This gives a lift of residue 
lass to interse
tion homology provided that � > 1 at

ea
h singular point. Note that this 
ondition 
learly implies 0.3.

The purpose of x9 is to set our problem in a 
ontext of D-modules. Re
all

the sheaf (D-module) of the meromorphi
 parts of fun
tions with poles on K:

O

M

(�K)=O

M

= H

1

K

(O

M

). It 
ontains an unique irredu
ible submodule L(K).

The sheaf L(K) 
orresponds to interse
tion homology sheaf by Riemann-Hilbert


orresponden
e. We observe that:

Proposition 0.4. If L(K) 
ontains all the fun
tion with the �rst order pole on K

then every residue form de�nes an element in interse
tion homology.

This proposition remains true for arbitrary singularities (possibly nonisolated).

The uniqueness of the lift in the derived 
ategory of sheaves is proved in x10.
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When M is algebrai
, then its 
ohomology is equipped with a mixed Hodge

stru
ture. Paragraph 11 indi
ates that our problem is stri
tly 
onne
ted with it.

We wish to explore this dire
tion in future. W� e also do not dis
uss a relation of

our problem with problem of lifting singular forms to a resolution.

In the Appendix we give an example of P

8

singularity, for whi
h � = 1. The

se
ond residue has very interesting form: we obtain an ellipti
 integral.

I was involved in investigating multidimensional residues by Professor Bogdan

Ziemian (see [Zi℄) and I would like to thank him �rst of all. I would also like to thank

Professors G. Barthel, J-P. Brasselet, P. Jaworski, Z. Mar
iniak, K. Vilonen and H.

_

Zo la

�

dek for help and valuable 
omments. The paper [We3℄ announ
es the results

obtained here and 
ontains some examples for K with nonisolated singularities.

1. Residue forms and interse
tion homology

We re
all the Leray method of de�ning the residue form [Le℄. Let ! be a smooth


losed k{form on the 
omplement of the set

K = f(z

0

; : : : ; z

n

) 2 C

n+1

: s(z

0

; : : : ; z

n

) = 0g ;

where s is holomorphi
. Suppose that ! has a �rst order pole on K; i.e. s ! is a

global form on C

n

. At the points where ds 6= 0 the form ! 
an be written lo
ally

as

! =

ds

s

^ r

r

r + � ; (1:1)

where r

r

r and � have no pole on K. Let �

K

= K \ fds = 0g be the singular set of

K and K

reg

= K n �

K

be the set of regular points. The form

r

r

r

jK

2 


k�1

K

reg

does not depend on the presentation 1.1 and on the fun
tion s des
ribing K. It is


alled the residue form of ! and denoted by Res!. Thus it is de�ned globally for a

hypersurfa
e in a 
omplex manifold. Moreover, Res! is 
losed on K and its 
lass

in H

k�1

(K

reg

) does not depend on the representative of the 
lass [!℄ 2 H

k

(M nK).

For a smooth K the form 2�iRes ! represents the 
lass res !. It represents the

residue 
lass 2� i res !, where res ! is the 
lass de�ned in the introdu
tion by


ohomologi
al methods; [Do℄, [Le℄, [SS℄.

We are parti
ularly interested in holomorphi
 forms of degree (n + 1; 0). Let !

be su
h a form. Lo
ally it 
an be written as

! =

g

s

dz

0

^ � � � ^ dz

n

2 O

(n+1)

M

(K)

with g holomorphi
. Set s

i

=

�s

�z

i

. We have

ds =

n

X

i=0

s

i

dz

i

:

At the points where s

0

6= 0 we write

dz

0

= s

�1

0

 

ds�

n

X

i=1

s

i

dz

i

!
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and

! =

g

s s

0

 

ds�

n

X

i=1

s

i

dz

i

!

^ dz

1

^ � � � ^ dz

n

=

=

ds

s

^

g

s

0

dz

1

^ � � � ^ dz

n

:

Thus Res! =

�

g

s

0

dz

1

^ � � � ^ dz

n

�

jK

reg

2 O

(n)

K

reg

.

To see how Res! behaves in a neighbourhood of the singularities let us 
al
ulate

its norm in the metri
 
oming from the 
oordinate system:

jRes!j

K

=

�

�

�

�

ds

jdsj

^ r

r

r

�

�

�

�

=

�

�

�

�

s !

jdsj

�

�

�

�

=

jgj

jgrad sj

:

We 
on
lude that Res! has (in general) a pole at singular points of K.

The forms that 
an appear as residue forms are exa
tly the regular di�erential

forms de�ned by Kunz for arbitrary varieties; [Ku℄.

Suppose K has isolated singularities. De�ne K

Æ

to be K minus the sum of small

open balls 
entered at the singular points of K. Let j : (K

Æ

; ;) �! (K

Æ

; �K

Æ

) and

k : �K

Æ

�! K

Æ

be the in
lusions. Assume dimK = n > 1. By Poin
ar�e duality

for K

Æ

' K

reg

we have:

H

BM

n

(K) ' H

BM

n

(K

Æ

; �K

Æ

) ' H

n

(K

Æ

) ' H

n

(K

reg

)

and 2�i[Res!℄ 2 H

n

(K

reg

) again 
oin
ides with (this time) homology residue 
lass

res ! = Æ! \ [M ℄. The interse
tion homology (for the middle perversity and 
losed

supports) is in this 
ase [Bo x5.1℄:

IH

m

n

(K) = im

�

j

�

: H

BM

n

(K

Æ

) �! H

BM

n

(K

Æ

; �K

Æ

)

�

=

= im (j

�

: H

n

(K

Æ

; �K

Æ

) �! H

n

(K

Æ

)) =

= ker (k

�

: H

n

(K

Æ

) �! H

n

(�K

Æ

)) � H

n

(K

Æ

) :

The 
anoni
al morphism IH

m

n

(K) �! H

BM

n

(K) ' H

n

(K

Æ

) is just the in
lusion of

ker k

�

. It 
oin
ides with the in
lusion of the image of the Poin
ar�e duality map

PD : H

k

(K)

\[K℄

���! H

BM

2n�k

(K) :

We see that:

Proposition 1.2. If K has isolated singularities, dimK = n > 1 then IH

n

(K)


oin
ides with the set of those 
lasses [�℄ 2 H

n

(K

Æ

) for whi
h

Z

�

� = 0

for all 
y
les � in S

�

\K, where S

�

is small sphere 
entered in a singular point.

The interse
tion homology groups in the remaining dimensions are

IH

m

k

(K) '

(

H

BM

k

(K) ' H

2n�k

(K

Æ

) for k > n

H

2n�k

(K) ' H

2n�k

(K

Æ

; �K

Æ

) for k < n :

There is another des
ription of IH

m

�

(K) whi
h is 
onsidered in x7. It 
onsists of

the 
lasses whi
h 
an be represented by forms with square integrable norms (in a

suitable metri
). Our goal in x8 will be to 
he
k whether jRes!j is square integrable.

Now let us present examples.
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Example 1.3. Let s = xy and let ! =

1

s

dx ^ dy. Then ds = y dx + x dy. The

residue form is

dy

y

for x = 0 and

�dx

x

for y = 0. Let D

�

= fz 2 C : jzj < �g. We see

that

K

Æ

= (C nD

�

)� f0g [ f0g � (C nD

�

)

and Res! does not belong to ker k

�

= IH

m

1

(K) = f0g sin
e the form

dy

y

(and

�dx

x

)

is a generator when restri
ted to a 
ir
le around 0.

Sin
e one may think, that the example 1.3 is degenerate (K is not normal and

dimK = 1) let us 
onsider another one.

Example 1.4. Let s be a singularity of the type P

8

:

s(z

0

; z

1

; z

2

) = z

3

0

+ z

3

1

+ z

3

2

:

The residue 
lass is Res(

1

s

dz

0

^ dz

1

^ dz

2

) =

1

3z

2

0

dz

1

^ dz

2

for z

0

6= 0. It has no lift

to interse
tion homology; see 6.5.

2. Topology of a neighbourhood of a singular point

Let us assume that 0 2 C

n+1

is an isolated singular point of a hypersurfa
e K.

Interse
t K with a sphere of a small radius. Then the set L = S

�

\K is 
alled the

link of the singular point. Milnor [Mi℄ gave the pre
ise des
ription of the topology

of L. It is 2n� 1 dimensional manifold with nonzero homology only in dimensions

0, n� 1, n and 2n� 1. Consider the Milnor �bration

�s : s

�1

(

_

D

Æ

) \B

�

�!

_

D

Æ

;

where

_

D

Æ

is the pun
tured dis
 in C of the radius Æ whi
h is mu
h smaller then a

suÆ
iently small �. Let K

t

= �s

�1

(t) for t 2

_

D

Æ

. The boundary �K

t

= s

�1

(t) \ S

�

is homeomorphi
 to L. Let h

�

be the monodromy a
ting on the homology of the

Milnor �ber H

n

(K

t

) and let �(t) be its 
hara
teristi
 polynomial.

Theorem 2.1. [Mi, 8.5℄. Let n � 1. The link of an isolated singular point of

s : C

n+1

�! C is a rational homology sphere if and only if �(1) 6= 0, i.e. 1 is not a

eigenvalue of the monodromy. If n 6= 2 then the link is homeomorphi
 to a sphere

if and only with �(1) = �1.

We will make Theorem 2.1 more pre
ise. Denote by H

n

(K

t

)

h

�

the invariant


y
les under the a
tion of the monodromy.

Proposition 2.2. There is an isomorphism H

n

(K

t

)

h

�

' H

n

(L) for n > 1.

Proof. By the Thom isomorphism H

n

(L) ' H

n+2

(S

�

; S

�

n L) and the se
ond term

is isomorphi
 to H

n+1

(S

�

n L). The spa
e S

�

n L is homeomorphi
 to the spa
e of

the Milnor �bration restri
ted to a 
ir
le. By the Wang sequen
e we obtain the

thesis. �

Remark. When we tra
e the geometry hidden behind the maps we re
over that the

isomorphism is indu
ed by the identi�
ation L ' �K

t

and the in
lusion �K

t

� K

t

.

Milnor des
ribed a re
ipe for 
omputing the 
hara
teristi
 polynomial �(t) of a

quasihomogeneous fun
tion. We restri
t our attention to the 
ase of the simple and

the unimodal paraboli
 (simply ellipti
) singularities, [AGVI℄. All these types may

6



be represented by quasihomogeneous polynomials. Our 
hoi
e is motivated by the

fa
t that every singularity is simple (i.e. it is of the type: A

k

, D

k

, E

6

, E

7

, E

8

) or it is

adja
ent to one of the unimodal paraboli
 type (i.e. to P

8

, X

9

or J

10

). We list the

families of simple singularities and the 
orresponding 
hara
teristi
 polynomials.

The table 
ontains answers to the following questions:

a) Is the link homeomorphi
 to a sphere?

b) Is it a rational sphere?

Singularity type k n 
hara
teristi
 polynomial a) b)

A

k

: z

k+1

0

+

P

n

i=1

z

2

i

odd odd �(t

k

� t

k�1

+ � � � � 1) no no

even odd yes yes

all even t

k

+ t

k�1

+ � � �+ 1 no yes

D

k

: z

2

0

z

1

+ z

k�1

1

+

P

n

i=2

z

2

i

� 4 odd �(t� 1)(t

k�1

� (�1)t

k

) no no

� 4 even �(t + 1)(t

k�1

+ 1) no yes

E

6

: z

3

0

+ z

4

1

+

P

n

i=2

z

2

i

odd t

6

� t

5

+ t

3

� t + 1 yes yes

even t

6

+ t

5

� t

3

+ t + 1 no yes

E

7

: z

3

0

+ z

0

z

3

1

+

P

n

i=2

z

2

i

odd �(t� 1)(t

6

+ t

3

+ 1) no no

even �(t + 1)(t

6

� t

3

+ 1) no yes

E

8

: z

3

0

+ z

5

1

+

P

n

i=2

z

2

i

odd t

8

� t

7

+ t

5

� t

4

+ t

3

� t + 1 yes yes

even t

8

+ t

7

� t

5

� t

4

� t

3

+ t + 1 yes yes

The unimodal paraboli
 singularities are as follows

1

:

Singularity type n 
hara
teristi
 polynomial a) b)

P

8

: z

3

0

+ z

3

1

+ z

3

2

+ az

1

z

2

z

3

+

P

n

i=3

z

2

i

odd (t

3

+ 1)

2

(t

2

� t + 1) no yes

even (t

3

� 1)

2

(t

2

+ t + 1) no no

X

9

: z

4

0

+ z

4

1

+ az

2

2

z

2

2

+

P

n

i=2

z

2

i

odd �(t

4

� 1)

2

(t� 1) no no

even �(t

4

� 1)

2

(t+ 1) no no

J

10

: z

3

0

+ z

6

1

+ az

2

0

z

2

1

+

P

n

i=2

z

2

i

odd (t

6

� 1)(t

3

+ 1)(t� 1) no no

odd (t

6

� 1)(t

3

� 1)(t+ 1) no no

We see that the link of a singular point often happens to be a rational homology

sphere. If it is the 
ase then K = fs = 0g is a rational homology manifold and the

Poin
ar�e duality map

PD : H

k

(K)

\[K℄

���! H

BM

2n�k

(K)

is an isomorphism. Thus ea
h residue 
lass lifts to 
ohomology. For other 
ases

there it is not possible to 
onstru
t a lift of the residue morphism.

3. Spe
trum of an isolated singularity

Re
all few elements of the theory of os
illating integrals. The general referen
e to

this paragraph is [AGVII℄ where the reader 
an �nd a review of the whole theory, a

sample of proofs and pre
ise referen
es to original papers. We warn that in [AGVII℄

authors 
onsider singularities of fun
tions of n variables, thus 
iting formulas we

put n + 1 instead of n.

Suppose 0 2 C

n+1

is an isolated singular point of s. There is given a germ at 0

of a holomorphi
 (n + 1)-form � 2 O

(n+1)

C

n+1

;0

. De�ne a quotient of forms by:

(�=ds)

js

�1

(t)

= Res

�

�

s� t

�

:

1

The number a is su
h that: a

3

+ 27 6= 0 for P

8

, a

2

6= 4 for X

9

and 4a

3

+ 27 6= 0 for J

10
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Let �

t

� K

t

, t 2

_

D

Æ

be a 
ontinuous multivalued family of n{
y
les in the Milnor

�bres. The fun
tion

I

!

�

(t) =

Z

�

t

�=ds

is a holomorphi
 (multi{valued) fun
tion. By [AGVII x13.1℄ the fun
tion I

!

�

(t) 
an

be expanded in a series

I

!

�

(t) =

X

�;k

a

�;k

t

�

(log t)

k

;

where the numbers � are some greater then �1 rationals and k are natural numbers

or 0. Fix t

0

2

_

D

Æ

. We identify H

n

(K

t

0

) with the 
ontinuous families of 
y
les.

When we vary the family of 
y
les in I

!

�

(t) we obtain so 
alled geometri
 se
tion of

the 
ohomology Milnor �bre:

s(!) =

X

�;k

A

�;k

t

�

(log t)

k

;

with A

�;k

2 H

n

(K

t

0

). The smallest exponent � o

urring in the expansion of s(!)

is 
alled the order of !; it is denoted by �(!). The smallest possible order �

min

among all the forms ! is the order of dz

0

^ � � � ^ dz

n

. The number �(1 + �

min

)

is 
alled the 
omplex os
illation index of the singular point. The prin
ipal part of

s(!) is the se
tion

s

max

(!) =

X

k

A

�(!);k

t

�(!)

(log t)

k

:

We have a 
ontrol over all possible orders. For a holomorphi
 fun
tion f let

Supp

Supp

Supp(f) � N

n+1

be the support of f , i.e. the set of the multiindi
es for whi
h

the 
orresponding monomial has nonzero 
oeÆ
ient in the Tylor expansion of f .

Re
all the de�nition of the Newton polyhedron [AGVII x6.2℄:

�

�

�(f) = 
onv

0

�

[

(i

0

;:::i

n

)2Supp

Supp

Supp(f)

�

(i

0

; : : : ; i

n

) + R

n+1

+

�

1

A

� R

n+1

:

We introdu
e a valuation v whi
h is asso
iated to s:

v(f) = sup fq 2 R

+

: �

�

�(f) � q�

�

�(s)g : (3:1)

For a di�erential form ! = g dz

0

^ � � � ^ dz

n

we de�ne [AGVII, x13.1℄

v(!) = v(g z

0

: : : z

n

) :

A 
onsideration of an appropriate tori
 resolution of K leads to the following

theorem:

Theorem 3.2. [AGVII, x13.1, Th. 2℄ Suppose s has C {nondegenerate prin
ipal

part (in the sense [AGVII, x6.2℄). Then:

1. �(!) � v(!)� 1. If v(!) � 1 then an equality holds,

2. the 
omplex os
illation index is not greater then �v(dz

0

^ � � � ^ dz

n

). If v(dz

0

^

� � � ^ dz

n

) � 1 then an equality holds.

The 
ohomology group H

n

(K

t

0

) is generated by the prin
ipal parts s

max

(!).

Following [AGII, x13.2℄ we introdu
e a Hodge �ltration

0 = F

n+1

� F

n

� � � � � H

n

(K

t

0

)

8



F

k

= span f[s

max

(!)℄ 2 H

n

(K

t

0

) : �(!) � n� kg :

We de
ompose the 
ohomology of K

t

0

:

H

n

(K

t

0

) =

M

��eigenvalue

H

�

:

into the eigenspa
es of the a
tion of the semisimple part of the monodromy. Denote

by N the logarithm of the unipotent part of the monodromy. It de�nes a weight

�ltration in the following way: suppose �

1

, �

2

, : : : �

�

�

is a Jordan basis of H

�

with

respe
t to N . Assume that the �rst blo
k is of dimension d. Then N(�

i

) = �

i�1

for i � d. The weight �ltration

0 = W

�1;�

�W

0;�

� � � � �W

2n;�

= H

�

is de�ned blo
k by blo
k; e.g. the �rst one is

W

n�1�d+2i;�

\ spanh�

1

; �

2

; : : : �

d

i = spanh�

1

; �

2

; : : : �

i

i for � 6= 1 ;

W

n�d+2i;�

\ spanh�

1

; �

2

; : : : �

d

i = spanh�

1

; �

2

; : : : �

i

i for � = 1 :

The resulting pair of �ltrations on H

n

(K

t

0

) forms a mixed Hodge stru
ture. The

spe
trum of the singular point is a set of rational numbers. They are of the form:

�

�(!) 2 Q : [s

max

(!)℄ 2 Gr

k

F Gr

l

W (H

�

) ; [s

max

(!)℄ 6= 0

	

:

Ea
h spe
tral number � 
oming from Gr

k

F Gr

l

W (H

�

) satisfy: exp(2�i�) = � and

� 2 (n� k � 1; n� k℄.

An another de�nition of the spe
trum was given by Steenbrink via another Hodge

�ltration, see [St1℄, [St2℄.

The following is a 
onsequen
e of the fa
t that W

�

and F

�

form a mixed Hodge

stru
ture on H

n

(K

t

0

).

Proposition 3.3. Let �

1

, �

2

, : : : �

d

2 H

n

(K

t

0

) be a 
hain of elements satisfying

N(�

i

) = �

i�1

for 1 < i � d. Assume that �

d

2 F

m�d

n F

m�d+1

for some m 2 N.

Then �

i

2 F

m�i

n F

m�i+1

for i � d.

Proof. The logarithm of the unipotent part of the monodromy

N : Gr

i

W (H

�

) �! Gr

i�2

W (H

�

)

shifts the Hodge �ltration: N(F

k

Gr

i

W (H

�

)) � F

k�1

Gr

i�2

W (H

�

), [AGV, 13.2

Lemma 12℄. Proposition 3.3 follows from [AGVII, 13.2 Cor. 3℄ whi
h says that N

indu
es isomorphisms for k, l 2 Z:

N

l

: F

k

Gr

n+l

W (H

�

)

'

�! F

k�l

Gr

n�l

W (H

�

) ; if � 6= 1 ;

N

l

: F

k

Gr

n+1+l

W (H

�

)

'

�! F

k�l

Gr

n+1�l

W (H

�

) ; if � = 1 : �

Sin
e F

n

is the smallest term of the Hodge �ltration, then the forms of the order

not greater then 0 
ontribute to the spe
trum. Combining it with 3.2 we obtain:

9



Theorem 3.4. Suppose s has C {nondegenerate prin
ipal part. The set of spe
tral

numbers whi
h are nonpositive 
oin
ides with the numbers v(!) � 1 for v(!) � 1.

In parti
ular these numbers 
an be read from the Newton polyhedron.

Now we will prove a theorem whi
h is the purpose of this paragraph.

Theorem 3.5. If ea
h residue 
lass lifts to the interse
tion homology of K, then

the number 0 does not belong to the spe
tra of the singular points of K.

From the topologi
al point of view this theorem is partially justi�ed by the fa
t

that the spe
tral numbers multiplied by 2�i are logarithms of the eigenvalues of the

monodromy. Thus 0 must not be in the spe
trum if 1 is not an eigenvalue of the

monodromy. The se
ond 
ondition is equivalent for K to be a rational homology

manifold; see Theorem 2.1.

Proof. S�uppose that zero belongs to the spe
trum of a point x. We will show, that

there exists a form ! de�ned in a neighbourhood of x, su
h that Res! restri
ted a

link of x does not vanish in 
ohomology. By proposition 3.5 this implies that [Res!℄

does not lift to interse
tion homology. We will �nd a 
y
le � � L = K\S

�

(x) (where

S

�

(x) is a small sphere around x), su
h that the integrale of the residue form on

� does not vanish. From the assumption about the spe
trum of x it follows that

there exists nontrivial � 2 F

n

\H

�=1

. Sin
e F

n

is the smallest term of the Hodge

�ltration, then by 3.3 the 
lass � is not 
ontained in the image of N . We 
on
lude

that there exists an h

�

{invariant 
y
le �

t

0

, su
h that h�; �

t

0

i = a 6= 0. By 2.2 we

know that �

t

0

originates from a 
y
le � = �

0

� L, i.e. one 
an in
lude � in a


ontinuous h

�

{invariant family of 
y
les �

t

� �K

t

with �

0

= �. By the 
hoi
e made

� = s

max

(!) with �(!) = 0. Then the expansion of

I

!

�

(t) =

Z

�

t

s!=ds

begins with a

0

= a. Thus

R

�

Res! = a 6= 0. �

Remark. From the proof of 3.5 we see that (without any assumption on the spe
-

trum) if �(!) > 0 then ! lifts to interse
tion homology.

The 
ondition on spe
trum in Theorem 3.5 
an easily be read from the Newton

polygon of s by Theorem 3.4. To 
he
k that 0 is not a spe
tral number for the

most of the 
lassi�ed singularities see the table [AGVII, x13.3℄. This shows that

in general a residue 
lass lies in interse
tion homology. For the singularities of the

previous paragraph we have:

1) for n � 2 the spe
trum does not 
ontain 0 for the simple singularities;

2) for n � 3 the spe
trum does not 
ontain 0 for the unimodal paraboli
 singulari-

ties;

3) if n = 2 then the spe
trum 
ontains 0 for the unimodal paraboli
 singularities.

All these fun
tions are quasihomogeneous. In xx4{8 we treat this kind of singu-

larities in details.

4. Valuation and quasihomogeneous fun
tions

W� e will prove the 
onverse of Theorem 3.5 for quasihomogeneous singularities.
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Let C [z

0

; : : : ; z

n

℄ be the ring of the polynomials on n + 1 variables. Let a

0

, a

1

,

: : : a

n

be a sequen
e of positive rational numbers 
alled weights. De�ne a valuation

(weight of a polynomial) v : C [z

0

; : : : ; z

n

℄ �! Q by:

1) v(z

i

) = a

i

;

2) v(f g) = v(f) + v(g);

3) if f =

P

f

i

, f

i

monomial, then v(f) = minf v(f

i

) g

If f is a sum of monomials of the same weight, then we say that f is quasiho-

mogeneous (with respe
t to the valuation v). We extend the valuation for quasiho-

mogeneous forms of the type:

! =

f

g

dz

i

1

^ � � � ^ dz

i

k

setting v(!) = v(f)� v(g) + a

i

1

+ � � �+ a

i

k

.

Suppose that at ea
h singular point the hypersurfa
e K is given by an equation

s = 0 with s quasihomogeneous (in some 
oordinates and valuation). We res
ale

weights to obtain v(s) = 1. The obtained valuation is the one des
ribed in 3.1. For

ea
h singular point we de�ne a number

� = v(dz

0

^ � � � ^ dz

n

) =

n

X

i=0

a

i

:

By 3.2 the number � � 1 is the 
omplex os
illation index. We de�ne a 
ondition,

whi
h is equivalent to the 
ondition on spe
trum from Theorem 3.5.

Condition 4.1. For any 
hoi
e of nonnegative integers k

i

2 N [ f0g, i = 0; : : : ; n

we have � +

P

k

i

a

i

6= 1.

Of 
ourse the Condition 4.1 is satis�ed if � > 1.

Example 4.2. Let s = z

3

0

+ z

3

1

+ z

4

2

. Then a

0

= a

1

=

1

3

and a

2

=

1

4

. Then � =

11

12

but the Condition 4.1 is still satis�ed.

5. A simple 
riterion of lift

We will prove the following:

Theorem 5.1. Suppose that K of dimension n has isolated singularities given by

quasihomogeneous equations in some 
oordinates. Let ! 2 O

(n+1)

M

(K) be a mero-

morphi
 form with a �rst order pole on K. Suppose ! has no 
omponent of the

weight 0 at ea
h singular point. Then the residue 
lass of ! lifts to interse
tion

homology of K.

The Theorem 5.1 is related to Theorem 3.5. We prove the Theorem 5.1 using

few well known fa
ts from the interse
tion homology theory. The reader is advised

to 
ompare the following proof with an example des
ribed in the Appendix.

Proof. By 1.2 one should show that [Res!℄ 2 ker (H

n

(K

Æ

) �! H

n

(�K

Æ

)), that is

for ea
h link L in K we have [Res!

jL

℄ = 0 2 H

n

(L). The 
al
ulation is lo
al, so

from now on we assume that K is given by a quasihomogeneous equation s = 0.

The form ! 
an be written as ! =

g

s

dz

0

^� � �^dz

n

. Now suppose that g is quasi-

homogeneous (otherwise we de
ompose g into a quasihomogeneous 
omponents).

11



By the assumption v(g) + � 6= 1. We have a formula for Res! at the points where

s

0

=

�s

�z

0

6= 0 (see x1):

! =

ds

s

^

g

s

0

dz

1

^ � � � ^ dz

n

;

then

r

r

r =

g

s

0

dz

1

^ � � � ^ dz

n

and Res! = r

r

r

jK

at the points where s

0

6= 0. We have

v(!) = v(ds)� v(s) + v(r

r

r) = v(r

r

r) :

Then

v(r

r

r) =v(g)� v(s) + v(dz

0

) + � � �+ v(dz

n

) =

=v(g)� 1 + a

0

+ � � �+ a

n

= v(g)� 1 + � :

Let l be a natural number su
h that l a

i

2 N for i = 0; : : : ; n. We 
onstru
t a

bran
hed 
overing of C

n+1

:

� : C

n+1

�! C

n+1

ẑ

0

; : : : ; ẑ

n

7�! ẑ

la

0

0

; : : : ; ẑ

la

n

n

:

Let v̂ be a standard valuation: v̂(f) = deg f for homogeneous f . The map � has

the property:

v̂(�

�

�) = l v(�)

for any quasihomogeneous form �. We have

v̂(�

�

r

r

r) = l(v(g)� 1 + �) :

If we write �

�

r

r

r = q dẑ

1

^ � � � ^ dẑ

n

then q is homogeneous fun
tion of degree

v̂(q) = l(v(g)� 1 + �)� n :

The mapping � is a bran
hed 
overing of degree l �. It indu
es a map of links:

�

� :

b

L �! L ;

where

b

L = �

�1

(K) \ S

�

. Unfortunately

b

L may be singular; see Example 5.2. We

have H

�

(K nf0g) ' H

�

(L) and similarly we have IH

m

�

(�

�1

(K)nf0g) ' IH

m

��1

(

b

L)

sin
e �

�1

(K) n f0g =

b

L � R

+

. To show that [Res!℄ = 0 2 H

n

(L) we will prove

that [

�

�

�

Res!

jL

℄ = 0 2 IH

m

n�1

(

b

L). It is enough sin
e the map

H

n

(L)

�

�

�

��! H

n

(

b

L) �! IH

m

n�1

(

b

L)

is a monomorphism with a splitting

IH

m

n�1

(

b

L) �! H

n�1

(

b

L)

�

�

�

��! H

n�1

(L)

'

�! H

n

(L) :

The last map above is the inverse of the Poin
ar�e duality isomorphism multiplied

by (l �)

�1

. The maps to and from interse
tion homology are the 
anoni
al on
e.
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To show vanishing in interse
tion homology we use a Gysin sequen
e of the

�bration

S

1

,!

b

L

p

�!

b

L=S

1


oming from the a
tion of C

�

on �

�1

(K):

�! IH

m

n

(

b

L=S

1

)

\e

�! IH

m

n�2

(

b

L=S

1

)

p

�

�! IH

m

n�1

(

b

L)

p

�

�! IH

m

n�1

(

b

L=S

1

) �! :

The map \e is the multipli
ation by the Euler 
lass of the �bration; it is an iso-

morphism by hard Lefs
hetz sin
e dim

C

b

L=S

1

= n� 1; [BBD℄. We view IH

m

n�1

(

b

L)

as the L

2

{
ohomology of the nonsingular part of

b

L:

IH

m

n�1

(

b

L) = H

n

(2)

(

b

L n �

b

L

) =: H

n

(2)

(

b

L)

for suitably 
hosen metri
s on

b

L n �

b

L

and (

b

L n �

b

L

)=S

1

; see [Ch℄, [We1℄. Then the

sequen
e has a form:

�! H

n�2

(2)

(

b

L=S

1

)

\e

�! H

n

(2)

(

b

L=S

1

)

p

�

�! H

n

(2)

(

b

L)

p

�

�! H

n�1

(2)

(

b

L=S

1

) �! :

The map p

�

is just the integration along the �bers of p. Let us 
al
ulate the integral

in the trivialization of the bundle C

n+1

n f0g

p

�! P

n

over U

0

= fẑ

0

6= 0g � P

n

:

C

�

� U

0

�! p

�1

(U

0

) ;

u

0

; u

1

; : : : ; u

n

7�! u

0

; u

0

u

1

; : : : ; u

0

u

n

:

We write �

�

r

r

r in u{
oordinates:

�

�

r

r

r = q(ẑ

0

; : : : ; ẑ

n

)dẑ

1

^ � � � ^ dẑ

n

=

= u

l(v(g)�1+�)�n

0

�q(u

1

; : : : ; u

n

)(u

1

du

0

+ u

0

du

1

) ^ � � � ^ (u

n

du

0

+ u

0

du

n

) =

= u

l(v(g)�1+�)�1

0

�q(u

1

; : : : ; u

n

)du

0

n

X

i=1

(�1)

i+1

u

i

du

1

^ � � �

i

_ � � � ^ du

n

+

+ u

0

du

1

^ � � � ^ du

n

=

= u

l(v(g)�1+�)�1

0

du

0

^ r

r

r

2

+ � ;

where r

r

r

2

and � do not 
ontain du

0

and r

r

r

2

does not depend on u

0

. Then

p

�

�

�

r

r

r(u

1

; u

2

) =

 

Z

ju

0

j

2

(1+ju

1

j

2

+ju

2

j

2

)=1

u

l(v(g)�1+�)�1

0

du

0

!

r

r

r

2

:

The integral 
an be nonzero only if v(g)+� = 1. This is impossible by the assump-

tion. Thus p

�

�

�

(Res!

jL

) = 0, so the residue lifts to interse
tion homology. �

Example 5.2. Consider the polynomial

s(x; y; z) = (x + z

2

)

2

+ y

2

� z

4

:
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It has an isolated singularity of the type A

3

. It is quasihomogeneous with weights

v(x) = v(y) =

1

2

and v(z) =

1

4

. The polynomial �

�

(s) is:

�

�

(s) = (x

2

+ z

2

)

2

+ y

4

� z

4

= x

4

+ 2x

2

z

2

+ y

4

:

Zero is not an isolated singularity sin
e for z = 
 = 
onst we obtain:

x

4

+ 2x

2




2

+ y

4

� x

2

+ y

4

whi
h is a singularity of the type A

3

. An example of a singularity with

b

L nonsingular

is z

k

0

0

+ � � �+ z

k

n

n

for any 
hoi
e of k

i

2 N .

The Example 5.2 shows, that in the proof of the Theorem 4.2 we have to use the

hard Lefs
hetz theorem for interse
tion homology instead of the standard one. We

have used the hard Lefs
hetz of [BBD℄ for sake of brevity. Equally well we 
ould

work on the rational homology manifold L=S

1


ontained in a weighted proje
tive

spa
e.

6. Nonvanishing of the se
ond residue

There is another way of looking at the 
al
ulation presented in the proof of the

Theorem 5.1. Let the group G = Z=la

0

� � � � � Z=la

n

a
ts on the 
oordinates of

C

n+1

by the multipli
ation by the roots of unity. Then K =

b

K=G. We blow up

b

K � C

n+1

at 0 and obtain a diagram of varieties:

℄

C

n+1

�

b

Y [ P

n

e

�

�! Y [ P(v) =

b

Y =G [ P

n

=G �

℄

C

n+1

=G


pr

?

?

y

?

?

y

?

?

y

pr

?

?

y

C

n+1

�

b

K

�

�! K =

b

K=G � C

n+1

=G = C

n+1

:

Here P(v) = P

n

=G is the weighted proje
tive spa
e. We have

b

Y \ P

n

=

b

L=S

1

and

Y \ P(v) = L=S

1

. The spa
es P(v), Y and L=S

1

are rational homology manifolds,

i.e. lo
ally they are quotients of smooth manifolds by a �nite group i.e. they are

V{manifolds as de�ned by Steenbrink; [St1℄. From the homology point of view they


an be treated as ordinary (smooth) K�ahler manifolds.

The last lines of the proof of the Theorem 5.1. lead to a de�nition of an element

res

2

! =

�

1

2�i

Z

p

Res!

jL

�

2 IH

m

n�1

(

b

L=S

1

) :

This is an obstru
tion to lift the residue 
lass to IH

m

n

(K). We 
all it the se
ond

residue. The 
lass res

2

! is G{invariant, so it is in

IH

m

n�1

(

b

L=S

1

)

G

' IH

m

n�1

(L=S

1

) = H

n�1

(L=S

1

) :

We will show:
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Theorem 6.1. The se
ond residue of ! 2 O

(n+1)

M

(K) vanishes in H

n�1

(L=S

1

) if

and only if the 
omponent of ! of the weight 0 vanishes.

Proof. The proof of 5.1 shows that the 
omponents of ! whi
h have the weights

di�erent then 0 do not 
ontribute to res

2

!. Assume that ! =

g

s

dz

0

^ � � � ^ dz

n

has the weight 0; i.e. v(g) = 1� �. We will show the nonvanishing of res

2

!. The


onverse is obvious.

The 
lass res

2

! is represented by the G invariant form r

r

r

2

j

b

L=S

1

. Sin
e L=S

1

is

V{manifold then its 
ohomology admits Hodge de
omposition [St1, x1℄ and res

2

!

is of the (n�1; 0){type. The form r

r

r

2

is harmoni
 outside the singularities of L=S

1

,

therefore it vanishes in 
ohomology if and only if it is tautologi
ally zero. We will

show that the form (r

r

r

2

)

j

b

L=S

1

does not vanish. We blow{up

b

K � C

n+1

at 0 (see

the last diagram). We 
al
ulate the form �

�

! pulled up to

℄

C

n+1

in the 
anoni
al


oordinates (in the 0{th 
hart).

bpr

�

�

�

! = C

�

�

g

�

�

s

 

i=n

Y

i=0

ẑ

la

i

�1

i

!

dẑ

0

^ � � � ^ dẑ

n

= (6:2)

= C

u

l v(g)

0

g

�

�

g

u

l

0

g

�

�

s

u

l��n�1

0

 

i=n

Y

i=1

u

la

i

�1

i

!

u

n

0

du

0

^ � � � ^ du

n

=

= C

du

0

u

0

^

g

�

�

g

g

�

�

s

 

i=n

Y

i=1

u

la

i

�1

i

!

du

1

^ � � � ^ du

n

;

where C =

Q

i=n

i=0

la

i

: Here ep(u

1

; : : : ; u

n

) denotes p(1; u

1

; : : : ; u

n

). We see that the

form bpr

�

�

�

! has the �rst order pole on the ex
eptional divisor. The form r

r

r

2

j

b

Y\P

n

is the se
ond Leray residue; [GS℄, [Le℄. We 
an de
ompose the form bpr

�

�

�

! in a

way

bpr

�

�

�

! =

du

0

u

0

^

d

g

�

�

s

g

�

�

s

^ r

r

r

0

2

; (6:3)

where r

r

r

0

2

does not 
ontain u

0

nor du

0

. This is another expression of the se
ond

Leray residue of bpr

�

�

�

!. Thus r

r

r

0

2

j

b

Y \P

n

= r

r

r

2

j

b

Y \P

n

. The fun
tion

^

�

�

(s) des
ribes

b

Y \ P

n

in P

n

for u

0

6= 0, so to show that r

2

j

b

Y\P

n

6� 0 it suÆ
es to 
he
k that

d

^

�

�

(s) ^ r

0

2

6� 0 on

b

Y \ P

n

. By the de
ompositions (6.2) and (6.3)

u

0

^

�

�

(s) bpr

�

�

�

! = du

0

^ d

g

�

�

s ^ r

r

r

0

2

= C du

0

^

g

�

�

g

 

i=n

Y

i=1

u

la

i

�1

i

!

du

1

^ � � � ^ du

n

:

Sin
e s does not divide g, thus

g

�

�

g does not vanish on

b

Y \ P

n

. Moreover

b

Y \ P

n

is not 
ontained in any of the hyperplanes u

i

= 0. Thus d

g

�

�

s ^ r

r

r

0

2

6� 0 on

b

Y \ P

n

and hen
e r

r

r

0

2

j

b

Y \P

n

6� 0. �

As a 
orollary we obtain a result whi
h implies Theorem 3.5 and its 
onverse:

Corollary 6.4. The Condition 4.1 is ful�lled at ea
h singular point if and only if

all the residue 
lasses lift to interse
tion homology.

Proof. The numbers � +

P

k

i

a

i

� 1 are the possible weights of the forms from

O

(n+1)

C

n+1

(K). By the Condition 4.1 it 
annot be 0. Then by 6.1 the obstru
tions to

lift vanish. �
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Example 6.5. We 
ompute the obstru
tion to lift for the Example 1.4 for whi
h

(� = 1):

s(z

0

; z

1

; z

2

) = z

3

0

+ z

3

1

+ z

3

2

;

! =

1

s

dz

0

^ dz

1

^ dz

2

:

Then

b

L=S

1

= L=S

1

� P

2

. The se
ond residue (i.e. the obstru
tion to lift) is:

res

2

! =

�

1

2�i

Z

p

Res!

�

=

1

3

(u

1

du

2

� u

2

du

1

)

in the notation used above. As one 
an 
he
k by hand, the integral

Z

L=S

1

[RP

2

res

2

! 6= 0 :

I the Appendix we will 
al
ulate res

2

! for an another form of the singularity P

8

.

7. L

p

{
ohomology

To show that the residue form on the nonsingular part of K determines an

element in interse
tion homology we apply the isomorphism of L

p

-
ohomology and

interse
tion homology. It was proved by Cheeger for p = 2 and 
onje
tured by

[BGM℄ for arbitrary p > 1:

Theorem 7.1. [Ch℄, [We1℄. Let X be a pseudomanifold equipped with a Rieman-

nian metri
 on the nonsingular part. Assume that this metri
 is 
on
ordant with a


onelike stru
ture of the pseudomanifold. If 
odim �

K

� 1+

1

p�1

, then H

�

(p)

(X

reg

),

the L

p

{
ohomology of the nonsingular part, is isomorphi
 to the interse
tion ho-

mology with respe
t to the perversity whi
h is the largest perversity stri
tly smaller

then the fun
tion F (i) =

i

p

.

The perversity asso
iated with p 2 [2; 2 +

2

n�1

) is the middle perversity m.

Con
ordan
e with the 
onelike stru
ture means that ea
h singular point has a

neighbourhood whi
h is quasiisometri
 to the metri
 
one over the link, i.e. to


L

x

= L

x

� [0; 1℄=L

x

�f0g with the metri
 t

2

dx

2

+ dt

2

. The interse
tion homology

of a pseudomanifold K with isolated singularities is either H

2n��

(K) or H

BM

�

(K)

or the image of the Poin
ar�e duality map im(PD : H

2n��

(K)

\[K℄

���! H

BM

�

(K)).

The 
ase depends on the value of the perversity for 2n. For the middle dimension

we have:

Proposition 7.2. If a hypersurfa
e K with isolated singularities is equipped with

a 
onelike metri
 and n = dimK > 1 then

H

n

(p)

(K

reg

) '

8

>

>

>

>

>

<

>

>

>

>

>

:

H

BM

n

(K) for 1 +

1

2n� 1

� p < 2

imPD for 2 � p < 2 +

2

n� 1

H

n

(K) for 2 +

2

n� 1

� p :

If the dimension is one then we should take the normalization of K instead of

K.

In x8 we 
onstru
t a suitable 
onelike metri
 and estimate the norm of a residue

form for every p > 1. This way we will obtain a lifts of the residue 
lasses to

interse
tion homology for those manifolds whi
h have singularities with � > 1.
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8. Lo
al estimation

Suppose K = fs = 0g is given globally in C

n+1

. We keep the notation of x4. We

show the following:

Proposition 8.1. Let s be a quasihomogeneous polynomial in n+ 1 variables with

v(s) = 1. Assume that 0 is the only 
riti
al point of s. Then there exists a 
onelike

metri
 on K

reg

su
h that the norm of the residue form Res! is L

p

{integrable for

all ! =

g

s

dz

0

^ � � � ^ dz

n

2 O

(n+1)

M

(K) with v(!) > 0.

Proof. Assume that s

0

=

�s

�z

0

does not vanish tautologi
ally. Then at the points

where s

0

6= 0 we have

Res

�

g

s

dz

0

^ � � � ^ dz

n

�

= r

r

r

jK

=

�

g

s

0

dz

1

^ � � � ^ dz

n

�

jK

:

We 
hoose l 2 R

+

and parameterize C

n+1

by the homeomorphism:

(u

0

; : : : ; u

n

) 7�! (u

0

ju

0

j

l a

0

�1

; : : : ; u

n

ju

n

j

l a

n

�1

) :

The set �

�1

(K) is 
oni
al. We estimate the norm of the residue form in the metri


indu
ed by this parameterization. The norm j�

�

(dz

i

)j

u

is (real) homogeneous of

degree l a

i

� 1, the denominator �

�

s

0

is homogeneous of degree l(1� a

0

). Thus the

norm j�

�

r

r

rj

u

is bounded by a homogeneous fun
tion of degree

l v(g) +

n

X

i=1

(l a

i

� 1)� l(1� a

0

) = l v(g) +

n

X

i=0

l a

i

� n + l = l v(!)� n :

This estimation holds also at the points where s

0

= 0, for there is another derivative

whi
h does not vanish there. Then the integral

R

fjuj=rg\K

j�

�

r

r

rj

p

u

dz is bounded by

a homogeneous fun
tion of degree

d = p (l v(!)� n) + 2n� 1 = p l v(!) + (2� p)n� 1

If p = 2 then we see that this fun
tion is integrable. For p > 2 in order to obtain

d > �1 one should take l >

(p�2)n

p v

, where v is the smallest weight of ! whi
h is

greater then 0. �

Theorem 8.2. If K has quasihomogeneous singularities with � > 1 then the

residue form de�nes an element in L

p

{
ohomology of K for a suitable metri
.

Proof. The minimal possible weight of a form ! 2 O

(n+1)

M

(K) is � � 1. At ea
h

singular point we 
hoose l su
h that l(� � 1) > (p � 2)n. Then ea
h residue form

is L

p

{integrable with respe
t to the 
onelike metri
 
onstru
ted in the proof of the

Proposition 8.1. Hen
e it de�nes an element in L

p

{
ohomology. �

Observation 8.3. The 
ondition � > 1 is ful�lled if the matrix of the se
ond

derivatives of s is of the rank at least 2 and n > 1.

Proof. The polynomial s has either a term z

i

z

j

or z

2

i

+ z

2

j

so a

i

+ a

j

= 1 and the

remaining summands in � are nonzero. �
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Remarks. In the proof of Proposition 8.1 we 
an use the fun
tion e

�

a

i

jz

i

j

as well as

jz

i

j

l a

i

(l large). We obtain then a metri
 whi
h is good for all p > 1 at on
e. As a

result we get the same 
ondition for weights. Pra
ti
ally the theorem shows that we


an integrate residue forms over 
hains whi
h are regular enough i.e. whi
h enter

singular points along the 
one lines. Thus the residue form de�nes a fun
tional on

the 
lass of regular 
hains.

Below we list the singularities of x2 with 
omputed weights and the numbers �.

Type weights �

A

k

1

k+1

;

1

2

;

1

2

; : : :

n

2

+

1

k+1

D

k

k�2

2k�2

;

1

k�1

;

1

2

;

1

2

; : : :

n

2

+

1

2(k�1)

E

6

1

3

;

1

4

;

1

2

;

1

2

; : : :

n

2

+

1

12

E

7

1

3

;

2

9

;

1

2

;

1

2

; : : :

n

2

+

1

18

E

8

1

3

;

1

5

;

1

2

;

1

2

; : : :

n

2

+

1

30

P

8

1

3

;

1

3

;

1

3

;

1

2

;

1

2

; : : :

n

2

X

9

1

4

;

1

4

;

1

2

;

1

2

; : : :

n

2

J

10

1

3

;

1

6

;

1

2

;

1

2

; : : :

n

2

We see that for all simple singularities we have � > 1 provided n � 2. For

unimodal paraboli
 singularities one should take n � 3. If n = 2 then by 6.1 the

residue of

1

s

dz

0

^ � � � ^ dz

n

does not lift to interse
tion homology. The 
ase P

8

is

des
ribed in the Appendix (see also the Example 6.5).

9. Residues and D-module L(K)

The question of possibility of a lift of the residue 
lass to interse
tion homology


an be translated to the language of D-modules. Fix some notation: there are the

following sheaves on M :

O

M

- the sheaf of holomorphi
 fun
tions,

O

M

(K) - the sheaf of meromorphi
 fun
tions with the �rst order pole on K,

O

M

(�K) - the sheaf of meromorphi
 fun
tions with a pole on K of any order,

O

(k)

M

- the sheaf of holomorphi
 forms of the type (k,0),

O

(k)

M

(K) - the sheaf of meromorphi
 forms of the type (k,0) with the �rst order

pole on K,




k

M

- the sheaf of the 
omplex valued C

1

k-forms.

Consider the D module of meromorphi
 parts of fun
tions with poles on K:

O

M

(�K)=O

M

= H

1

K

(O

m

) :

The de Rham fun
tor a
ting from the 
ategory of regular holonomi
 D-modules to

perverse sheaves transforms O

M

(�K)=O

M

to the 
omplex of meromorphi
 forms

modulo holomorphi
 forms (see e.g. [Bj, 1.2.17℄):

DR(O

M

(�K)=O

M

) = (O

M

(�K)=O

M

)


O

M

O

(�)

M

= O

(�)

M

(�K)=O

(�)

M

:

In the derived 
ategory it is isomorphi
 to the 
omplex of semimeromorphi
 forms

modulo C

1

-forms:

(O

M

(�K)


O

M




�

M

) =


�

M

:

The module O

M

(�K)=O

M


ontains an unique simple submodule L(K) whi
h is


onstant of rank 1 on K

reg

, [Bj, 5.5.14℄. De Rham fun
tor transforms L(K) to
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interse
tion homology 
omplex IC

�

m

(K) with a shift of degrees. (Interse
tion ho-

mology 
omplex is 
onsidered as a sheaf on M supported by K.) We obtain:

Observation 9.1. Suppose O

M

(K)=O

M

� L(K) then every 
losed form

! 2 O

M

(K)


O

M




k+1

M

de�nes an element in

H

k+1

(M ;DRL(K)) = IH

2n�k

(K) :

For isolated singularities Vilonen [Vi℄ gives a des
ription of L(K) :

Theorem 9.2. Let K be a hypersurfa
e with an isolated singularity x. Then h 2

L(K) � O

M

(�K)=O

M

if and only if

Z

�

h! = 0

for all � 2 H

n+1

(B

�

nB

�

\K) and all ! 2 O

(n+1)

M

, where B

�

is a small ball 
entered

at x.

Let ! =

g

s

dz

0

^ � � � ^ dz

n

2 O

(n+1)

M

(K). Then the 
lass of ! belongs to the sheaf

L(K)


O

M

O

(n+1)

M

� O

(n+1)

M

(�K)=O

(n+1)

M

if and only if

Z

�

f

g

s

dz

0

^ � � � ^ dz

n

= 0 (9:3)

for all � 2 H

n+1

(B

�

nB

�

\K) and all f 2 O

M

.

We have H

n+1

(B

�

n B

�

\ K) = H

n

(S

�

\ K), where S

�

is a small sphere. The


ondition 9.3 
an be reformulated:

Z

�

Res

�

f

g

s

dz

0

^ � � � ^ dz

n

�

= 0 (9:4)

for all � 2 H

n

(S

�

\K) and all f 2 O

M

.

This 
ondition is essentially stronger than the one in the Proposition 1.2, nether-

theles we see that:

Theorem 9.5. The 
onditions:

1) gO

M

(K)=O

M

� L(K),

2) 8! 2 gO

(n+1)

M

(K) [Res!℄ 2 im(PD : H

n

(K)! H

BM

n

(K)) = IH

m

n

(K)

are equivalent.

The Theorem 3.5 gives a ne
essary 
ondition for 1) or 2) with g = 1. For quasi-

homogeneous singularities this is just the Condition 4.1 whi
h is also a suÆ
ient


ondition by 6.4.
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10. Uniqueness of the lift

Denote by i the in
lusion M nK ,!M . The sheaf of 
omplex{valued C

1

forms




�

MnK

is a soft resolution of the 
onstant sheaf C

MnK

. Thus Ri

�

C

MnK

= i

�




�

MnK

.

The in
lusion i indu
es a distinguished triangle.

C

M

�! Ri

�

C

MnK

= i

�




�

MnK

:

+1

- .

R�

K

C

M

By taking the 
ohomology we get the long exa
t sequen
e of the pair (M;M nK).

The stalk of R�

K

C

M

is:

H

j

x

(R�

K

C

M

) ' H

j

(B

x

; B

x

nK)

\[B

x

℄

 ���

'

H

BM

2n+2�j

(K \ B

x

) ;

where B

x

is a small ball around x. Moreover, the whole sheaf R�

K

C

M

is isomorphi


(with a shift of degrees) to the dualizing sheaf:

R�

K

C

M

[2n+ 2℄ ' D

K

:

We obtain the residue morphism (Grothendie
k residue)

res : i

�




�

MnK

[2n + 1℄ = Ri

�

C

MnK

[2n + 1℄

+1

��! R�

K

C

M

[2n+ 2℄ ' D

K

whi
h is an isomorphism on the 
ohomology sheaves for j 6= �(2n + 1)

H

j

x

(i

�




�

MnK

[2n+ 1℄)

res

���������������������! H

j

x

(D

K

)



















H

2n+1+j

(B

x

nK)

Æ

����! H

2n+2+j

(B

x

; B

x

nK)

\[B

x

℄

 ����

'

H

BM

�j

(B

x

\K) :

In x8 we have 
onstru
ted a 
onelike metri
, for whi
h (under the assumption

� > 1) Leray residue forms have p{integrable norms:

Res

�

O

(n+1)

M

(K)

�

� L

n

(p)

(K) � 


n

K

reg

:

The sheaf of L

p

{
ohomology L

�

(p)

(K) is isomorphi
 to an appropriate interse
tion

homology sheaf [We1℄. This way we have 
onstru
ted morphisms of sheaves:

O

(n+1)

M

(K)[n℄ �! L

�

(2)

(K)[2n℄ ' IC

�

m

(K)

and

O

(n+1)

M

(K)[n℄ �! L

�

(p)

(K)[2n℄ ' IC

�

0

(K)

for p > 2 +

2

n�1

. We use the 
onvention that the sheaf IC

�

m

(K) is 
on
entrated in

negative degrees. We have des
ribed other 
onditions whi
h allow to lift the sheaf

morphism O

(n+1)

M

(K)[n℄ ! D

K

to O

(n+1)

M

(K)[n℄ ! IC

�

0

(K). These are Condition

4.1 for �quasihomogeneous singularities or an abstra
t 
ondition 9.5 (for g = 1) for

arbitrary singularities. We also have a ne
essary 
ondition from 3.5. A question
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arises: is this lift unique? To be pre
ise, let us 
onsider the sequen
e of the 
anoni
al

morphisms and the obstru
tion sheaves [GM, x4.5℄:

C

K

[2n℄ ' IC

�

0

(K) �! IC

�

m

(K) �! IC

�

t

(K) ' D

�

K

:

+1

- .

+1

- .

S

1

S

2

The triangles are distinguished in the derived 
ategory. The isomorphisms in the

diagram follow from the fa
t that a hypersurfa
e with isolated singularities is normal

for n > 1 (H

0

(L) = C ). We regard these sheaves as sheaves on M supported by K.

The 
ohomology of the links is nonzero only in dimensions 0, n� 1, n and 2n� 1,

so for arbitrary perversity the sheaf IC

�

p

(K) is isomorphi
 to:

1) C

K

[2n℄ if p(2n) < n� 1,

2) IC

�

m

(K) if p(2n) = n� 1,

3) D

K

if p(2n) > n� 1.

The obstru
tion sheaves S

1

and S

2

are supported by the singular points and

H

�n�1

x

(S

1

) = IH

m

n+1

(
L

x

) = H

n

(L

x

) and H

i

x

(S

1

) = 0 for i 6= �(n + 1);

H

�n

x

(S

2

) = IH

t

n

(
L

x

) = H

n�1

(L

x

) and H

i

x

(S

2

) = 0 for i 6= �n :

Let F = O

(n+1)

M

(K). Applying the fun
tor RHom(F [n℄;�) to the diagram above

we obtain distinguished triangles and long exa
t sequen
es. Repla
ing R

0

Hom by

Hom

D

| homomorphisms in the derived 
ategory we have:

M

x2�

K

Hom(F

x

; H

n

(L

x

)) �! Hom

D

(F [n℄; IC

�

0

(K))

epi

��! Hom

D

(F [n℄; IC

�

m

(K))

Hom

D

(F [n℄; IC

�

m

(K))

mono

��!Hom

D

(F [n℄; IC

�

t

(K)) �!

M

x2�

K

Hom(F

x

; H

n�1

(L

x

))

This way we see that:

Proposition 10.1. A lift of the residue morphism to O

(n+1)

(K)[n℄ �! IC

�

m

(K)

is unique in the derived 
ategory. If su
h a lift exists then there exists a lift to

C

K

[2n℄, whi
h is not unique unless K is a rational homology manifold.

The Proposition 10.1. is not a surprise sin
e on the 
ohomology level we have

IH

m

n

(K) = im

�

PD : H

n

(K) �! H

BM

n

(K)

�

for n > 1. It seems that the lift to IC

�

0

(K) ' L

�

(p)

(K)[2n℄ (p large) obtained in x8

essentially depends on the 
hoi
e of a metri
. We remind that a metri
 depends on

the 
hoi
e of 
oordinates in whi
h the singularity is quasihomogeneous. The metri


was determined by the weights.

Example 10.2. Consider the polynomial s(x; y; z; t) = xy + y

100

+ z

2

+ t

2

. It is

quasihomogeneous with weights

99

100

,

1

100

,

1

2

and

1

2

. This is a Morse singularity (i.e.

of type A

1

), and one 
an 
hange 
oordinates so that s(x

0

; y

0

) = x

0

2

+ y

0

2

+ z

2

+ t

2

.

Then all weights are

1

2

.
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11. Lift and mixed Hodge stru
ture

Suppose that M is algebrai
. The problem of lift is stri
tly 
onne
ted with

the mixed Hodge stru
ture on M n K. Consider the Deligne weight �ltration on

H

k

(M nK), [De℄, [GS℄:

0 = W

k�1

H

k

(M nK) �W

k

H

k

(M nK) � � � � �W

2k

H

k

(M nK) = H

k

(M nK) :

Suppose M is 
ontained in a 
omplete smooth manifold M . A 
lass 
 2 H

k

(M nK)

belongs to W

k

H

k

(M nK) if and only if it 
omes from H

k

(M). We will prove the

following:

Proposition 11.1. Suppose that a 
ohomology 
lass 
 belongs to W

k+1

H

k

(M nK).

Then the homologi
al residue res 
 2 H

2n+1�k

(K) 
an be lifted to IH

m

2n+1�k

(K).

Remark. Of 
ourse this is not ne
essary 
ondition for non
omplete M . The beha-

vior of 
 at the in�nity may 
ause that it does not belong to W

k+1

H

k

(M n K).

Nevertheless for 
omplete M the 
onverse of 11.1 is not 
lear.

Proof. Consider a 
ase when M is a 
omplete manifold and K =

S

i2I

D

i

is a sum

of smooth divisors with normal 
rossings. Belonging to W

k+1

H

k

(M n K) means

that 
 is represented by a form

! 2 


k�1

M

^ 


1

(loghKi) ;

see e.g. [GS x5℄. Then

Res! 2

M

i2I




k�1

D

i

and

[Res!℄ 2

M

i2I

H

k�1

(D

i

) ' IH

m

2n+1�k

(K) :

The Proposition 11.1 remains true for an arbitrary singular variety. To prove this


omplete M, then take a resolution � :

f

M �! M of K and added boundary. We

obtain

e

K �

f

M with

f

M n

e

K 'M nK and

e

K is a sum of smooth 
omponents with

normal 
rossings. If 
 2W

k+1

H

k

(M nK) then res 
 
an be lifted to IH

p

2n+1�k

(

e

K).

We 
an pull it down to IH

m

2n+1�k

(K) by a map � whi
h is 
onstru
ted in [B

2

FGK℄

(see also [We2℄) in a way that the following diagram is 
ommutative:

H

k

(

f

M n

e

K)

Æ

�! H

k+1

(

f

M;

f

M nK) ' H

2n+1�k

(

e

K)  � IH

m

2n+1�k

(

e

K)










?

?

y

�

�

?

?

y

�

�

?

?

y

�

H

k

(M nK)

Æ

�! H

k+1

(M;M nK) ' H

2n+1�k

(K)  � IH

m

2n+1�k

(K): �

Unfortunately this pro
edure uses desingularization, mixed Hodge stru
ture and

fun
toriality of interse
tion homology. Ea
h of these ingredients is rather mysterious

and hard to 
ompute. We did not follow this dire
tion. We plan to explain relation

between these 
onstru
tions in forth
oming papers. In this we have restri
ted our

attention just to the 
ase of isolated singularities.
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12. Appendix: the P

8

singularity

Consider a singularity of type the P

8

in a form

s(z

0

; z

1

; z

2

) = z

3

1

+ pz

2

0

z

1

+ qz

3

0

� z

0

z

2

2

where p and q are real numbers su
h that z

3

+ pz + q does not have double roots.

Let

! =

1

s

dz

0

^ dz

1

^ dz

2

:

Then

s

2

=

�s

�z

2

= �2z

0

z

2

and

r

r

r = �

1

2z

0

z

2

dz

0

^ dz

1

for z

0

z

2

6= 0. We will apply the method of xx5{6 to 
ompute the se
ond residue.

To 
al
ulate the 
ohomology of link L = S

5

\K we apply the Gysin exa
t sequen
e

of the �bration

S

1

,! L

p

�! L=S

1

� P

2

:

The proje
tivization L=S

1

of L is an ellipti
 
urve in the proje
tive plane P

2

, so it

is a topologi
al 2{dimensional torus. We obtain an exa
t sequen
e:

�! H

0

(L=S

1

)

[e

�! H

2

(L=S

1

)

p

�

�! H

2

(L)

p

�

�! H

1

(L=S

1

)

[e

�! H

3

(L=S

1

) = 0 ;

where the morphism p

�

is the integration along the �bers of the proje
tion p. The

bundle L

p

�! L=S

1

is the restri
tion of the tautologi
al bundle S

5

�! P

2

. Thus the

Euler 
lass of p is the restri
tion of the generator of H

2

(P

2

). Hen
e the evaluation

of the Euler 
lass he; [L=S

1

℄i = deg s = 3. Thus rationally p

�

in the Gysin sequen
e

is an isomorphism. The ne
essary and suÆ
ient 
ondition to lift is vanishing of

h

R

p

Res!

jL

i

2 H

1

(L=S

1

) as dis
ussed in x6. Let

U

0

=

�

[z

0

: z

1

: z

2

℄ 2 P

2

: z

0

6= 0

	

=

�

[1 : u

1

: u

2

℄ 2 P

2

: u

1

; u

2

2 C

	

' C

2

:

The tautologi
al bundle ~p : C

3

n f0g �! P

2

restri
ted to U

0

is trivial:

~p

�1

(U

0

) ' C

�

� C

2

(z

0

; z

1

; z

2

)�

�

z

0

;

�

z

1

z

0

;

z

2

z

0

��

(u

0

; u

0

u

1

; u

0

u

2

)� (u

0

; u

1

; u

2

)

We write r

r

r in y{
oordinates:

r

r

r = �

1

2u

2

0

u

2

du

0

^ (u

0

du

1

+ u

1

du

0

) = �

1

2u

2

0

u

2

du

0

^ u

0

du

1

= �

du

0

2u

0

^

du

1

u

2

:

We integrate it over ea
h �ber

p

�1

([1; u

1

; u

2

℄) =

�

(u

0

; u

0

u

1

; u

0

u

2

) : ju

0

j

2

(1 + ju

1

j

2

+ ju

2

j

3

) = 1

	

;
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and obtain the se
ond residue:

r

r

r

2

=

1

2�i

Z

p

r

r

r =

1

2�i

Z

p

�

�

du

0

2u

0

^

du

1

u

2

�

= �

1

2

du

1

u

2

:

We know that the form r

r

r

2

does not vanish on L=S

1

by 6.1. Nevertheless we will

integrate r

2

over a 
y
le � 
onsisting of the real points of L=S

1

� P

3

(or one of its


omponents):

Z

�

r

r

r

2

= �2

Z

1

u

1 max

du

1

2

p

u

3

1

+ pu

1

+ q

;

where u

1max

is the biggest root of the polynomial u

3

1

+ pu

1

+ q. We have obtained

an ellipti
 integral. The sign depends on the orientation of �.
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