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ABSTRACT. We consider a meromorphic form with a first order pole along a hyper-
surface K. We ask when the Leray residue form determines an element in intersection
homology of K. We concentrate on K with isolated singularities. We find that the
mixed Hodge structure on vanishing cycles plays a decisive role. We give various
conditions on the singularities of K which guaranties that residues lie in intersection
homology. For dim K > 1 all simple singularities satisfy these conditions.
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0. INTRODUCTION

Let M be a complex manifold of dimension n+1 and let K be a smooth hypersur-

face. Let Tub K be a tubular neighbourhood of K. Let us consider a commutative

diagram:
H M\ K) —>— H**'(M,M\ K) —— H**'(TubK,TubK \ K)
D[M]J, TT
niK] e
HEY _(K) H*Y(K).
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In the diagram HPM denotes Borel-Moore homology, i.e. homology with closed
supports. All coefficients are in C. The map 7 is the Thom isomorphism, the
remaining maps in the square are also isomorphisms by Poincaré duality for K and
M. The residue map

res=1tod: H*(M\ K) — H* 'K)

is defined to be the composition of the differential with the inverse of the Thom
isomorphism.

Now suppose that K is singular. Then there is no tubular neighbourhood of K
nor Thom isomorphism, but we can still define a residue morphism

res: H*(M \ K) — HLM,_ (K)

resc=dcN[M]

If K was nonsingular, then this definition would be equivalent to the previous one
since & — £N[K] is Poincaré duality isomorphism and the diagram above commutes.
In general there is no hope to lift the residue morphism to cohomology. For M =
C"*! the morphism res is the Alexander duality isomorphism and N[K] may be not
onto. Instead we ask if the residue of an element lifts to the intersection homology
of K. The intersection homology groups, defined by Goresky and MacPherson
[GM], are the functors that ’lie between’ homology and cohomology; i.e. there is a
factorization:
k) WL gBM (k)

2n—x*

N\ /
IHEY _(K).

2n—x*
For K with isolated singularities the intersection homology is just homology or
cohomology or the image of the Poincaré morphism.

Let w be a closed form with a first order pole on K. Then the residue form
Resw can be defined at the regular points of K. (We use the capital letter for
Resw € Q) to distinguish it from resw € HPM,  (K). Mostly we discuss the
case when w is a holomorphic n 4+ 1-form:

w:gdzo/\---/\dzn,
s

where the function s describes K. The space of such forms is denoted by (’)(Mn+1) (K).
Then the residue form is a holomorphic n—form:

Resw € Og?eg )

The purpose of this paper is to give few conditions which guarantee that the residue
form defines an element in intersection homology provided that K has isolated
singularities.

The paper is organized as follows. In §1 recall the construction of Leray residue
form. Next we describe intersection homology for K with isolated singularities. For
the middle perversity m and the middle dimension n we have

N[K]

TH™(K) = im <H”(K) SN Hn(K)> .
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We neglect the case n = 1. The residue form determines an element in I Hz*(K) if
and only if it vanishes in cohomology when restricted to the link of each singular
point.

In the paragraph 2 we describe the topological structure of a neighbourhood
of a singular point. We stress the importance of the Milnor fibration and the
monodromy. This is also a source of our examples. We recall the forms of simple
and unimodal parabolic singularities.

In §3 we discuss the mixed Hodge structure on vanishing cycles and the notion
of the spectrum of an isolated singularity. Spectrum is a set of rationals associated
with a singular point. It arises from a set of possible exponents in oscillating
integrals of Arnold and Varchenko. The following theorem shows its importance
for our problem:

Theorem 0.1. [f each residue class lifts to the intersection homology of K, then
the number 0 does not belong to the spectra of the singular points of K.

In §§4-6 and §8 we consider K with quasihomogeneous singularities. Then the
converse of 0.1 holds. Suppose a function s describing K in local coordinates is
quasihomogeneous of degree 1 with respect to weights ag, a1, ... an. Let K =
ap+ ay+ -+ a,. In §4 we formulate a condition which is equivalent to the one in
0.1:

Condition 0.2. For any choice of nonnegative integers k; € NU{0},i=0,...,n
we have K+ > k;a; # 1.

In the next paragraph we prove without use of the theory of oscillating integrals
that 0.3 implies the existence of a lift. In §6 we show that in fact 0.3 is a necessary
condition. We discover an obstruction to lift, ’second residue’, which does not
vanish for the forms of weight 1.

Next we start to investigate more concrete method of lift. In §7 we recall the
isomorphism of intersection homology and LP-cohomology. Our goal is to find a
conelike metric in neighbourhoods of singular points for which the residue form
would have its norm in LP. In §8 we prove the following:

Theorem 0.3. Let s be a polynomial in n + 1 variables. Suppose it is quasiho-
mogeneous of the weight 1 with respect to weights ag, ..., a,. Assume that 0 is the
only critical point of s. If k > 1 then there exists a conelike metric on K = {s = 0}
such that the norms of the residue forms Resw are in LP(K).

This gives a lift of residue class to intersection homology provided that x > 1 at
each singular point. Note that this condition clearly implies 0.3.

The purpose of §9 is to set our problem in a context of D-modules. Recall
the sheaf (D-module) of the meromorphic parts of functions with poles on K:
Om(*K)/Op = HLE(Onr). Tt contains an unique irreducible submodule £(K).
The sheaf £(K) corresponds to intersection homology sheaf by Riemann-Hilbert
correspondence. We observe that:

Proposition 0.4. If L(K) contains all the function with the first order pole on K
then every residue form defines an element in intersection homology.

This proposition remains true for arbitrary singularities (possibly nonisolated).
The uniqueness of the lift in the derived category of sheaves is proved in §10.
3



When M is algebraic, then its cohomology is equipped with a mixed Hodge
structure. Paragraph 11 indicates that our problem is strictly connected with it.
We wish to explore this direction in future. We also do not discuss a relation of
our problem with problem of lifting singular forms to a resolution.

In the Appendix we give an example of Pg singularity, for which k = 1. The
second residue has very interesting form: we obtain an elliptic integral.

I was involved in investigating multidimensional residues by Professor Bogdan
Ziemian (see [Zi]) and I would like to thank him first of all. T would also like to thank
Professors G. Barthel, J-P. Brasselet, P. Jaworski, Z. Marciniak, K. Vilonen and H.
Zotadek for help and valuable comments. The paper [We3| announces the results
obtained here and contains some examples for K with nonisolated singularities.

1. RESIDUE FORMS AND INTERSECTION HOMOLOGY

We recall the Leray method of defining the residue form [Le]. Let w be a smooth
closed k—form on the complement of the set

K:{(ZO7-..,Zn)€Cn+1 : S(ZO"",Zn):O},

where s is holomorphic. Suppose that w has a first order pole on K; i.e. sw is a
global form on C*. At the points where ds # 0 the form w can be written locally

as

ds
w=—Ar-+mn, (1.1)
s

where r and 7 have no pole on K. Let ¥ = K N {ds = 0} be the singular set of
K and K,.; = K \ £k be the set of regular points. The form

Tk € QIIC(_l

reg

does not depend on the presentation 1.1 and on the function s describing K. It is
called the residue form of w and denoted by Resw. Thus it is defined globally for a
hypersurface in a complex manifold. Moreover, Resw is closed on K and its class
in H*=1(K,.4) does not depend on the representative of the class [w] € H*(M\ K).
For a smooth K the form 27i Resw represents the class resw. It represents the
residue class 2w iresw, where resw is the class defined in the introduction by
cohomological methods; [Do], [Le], [SS].

We are particularly interested in holomorphic forms of degree (n + 1,0). Let w
be such a form. Locally it can be written as

w= %dzo/\---/\dzn € O(Mn+1)(K)

with g holomorphic. Set s; = %. We have

n

ds = Zsidzi .

1=0

At the points where sy # 0 we write

dzg = 351 (ds - Z sidzi>
i=1
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and

wzﬁ (ds—ZsidzZ) ANdzi N---Ndz, =

0 i=1
ds
= —/\idzl/\---/\dzn.
S So
_ (n)
Thus Resw = (%dzl A- A dzn> |Kyey € OKreg'
To see how Resw behaves in a neighbourhood of the singularities let us calculate

its norm in the metric coming from the coordinate system:

ds S w lg]
— AT = :
|ds| |ds| lgrad s|

We conclude that Resw has (in general) a pole at singular points of K.

The forms that can appear as residue forms are exactly the regular differential
forms defined by Kunz for arbitrary varieties; [Ku].

Suppose K has isolated singularities. Define K° to be K minus the sum of small
open balls centered at the singular points of K. Let j : (K°, () — (K°,0K°) and
k : OK° — K° be the inclusions. Assume dim K = n > 1. By Poincaré duality
for K° ~ K, .4, we have:

HPM(K) ~ HPM(K°,0K°) ~ H"(K°) ~ H"(K,q)

|Resw|x =

and 27mi[Resw] € H"(K,.4) again coincides with (this time) homology residue class
resw = dw N[M]. The intersection homology (for the middle perversity and closed
supports) is in this case [Bo §5.1]:
TH2(K) = im (j. : HPM(K°) — HPM(K°,0K°)) =

= im (j* : H"(K°,0K°) — H"(K®)) =

=ker (k*: H*(K°) — H"(0K®)) c H"(K®°).
The canonical morphism I Hpy*(K) — HBM(K) ~ H"(K®) is just the inclusion of
ker k*. It coincides with the inclusion of the image of the Poincaré duality map

PD : H*(K) "B gBM (k.

We see that:

Proposition 1.2. If K has isolated singularities, dim K = n > 1 then ITH,(K)
coincides with the set of those classes [n] € H™(K°®) for which

-
¢

for all cycles ¢ in Sc N K, where S¢ is small sphere centered in a singular point.
The intersection homology groups in the remaining dimensions are
HPM(K) ~ H> 7k (K°) for k>n

TH2(K) ~
e () {Hzn_k(K) ~ H>%(K° 0K°)  for k<n.

There is another description of IHy*(K) which is considered in §7. It consists of
the classes which can be represented by forms with square integrable norms (in a
suitable metric). Our goal in §8 will be to check whether |Res w| is square integrable.
Now let us present examples.
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Example 1.3. Let s = zy and let w = %dx Ady. Then ds = ydr + xdy. The
residue form is %y for z = 0 and =22 for y = 0. Let D. = {z € C: |z] < e}. We see
that

K° = (C\ D.) x {0} u{0} x (C\ D)

and Resw does not belong to ker k* = TH{*(K) = {0} since the form d—?j” (and =22)
is a generator when restricted to a circle around 0.

Since one may think, that the example 1.3 is degenerate (K is not normal and
dim K = 1) let us consider another one.

Example 1.4. Let s be a singularity of the type Ps:
s(z0,21,22) = 2 + 25 + 25 .

The residue class is Res(%dzo Ndzy Ndzy) = ﬁdzl A dzg for zg # 0. Tt has no lift
0
to intersection homology; see 6.5.

2. TOPOLOGY OF A NEIGHBOURHOOD OF A SINGULAR POINT

Let us assume that 0 € C**! is an isolated singular point of a hypersurface K.
Intersect K with a sphere of a small radius. Then the set L = S. N K is called the
link of the singular point. Milnor [Mi] gave the precise description of the topology
of L. It is 2n — 1 dimensional manifold with nonzero homology only in dimensions
0,n —1, n and 2n — 1. Consider the Milnor fibration

S: S_I(D(;) NnB., — D5,

where Dj is the punctured disc in C of the radius § which is much smaller then a
sufficiently small e. Let K; = 5 '(t) for t € Ds. The boundary dK; = s~1(t) N S,
is homeomorphic to L. Let h, be the monodromy acting on the homology of the
Milnor fiber H, (K}) and let A(t) be its characteristic polynomial.

Theorem 2.1. [Mi, 8.5]. Let n > 1. The link of an isolated singular point of
s:C"*1 — C is a rational homology sphere if and only if A(1) # 0, i.e. 1 is not a

eigenvalue of the monodromy. If n # 2 then the link is homeomorphic to a sphere
if and only with A(1) = +£1.

We will make Theorem 2.1 more precise. Denote by H,(K;)" the invariant
cycles under the action of the monodromy.

Proposition 2.2. There is an isomorphism H,(K;)"* ~ H,(L) for n > 1.

Proof. By the Thom isomorphism H,, (L) ~ H,2(S,Sc \ L) and the second term
is isomorphic to H,11(Sc \ L). The space S, \ L is homeomorphic to the space of
the Milnor fibration restricted to a circle. By the Wang sequence we obtain the
thesis. [

Remark. When we trace the geometry hidden behind the maps we recover that the

isomorphism is induced by the identification L ~ 0K; and the inclusion 0K; C K;.

Milnor described a recipe for computing the characteristic polynomial A(t) of a

quasihomogeneous function. We restrict our attention to the case of the simple and

the unimodal parabolic (simply elliptic) singularities, [AGVI]. All these types may
6



be represented by quasihomogeneous polynomials. Our choice is motivated by the
fact that every singularity is simple (i.e. it is of the type: Ay, Dy, Eg, E7, Eg) or it is
adjacent to one of the unimodal parabolic type (i.e. to Pg, Xg or Jig). We list the
families of simple singularities and the corresponding characteristic polynomials.
The table contains answers to the following questions:

a) Is the link homeomorphic to a sphere?

b) Is it a rational sphere?

Singularity type k n  characteristic polynomial a) b)
A 20430 22 odd odd 4(tF —tF=14 ... £1) no o
even odd yes yes
all even tF4tF"14... .41 no yes

Dp: 2221+ 2P+ 30,22 >4 odd  4(t—1)(tF—1 — (=1)tF) no no
>4 even +(t+1)(tF"1+1) no yes
Eg: 28+ 2t+ >0 527 odd 0 — 543 —t+1 yes yes
even t0 41> —134t+1 no yes

Er: 234+ 2028 + >0 o 27 odd —(t—1)#5+#3+1) no no
even —(t+1)(t® —13+1) no yes
Eg: 23 +20+ >0 27 odd 8 —t"4+t> —tt 43—t 4+ 1 yes yes

even t34+t7T -t —t*—t3 4+t +1 yes yes
The unimodal parabolic singularities are as follows!:

Singularity type n  characteristic polynomial a) b)
Pg: 23+ 23+ 25 +azizazs + > g2? odd (3 +1)2(2 —t +1) no yes
even (13— 1)2(t2+t+1) no no
Xo: 25+ 21 +az323 + 30 527 odd —(t*—1)3(t—1) no no
even —(t* —1)2(t+1) no no
Jio: 25+ 20 +azd2l+ >, 27 odd (t°*—-1)(#3+1)(t—1) no no

odd (-1 —-1)(t+1) no no
We see that the link of a singular point often happens to be a rational homology
sphere. If it is the case then K = {s = 0} is a rational homology manifold and the
Poincaré duality map

PD: H*(K) "8, gBM (g

is an isomorphism. Thus each residue class lifts to cohomology. For other cases
there it is not possible to construct a lift of the residue morphism.

3. SPECTRUM OF AN ISOLATED SINGULARITY

Recall few elements of the theory of oscillating integrals. The general reference to
this paragraph is [AGVII] where the reader can find a review of the whole theory, a
sample of proofs and precise references to original papers. We warn that in [AGVII]
authors consider singularities of functions of n variables, thus citing formulas we
put n + 1 instead of n.

Suppose 0 € C**! is an isolated singular point of s. There is given a germ at 0

O(n+1)

of a holomorphic (n + 1)-form 1 € Op,11 7.

Define a quotient of forms by:

(n/d8)|s—1(t) = Res < ! t) .

S —

IThe number a is such that: a3 + 27 # 0 for Pg, a? # 4 for X9 and 4q3 + 27 # 0 for Jio
7



Let (; C K¢, t € Ds be a continuous multivalued family of n—cycles in the Milnor
fibres. The function

120 = | s

is a holomorphic (multi-valued) function. By [AGVII §13.1] the function I¢’(¢) can
be expanded in a series

IE(t) =) aqit®(logt)®,
a,k

where the numbers a are some greater then —1 rationals and £ are natural numbers
or 0. Fix ty € Ds. We identify H "(Ky,) with the continuous families of cycles.
When we vary the family of cycles in I (t) we obtain so called geometric section of
the cohomology Milnor fibre:

s(w) = Z Aq kit (log t)*,
a,k

with Ay € H"(K},). The smallest exponent o occurring in the expansion of s(w)
is called the order of w; it is denoted by a(w). The smallest possible order amin
among all the forms w is the order of dzy A --- A dz,. The number —(1 4+ pin)
is called the complex oscillation index of the singular point. The principal part of
s(w) is the section

Smax (W) = Z Aa(w),kto‘(“’)(log t)k .
k

We have a control over all possible orders. For a holomorphic function f let
Supp(f) C N**1 be the support of f, i.e. the set of the multiindices for which
the corresponding monomial has nonzero coefficient in the Tylor expansion of f.
Recall the definition of the Newton polyhedron [AGVII §6.2]:

T'(f) = conv U (G, ---vin) +RYFH) | C R
(i0,.--in ) ESupp(f)

We introduce a valuation v which is associated to s:

v(f) =sup{g € Ry :T'(f) CqT(s)}. (3.1)
For a differential form w = gdzo A - -+ A dz,, we define [AGVII, §13.1]

v(w)=v(g20..-2n).

A consideration of an appropriate toric resolution of K leads to the following
theorem:

Theorem 3.2. [AGVII, §13.1, Th. 2] Suppose s has C-nondegenerate principal

part (in the sense [AGVII, §6.2]). Then:

1. a(w) > v(w) — 1. Ifv(w) <1 then an equality holds,

2. the complex oscillation index is not greater then —v(dzo A -+ Adzy,). If v(dzo A
-+ Ndzy,) <1 then an equality holds.

The cohomology group H"(K},) is generated by the principal parts smax(w).
Following [AGII, §13.2] we introduce a Hodge filtration

0=F"t'Cc F"C---C H"(Ky,)
8



F* = span {[smax(w)] € H"(Ky,) : a(w) < n—k} .
We decompose the cohomology of Ky, :

H"(K;,)= € Ha.

A—eigenvalue

into the eigenspaces of the action of the semisimple part of the monodromy. Denote
by N the logarithm of the unipotent part of the monodromy. It defines a weight
filtration in the following way: suppose o1, 02, ... 0,, is a Jordan basis of Hy with
respect to N. Assume that the first block is of dimension d. Then N(o;) = 0,1
for + < d. The weight filtration

0=W_i1x CWoxC:- CWapx=Hi
is defined block by block; e.g. the first one is
Wh—1—dt2ix N span{oi,0a,...04) = span{oyi,0,...0;) for A#1,

Wi—dt2ix N span{(oy, 02, ...04) = span{oy,02,...0;) for A=1.

The resulting pair of filtrations on H™(K;,) forms a mixed Hodge structure. The
spectrum of the singular point is a set of rational numbers. They are of the form:

{a(w) €Q:  [Smax(w)] € Gr*F GriW (H)), [Smax(w)] #0} .

Each spectral number « coming from Gr¥F GrW (Hy) satisfy: exp(2mia) = X and
a€(n—k—1,n—k.

An another definition of the spectrum was given by Steenbrink via another Hodge
filtration, see [St1], [St2].

The following is a consequence of the fact that W, and F* form a mixed Hodge
structure on H™(Ky,).

Proposition 3.3. Let o1, 03, ... 04 € H"(K},) be a chain of elements satisfying
N(o;) =01 for 1 <i <d. Assume that o4 € F™=%\ F™=*L for some m € N.
Then o; € F™=t\ Fm=i+L fori < d.

Proof. The logarithm of the unipotent part of the monodromy

N : G’I‘ZW(H)\) — GT,'_QW(H)\)

shifts the Hodge filtration: N(FFGr;W (Hy)) C F*1Gr;_oW(H)), [AGV, 13.2
Lemma 12]. Proposition 3.3 follows from [AGVII, 13.2 Cor. 3] which says that N
induces isomorphisms for k, [ € Z:

N': F*Gr, W (Hy) = F*'Gr,_ W (Hy), if A#1,
N': Fr*Grp 1y W(Hy) = FFIGrp W (Hy), if A=1. O
Since F™ is the smallest term of the Hodge filtration, then the forms of the order

not greater then 0 contribute to the spectrum. Combining it with 3.2 we obtain:
9



Theorem 3.4. Suppose s has C—nondegenerate principal part. The set of spectral
numbers which are nonpositive coincides with the numbers v(w) — 1 for v(w) < 1.
In particular these numbers can be read from the Newton polyhedron.

Now we will prove a theorem which is the purpose of this paragraph.

Theorem 3.5. If each residue class lifts to the intersection homology of K, then
the number 0 does not belong to the spectra of the singular points of K.

From the topological point of view this theorem is partially justified by the fact
that the spectral numbers multiplied by 274 are logarithms of the eigenvalues of the
monodromy. Thus 0 must not be in the spectrum if 1 is not an eigenvalue of the
monodromy. The second condition is equivalent for K to be a rational homology
manifold; see Theorem 2.1.

Proof. Suppose that zero belongs to the spectrum of a point . We will show, that
there exists a form w defined in a neighbourhood of z, such that Resw restricted a
link of 2 does not vanish in cohomology. By proposition 3.5 this implies that [Res w]
does not lift to intersection homology. We will find a cycle { C L = KNSc(x) (where
Se(z) is a small sphere around z), such that the integrale of the residue form on
¢ does not vanish. From the assumption about the spectrum of x it follows that
there exists nontrivial ¢ € F™ N Hy—;. Since F" is the smallest term of the Hodge
filtration, then by 3.3 the class ¢ is not contained in the image of N. We conclude
that there exists an h,—invariant cycle (;,, such that (o,(;,) = a # 0. By 2.2 we
know that (;, originates from a cycle ( = (o C L, i.e. one can include ¢ in a
continuous h,—invariant family of cycles (; C 0K; with (; = (. By the choice made
0 = Smax(w) With a(w) = 0. Then the expansion of

I2(t) = /t sw/ds

begins with ag = a. Thus [, Resw=a #0. O

Remark. From the proof of 3.5 we see that (without any assumption on the spec-
trum) if a(w) > 0 then w lifts to intersection homology.

The condition on spectrum in Theorem 3.5 can easily be read from the Newton
polygon of s by Theorem 3.4. To check that 0 is not a spectral number for the
most of the classified singularities see the table [AGVII, §13.3]. This shows that
in general a residue class lies in intersection homology. For the singularities of the
previous paragraph we have:

1) for n > 2 the spectrum does not contain 0 for the simple singularities;

2) for n > 3 the spectrum does not contain 0 for the unimodal parabolic singulari-
ties;

3) if n = 2 then the spectrum contains 0 for the unimodal parabolic singularities.

All these functions are quasihomogeneous. In §§4-8 we treat this kind of singu-
larities in details.

4. VALUATION AND QUASIHOMOGENEOUS FUNCTIONS

We will prove the converse of Theorem 3.5 for quasihomogeneous singularities.
10



Let Clzp, ..., 2] be the ring of the polynomials on n + 1 variables. Let ag, a1,
. a, be a sequence of positive rational numbers called weights. Define a valuation
(weight of a polynomial) v : C[z, ..., z,] — Q by:
1) v(z) = a;;
2) (£ 9) = v(f) + v(g);
3) if f =>_ fi, fi monomial, then v(f) = min{ v(f;) }
If f is a sum of monomials of the same weight, then we say that f is quasiho-
mogeneous (with respect to the valuation v). We extend the valuation for quasiho-
mogeneous forms of the type:

w:idzil/\---/\dzik
g

setting v(w) = v(f) —v(g) + a;, +-- -+ a;,.

Suppose that at each singular point the hypersurface K is given by an equation
s = 0 with s quasihomogeneous (in some coordinates and valuation). We rescale
weights to obtain v(s) = 1. The obtained valuation is the one described in 3.1. For
each singular point we define a number

n

ﬁ:v(dzo/\---/\dzn):Zai.
i=0

By 3.2 the number x — 1 is the complex oscillation index. We define a condition,

which is equivalent to the condition on spectrum from Theorem 3.5.

Condition 4.1. For any choice of nonnegative integers k; € NU{0},i=0,...,n
we have Kk + > k;a; # 1.

Of course the Condition 4.1 is satisfied if x > 1.

[ay
[y

Example 4.2. Let s = zS’ + 23+ z%. Then ag = a1 = % and ag = %. Then k =
but the Condition 4.1 is still satisfied.

—
[\V]

5. A SIMPLE CRITERION OF LIFT
We will prove the following:

Theorem 5.1. Suppose that K of dimension n has isolated singularities given by
quasithomogeneous equations in some coordinates. Let w € OE\TLI)(K) be a mero-
morphic form with a first order pole on K. Suppose w has no component of the
weight 0 at each singular point. Then the residue class of w lifts to intersection
homology of K .

The Theorem 5.1 is related to Theorem 3.5. We prove the Theorem 5.1 using
few well known facts from the intersection homology theory. The reader is advised
to compare the following proof with an example described in the Appendix.

Proof. By 1.2 one should show that [Resw] € ker (H™(K°) — H™(0K?®)), that is
for each link L in K we have [Resw|] = 0 € H"(L). The calculation is local, so
from now on we assume that K is given by a quasihomogeneous equation s = 0.
The form w can be written as w = Zdzy A - - - Adz,. Now suppose that g is quasi-
homogeneous (otherwise we decompose g into a quasihomogeneous components).
11



By the assumption v(g) + £ # 1. We have a formula for Resw at the points where
s = 8‘9—; # 0 (see §1):

ds
w:—/\idzl/\---/\dzn,
S S0
then
rzidzl/\---/\dzn
50

and Resw = r|g at the points where sg # 0. We have

v(w) =wv(ds) —v(s) +v(r) =uv(r).

Then
v(r) =v(g) —v(s) + v(dz0) + - -+ v(dzn) =
=v(g)—14+ap+- - +a,=v(g)—1+k.
Let [ be a natural number such that la; € N for ¢ = 0,...,n. We construct a

branched covering of C**1:

d.Crtt — ot

N N Alao ~la
ZO,...,an—>ZO ,...,Znn

Let o be a standard valuation: o(f) = deg f for homogeneous f. The map ® has
the property:
0(®*n) = Lv(n)

for any quasihomogeneous form n. We have

0(P*r) =1(v(g) — 1+ k).
If we write ®*r = qdz; A --- A dZ, then ¢ is homogeneous function of degree

i(q) =l(v(g) =1+ k) —n.
The mapping ® is a branched covering of degree [ k. It induces a map of links:

d: 7 — L,

where I = d~1(K)N S.. Unfortunately L may be singular; see Example 5.2. We
have H*(K \ {0}) ~ H*(L) and similarly we have T Hy*(®~'(K)\ {0}) ~ IH*m_l(E)
since ®~1(K) \ {0} = L x R,. To show that [Resw] = 0 € H"(L) we will prove
that [®*Resw ] =0 € IHnm_l(E) It is enough since the map

HM(L) X HMI) — 1H™ (I)
is a monomorphism with a splitting
TH™ (L) — Ho (L) 25 H,_1(L) = H(L).
The last map above is the inverse of the Poincaré duality isomorphism multiplied

by (I k)~1. The maps to and from intersection homology are the canonical once.
12



To show vanishing in intersection homology we use a Gysin sequence of the
fibration

S' LB IL/s
coming from the action of C* on ®~!(K):
s TH2(T/SY) 2% TH™ (L/8Y) 2% TH™ (L) 2= TH™ (L/SY) — .

The map Ne is the multiplication by the Euler class of the fibration; it is an iso-
morphism by hard Lefschetz since dime L/S' = n — 1; [BBD]. We view I H.* (L)
as the L2-cohomology of the nonsingular part of L:

THL= (L) = Hiy (L \ Xg) =: Hy (L)

for suitably chosen metrics on L \ Y7 and (L\ ¥+)/S8%; see [Ch], [Wel]. Then the
sequence has a form:

n—2/7 Ne n (T - n (T * n—1/7
— Hpy 2(L/SY) = Hiy) (L/SY) = Hiy (L) = Hiy H(L/SY) —

The map p, is just the integration along the fibers of p. Let us calculate the integral
in the trivialization of the bundle C***\ {0} & P" over Uy = {2 # 0} C P":

C* x Uy — p~1(Up),
UQy Uy - -y Uy —> Ug, UQUT s « - « 5 ULy, -
We write ®*r in u—coordinates:
O*r = q(20,...,2,)dZ1 N+ NdZ, =
= ué(v(g)_l-l'n)_n(j(ul, eyt (urdug + updug) A - A (updug + ugduy,) =

= uf)(v(g)_l-l-m_l(j(ul, s Un)duo Z(—l)i“uidul AR \Z/ s ANdug+
i=1

+ updug A -+ Aduy, =

= uf)(v(g)_pm)_lduo ATy + 0,

where ro and © do not contain dug and ro does not depend on ug. Then

D@ r(ug, uz) = /
[uo |2 (14|u1 |2 +]ua|?)=1

ug”(g)—”“)—lduo) ry.

The integral can be nonzero only if v(g)+x = 1. This is impossible by the assump-
tion. Thus p,®*(Resw|z) = 0, so the residue lifts to intersection homology. [

Example 5.2. Consider the polynomial

s(z,y,2) = (z + zz)2 +y? — 2.
13



It has an isolated singularity of the type As. It is quasihomogeneous with weights
v(z) =v(y) = 3 and v(z) = ;. The polynomial ®*(s) is:

CI)*(S) _ ($2 +Z2)2 +y4 . z4 _ 1174—|—2.’13222 _'_y4.
Zero is not an isolated singularity since for z = ¢ = const we obtain:

1'4-|-2.’L'262+y4~l'2-|-y4

which is a singularity of the type A3z. An example of a singularity with L nonsingular
ko

is 2% + -+ + zF» for any choice of k; € N.

The Example 5.2 shows, that in the proof of the Theorem 4.2 we have to use the
hard Lefschetz theorem for intersection homology instead of the standard one. We
have used the hard Lefschetz of [BBD] for sake of brevity. Equally well we could
work on the rational homology manifold L/S! contained in a weighted projective
space.

6. NONVANISHING OF THE SECOND RESIDUE

There is another way of looking at the calculation presented in the proof of the
Theorem 5.1. Let the group G = Z/lag X - -+ x Z/la, acts on the coordinates of

Cn*! by the multiplication by the roots of unity. Then K = K /G. We blow up
K C C*"*! at 0 and obtain a diagram of varieties:

ct 5 YuPr % YUPw) = Y/GUPY/G c Crl/G
= | | | ) |
¢+t 5 K0S Kk = K/G c Crtl/g = Crtl

Here P(v) = P" /@ is the weighted projective space. We have ¥ NP" = L/S! and
Y NP(v) = L/S'. The spaces P(v), Y and L/S! are rational homology manifolds,
i.e. locally they are quotients of smooth manifolds by a finite group i.e. they are
V-manifolds as defined by Steenbrink; [St1]. From the homology point of view they
can be treated as ordinary (smooth) Kédhler manifolds.

The last lines of the proof of the Theorem 5.1. lead to a definition of an element

™

1 ~
resow = lT/Resww] € IH™ (L/S").
P

This is an obstruction to lift the residue class to ITHp*(K). We call it the second
restdue. The class ressw is G—invariant, so it is in

TH (L/SYY ~ THZ (L/S") = H*(L/SY) .

We will show:
14



Theorem 6.1. The second residue of w € OE\TLI)(K) vanishes in H"~Y(L/SY) if
and only if the component of w of the weight 0 vanishes.

Proof. The proof of 5.1 shows that the components of w which have the weights
different then 0 do not contribute to ressw. Assume that w = %dzo A Ndzp
has the weight 0; i.e. v(g) =1 — k. We will show the nonvanishing of ressw. The
converse is obvious.

The class ressw is represented by the GG invariant form T2 51 Since L/S1 is
V-manifold then its cohomology admits Hodge decomposition [St1, §1] and ressw
is of the (n —1,0)-type. The form 7, is harmonic outside the singularities of L/S?,
therefore it vanishes in cohomology if and only if it is tautologically zero. We will
show that the form (1‘2)“3 /51 does not vanish. We blow-up K C €1 oat 0 (see

the last diagram). We calculate the form ®*w pulled up to (6;;"'/1 in the canonical
coordinates (in the 0—th chart).

o* =n
prid*w =C *g (H 25‘”—1) dzg N+ Ndz, = (6.2)

WEIOF = i=n
= C'OTug“_"_l (H ul.‘“_1> ug dug A+ A duy, =

Uq d*g

duy g (T2
:Cﬂ/\ g( uial_1> duy A -+ Adu,, ,
1

1=
where C' = szglai. Here p(uy, ..., u,) denotes p(1,uy,...,u,). We see that the
form pr*®*w has the first order pole on the exceptional divisor. The form 2|9 npn

is the second Leray residue; [GS], [Le]. We can decompose the form pr*®*w in a
way

_ dug  dD*s
Uo P*s
where r), does not contain ug nor dug. This is another expression of the second

—_—

Leray residue of pir*®*w. Thus T prpn = T2|prpn- Lhe function ®*(s) describes

Y NP" in P" for ug # 0, so to show that T2|PApn % 0 it suffices to check that

P

d®*(s) Arh # 0 on Y NP". By the decompositions (6.2) and (6.3)

—_

ug ®*(s) pr* ®*w = dug A dd*s A1y = Cdug A 49/9 (H uiai_1> duy A -+ ANduy, .
i=1

Since s does not divide g, thus (I;L/q does not vanish on ¥ NP". Moreover Y N P"
is not contained in any of the hyperplanes u; = 0. Thus d®*s Arhy Z 0 on Y NP
and hence T/2|}7r1]P>" 20. O

As a corollary we obtain a result which implies Theorem 3.5 and its converse:

Corollary 6.4. The Condition 4.1 is fulfilled at each singular point if and only if
all the residue classes lift to intersection homology.

Proof. The numbers k + > k;a; — 1 are the possible weights of the forms from

(’)((Cﬁill)(K). By the Condition 4.1 it cannot be 0. Then by 6.1 the obstructions to
lift vanish. [

15



Example 6.5. We compute the obstruction to lift for the Example 1.4 for which
(k=1):
s(zo,21,20) = 25 + 25 + 25,
1

w= —dzo Ndz1 Ndza .
s

Then L/S* = L/S* C P2. The second residue (i.e. the obstruction to lift) is:

1 1
ressw = [— /Res w} =3 (urdug — ugduy)
P

271

in the notation used above. As one can check by hand, the integral

/ resow # 0.
L/S'URP?

I the Appendix we will calculate ressw for an another form of the singularity Ps.

7. LP—COHOMOLOGY

To show that the residue form on the nonsingular part of K determines an
element in intersection homology we apply the isomorphism of LP-cohomology and
intersection homology. It was proved by Cheeger for p = 2 and conjectured by
[BGM] for arbitrary p > 1:

Theorem 7.1. [Ch], [Wel]. Let X be a pseudomanifold equipped with a Rieman-
nian metric on the nonsingular part. Assume that this metric is concordant with a
conelike structure of the pseudomanifold. If codim X > 1+1ﬁ’ then H(*p)(Xreg),
the LP—cohomology of the nonsingular part, is isomorphic to the intersection ho-

mology with respect to the perversity which is the largest perversity strictly smaller

then the function F(i) = ;.

The perversity associated with p € [2,2 + %) is the middle perversity m.
Concordance with the conelike structure means that each singular point has a
neighbourhood which is quasiisometric to the metric cone over the link, i.e. to
cLy = Ly x [0,1]/Ly; x {0} with the metric t2dz? + dt?. The intersection homology
of a pseudomanifold K with isolated singularities is either H?"~*(K) or HPM (K)

or the image of the Poincaré duality map im(PD : H* *(K) IK], HBM(K)).
The case depends on the value of the perversity for 2n. For the middle dimension
we have:

Proposition 7.2. If a hypersurface K with isolated singularities is equipped with
a conelike metric and n = dim K > 1 then

¢ 1
HBM (g 1
o (K) for 14—

<p<?2
l_p

n . 2
Hipy (Kreg) ~ § im PD for  2<p<2+ —

2
H"(K) for 24+ —— <p.
\ n—1

If the dimension is one then we should take the normalization of K instead of
K.

In §8 we construct a suitable conelike metric and estimate the norm of a residue
form for every p > 1. This way we will obtain a lifts of the residue classes to
intersection homology for those manifolds which have singularities with £ > 1.

16



8. LOCAL ESTIMATION

Suppose K = {s = 0} is given globally in C"*!. We keep the notation of §4. We
show the following:

Proposition 8.1. Let s be a quasithomogeneous polynomial in n+ 1 variables with
v(s) = 1. Assume that 0 is the only critical point of s. Then there exists a conelike
metric on K,.q4 such that the norm of the residue form Resw is LP—integrable for
all w=2dzg N+~ Ndzy, € (’)(Mn+1)(K) with v(w) > 0.

Proof. Assume that sg = 88—50 does not vanish tautologically. Then at the points

Z
where sy # 0 we have

Res(%dzo/\---/\dzn) =TK= <5—0dz1A..-Adzn> K

We choose [ € Ry and parameterize C**! by the homeomorphism:
(o, -+ -y Un) — (uglug| @71, o U up M4

The set ®~1(K) is conical. We estimate the norm of the residue form in the metric
induced by this parameterization. The norm |®*(dz;)|, is (real) homogeneous of
degree [ a; — 1, the denominator ®*s, is homogeneous of degree I(1 — ag). Thus the
norm |®*r|, is bounded by a homogeneous function of degree

lv(g)+2(lai—1)—l(1—ao):lv(g)+2la¢—n+l:lv(w)—n.

=1 1=0

This estimation holds also at the points where sqg = 0, for there is another derivative
which does not vanish there. Then the integral f{|u|=r}ﬁK |®*r|Pdz is bounded by
a homogeneous function of degree

d=p(lvw)—n)+2n—-1=plo(w)+ 2—-pn—1

If p = 2 then we see that this function is integrable. For p > 2 in order to obtain
d > —1 one should take [ > (p;ii)n, where v is the smallest weight of w which is
greater then 0. [J

Theorem 8.2. If K has quasithomogeneous singularities with x > 1 then the
restdue form defines an element in LP —cohomology of K for a suitable metric.

Proof. The minimal possible weight of a form w € O(Mn+1)(K) is k — 1. At each
singular point we choose [ such that [(k — 1) > (p — 2)n. Then each residue form
is LP—integrable with respect to the conelike metric constructed in the proof of the
Proposition 8.1. Hence it defines an element in LP—cohomology. [

Observation 8.3. The condition k > 1 is fulfilled if the matriz of the second
derivatives of s is of the rank at least 2 and n > 1.

Proof. The polynomial s has either a term z;z; or Z2 + ij_ so a; +a; = 1 and the
remaining summands in k£ are nonzero. [J]
17



Remarks. In the proof of Proposition 8.1 we can use the function e Tl as well as
|z;|'% (I large). We obtain then a metric which is good for all p > 1 at once. As a
result we get the same condition for weights. Practically the theorem shows that we
can integrate residue forms over chains which are regular enough i.e. which enter
singular points along the cone lines. Thus the residue form defines a functional on
the class of regular chains.

Below we list the singularities of §2 with computed weights and the numbers k.

Type weights K
1 1 1 n 1
Ap Bl 20 30 5+ =
k—2 1 1 1 n 1
Dy, 2k—27 k—1° 20 20 2 +2(k—1)
1 1 1 1 n 1
Eg ? g, ?7 %, 3+t 135
n
Ey ? ?, ?7 %, §+1—18
11 1 1 n 4 1
Eg 32 52 20 20° 2 T35
1 1 1 1 1 n
P8 %7 §, %7 ?, 29 92
n
Xo AT IR 5
T 1111 n
10 37 67 27 29 2

We see that for all simple singularities we have £ > 1 provided n > 2. For
unimodal parabolic singularities one should take n > 3. If n = 2 then by 6.1 the
residue of %dzo A -+ ANdz, does not lift to intersection homology. The case Pg is
described in the Appendix (see also the Example 6.5).

9. RESIDUES AND D-MODULE L(K)

The question of possibility of a lift of the residue class to intersection homology
can be translated to the language of D-modules. Fix some notation: there are the
following sheaves on M:

Oum - the sheaf of holomorphic functions,
Oum(K) -the sheaf of meromorphic functions with the first order pole on K,
Oum(xK) -the sheaf of meromorphic functions with a pole on K of any order,

OE\’;) - the sheaf of holomorphic forms of the type (k,0),

(’)%?(K ) - the sheaf of meromorphic forms of the type (k,0) with the first order
pole on K,

Ok, - the sheaf of the complex valued C*° k-forms.

Consider the D module of meromorphic parts of functions with poles on K:
Om(+K)/Onm = Hic(On) -

The de Rham functor acting from the category of regular holonomic D-modules to
perverse sheaves transforms Ops(xK)/Opr to the complex of meromorphic forms
modulo holomorphic forms (see e.g. [Bj, 1.2.17]):

DR(Ou(+K)/On) = (O (xK)/Oxr) ®0,, OF) = 03 (+K) /O .

In the derived category it is isomorphic to the complex of semimeromorphic forms
modulo C'*°-forms:

(Om (+K) @0, Q) /s -
The module Ops(xK)/Op contains an unique simple submodule £(K) which is

constant of rank 1 on K,.4, [Bj, 5.5.14]. De Rham functor transforms L(K) to
18



intersection homology complex IC} (K) with a shift of degrees. (Intersection ho-
mology complex is considered as a sheaf on M supported by K.) We obtain:

Observation 9.1. Suppose On (K)/Oup C L(K) then every closed form
w e On(K) ®o,, Qi
defines an element in
H*Y(M; DRL(K)) = IHyp_1(K).

For isolated singularities Vilonen [Vi] gives a description of £(K) :

Theorem 9.2. Let K be a hypersurface with an isolated singularity x. Then h €
L(K) C Op(xK) /Oy if and only if

/hwzo
'3

forall¢ € Hyy 1(B:\ BeNK) and allw € OE\Z’LI), where B. is a small ball centered
at x.

Let w = Zdzg A+ - Ndz, € O(Mn+1)(K). Then the class of w belongs to the sheaf
L(K) ®o,, 05 c 0 (k) /00 Y if and only if

6f%dzo/\---/\dznzo (9:3)

for all € € H,41(B. \ BN K) and all f € Oy,.
We have H,1(B.\ BeNK) = H,(S. N K), where S, is a small sphere. The
condition 9.3 can be reformulated:

/CRes <f§dz0/\---/\dzn> =0 (9.4)

for all ( € H,(SeN K) and all f € Oyy.
This condition is essentially stronger than the one in the Proposition 1.2, nether-
theles we see that:

Theorem 9.5. The conditions:

1) gOm(K)/Om C L(K),

2) Vw € gOS"(K)  [Resw] € im(PD : H"(K) — HBM(K)) = THZ(K)
are equivalent.

The Theorem 3.5 gives a necessary condition for 1) or 2) with ¢ = 1. For quasi-
homogeneous singularities this is just the Condition 4.1 which is also a sufficient
condition by 6.4.
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10. UNIQUENESS OF THE LIFT

Denote by i the inclusion M \ K < M. The sheaf of complex—valued C* forms
Q;W\K is a soft resolution of the constant sheaf Cyr\ g Thus Ri,Cyp\ e = i*Q;W\K.
The inclusion z induces a distinguished triangle.

+1 N\ N
R Cys

By taking the cohomology we get the long exact sequence of the pair (M, M \ K).
The stalk of RI',Cjy is:

HI(RTkCar) ~ HY (B, B, \ K) {2 gBM, (KN B,),

where B, is a small ball around x. Moreover, the whole sheaf RI'xCjs is isomorphic
(with a shift of degrees) to the dualizing sheaf:

RPK(CM [271 + 2] ~ ]D)K
We obtain the residue morphism (Grothendieck residue)
res: i,Q4n g [2n + 1] = Ri,Cap g [2n + 1] = RTxCyy[2n + 2] ~ D

which is an isomorphism on the cohomology sheaves for j # —(2n + 1)

res

HI (i Q3 x[2n +1]) e HI (Dg)

N[B:]

H2 4 (B,\ K) —2— H™2H(B,, B, \ K) HBM(B,NK).

In §8 we have constructed a conelike metric, for which (under the assumption
k > 1) Leray residue forms have p—integrable norms:

g .

Res (0<M"+1>( ))cc(p)( ) C

The sheaf of LP—cohomology E?p) (K) is isomorphic to an appropriate intersection
homology sheaf [Wel]. This way we have constructed morphisms of sheaves:

O (K)[n] — Ly (K)[2n] = ICh,(K)

and .
OV () [n] — L3, (K)[20] ~ IC3(K)
for p > 24+ —=5. We use the convention that the sheaf ICy (K) is concentrated in

negative degrees We have described other conditions which allow to lift the sheaf

morphism OE\Z“)(K)[n] — Dk to OE\Z’LI)(K)[n] — IC§(K). These are Condition

4.1 for quasihomogeneous singularities or an abstract condition 9.5 (for g = 1) for

arbitrary singularities. We also have a necessary condition from 3.5. A question
20



arises: is this lift unique? To be precise, let us consider the sequence of the canonical
morphisms and the obstruction sheaves [GM, §4.5]:

Cx[2n] =~ ICY(K) — ICH(K) — ICP(K) =~ D.

1N v N v
S1 So

The triangles are distinguished in the derived category. The isomorphisms in the
diagram follow from the fact that a hypersurface with isolated singularities is normal
for n > 1 (H°(L) = C). We regard these sheaves as sheaves on M supported by K.
The cohomology of the links is nonzero only in dimensions 0, n — 1, n and 2n — 1,
so for arbitrary perversity the sheaf ICp(K) is isomorphic to:

1) Cg[2n] if p(2n)<n-1,

2) ICr(K) if p(2n)=n—1,

3) Dk if p(2n) >n — 1.

The obstruction sheaves S; and S; are supported by the singular points and

H"N(Sy) = TH% (cLy) = Ho(Ly) and  HL(S:)
H"(Sy) = THE(cL,) = Hy_1(L,) and  H.(Ss)

for i# —(n+1),

0
0 for i# —n.

Let F = O(Mn+1)(K). Applying the functor RHom(F|[n], —) to the diagram above
we obtain distinguished triangles and long exact sequences. Replacing R°Hom by
Homp — homomorphisms in the derived category we have:

@ Hom(F,, H,(Ly)) — HomD(]:[n],IC’Q'(K)) U HomD(}'[n],IC’i(K))
HomD(}"[n],IC’i(K)) MHomD(}"[n],IC’z(K)) — @ Hom(Fy, Hy,_1(Ly))

This way we see that:

Proposition 10.1. A lift of the residue morphism to O™+ (K)[n] — ICy (K)
is unique in the derived category. If such a lift exists then there exists a lift to
Ck [2n], which is not unique unless K is a rational homology manifold.

The Proposition 10.1. is not a surprise since on the cohomology level we have
IH2(K) = im (PD: H*(K) — HPM(K))

for n > 1. It seems that the lift to ICF(K) ~ [,Zp)(K)[Zn] (p large) obtained in §8

essentially depends on the choice of a metric. We remind that a metric depends on

the choice of coordinates in which the singularity is quasihomogeneous. The metric
was determined by the weights.

Example 10.2. Consider the polynomial s(z,y,2,t) = zy + y'% + 22 + 2. It is

quasihomogeneous with weights %, Wlo’ % and % This is a Morse singularity (i.e.

of type A1), and one can change coordinates so that s(z',y') = % 4+ oy + 22 2,
1

Then all weights are 5.
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11. LiFT AND MIXED HODGE STRUCTURE

Suppose that M is algebraic. The problem of lift is strictly connected with
the mixed Hodge structure on M \ K. Consider the Deligne weight filtration on
H*(M \ K), [De], [GS]:

0=Wy H*(M\K)Cc W, HF(M\ K) C--- C Wo, H*(M \ K) = H*(M \ K).

Suppose M is contained in a complete smooth manifold M. A class ¢ € H¥(M\ K)
belongs to Wy H*(M \ K) if and only if it comes from H*(M). We will prove the
following:

Proposition 11.1. Suppose that a cohomology class ¢ belongs to Wk+1H (M\K).
Then the homological residue resc € Hypy1—(K) can be lifted to THy, |, (K).

Remark. Of course this is not necessary condition for noncomplete M. The beha-
vior of ¢ at the infinity may cause that it does not belong to W41 H¥(M \ K).
Nevertheless for complete M the converse of 11.1 is not clear.

Proof. Consider a case when M is a complete manifold and K = J,.; D; is a sum

iel
of smooth divisors with normal crossings. Belonging to Wy H*(M \ K) means

that c¢ is represented by a form
w e QA QY (log(K)) ,

see e.g. [GS §5]. Then
Resw € @ Q’B_il
el
and
[Resw] € @D HY 1 (Di) ~ TH;: ,_(K).
icl

The Proposition 11.1 remains true for an arbitrary singular variety. To prove this
complete M, then take a resolution 7 : M — M of K and added boundary. We
obtain K € M with M \ K ~ M \ K and K is a sum of smooth components with
normal crossings. If ¢ € Wy 1 H*(M \ K) then res c can be lifted to IH2_n+1 k(K)

We can pull it down to THj; ;. (K) by a map a which is constructed in [B*FGK]
(see also [We2]) in a way that the following diagram is commutative:

HE(M\K) % HFY(M,M\K) =~ Hypi(K) <  THE, (K)
HE M\ K) % HYM,M\K) =~ Hypp y(K) « IHE, (K). O

Unfortunately this procedure uses desingularization, mixed Hodge structure and
functoriality of intersection homology. Each of these ingredients is rather mysterious
and hard to compute. We did not follow this direction. We plan to explain relation
between these constructions in forthcoming papers. In this we have restricted our
attention just to the case of isolated singularities.
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12. APPENDIX: THE Pg SINGULARITY
Consider a singularity of type the Pg in a form

3 2 3 2
$(20, 21, 22) = 21 + 2521 + Q25 — 20725

where p and ¢ are real numbers such that 22 + pz + ¢ does not have double roots.
Let

1
w= —dzo Ndz1 N dzs.
s

Then
0s 5
Sog = — = —22p2
2 929 022
and
r=— dZo A\ le
2022

for zgzo # 0. We will apply the method of §§5-6 to compute the second residue.
To calculate the cohomology of link L = S°N K we apply the Gysin exact sequence
of the fibration

St L5 1L/stcPp?.

The projectivization L/S! of L is an elliptic curve in the projective plane P2, so it
is a topological 2—dimensional torus. We obtain an exact sequence:

5 HO(L/SY Y% H2(L/SY) P HA(L) P HY(L/SY) 2% H(L/SY) =0,

where the morphism p, is the integration along the fibers of the projection p. The
bundle I 2 /S is the restriction of the tautological bundle S® — P2. Thus the
Euler class of p is the restriction of the generator of H?(P?). Hence the evaluation
of the Euler class (e, [L/S]) = deg s = 3. Thus rationally p. in the Gysin sequence
is an isomorphism. The necessary and sufficient condition to lift is vanishing of

[fp Res w|L] € H'(L/S') as discussed in §6. Let
UOZ{[Z()ZZlZZz]EPzZ Zo%O}:{UZUlZUg]GPzZ Ul,UQE(C}Z(Cz.
The tautological bundle p : C3 \ {0} — P? restricted to Up is trivial:
pH(Up) = C* x C?
Z1 %2
(Z07 21, ZZ) — <Z07 <_7 _>>
Z0 <0
(w0, uou1, uou2) = (ug, U1, us)

We write r in y—coordinates:

1 dUO du1
— dug N d d = —————dug N ugduy = ——— N — .
2uluz uo A (uoduy + 1 duo) 2ulus to /A todth 2ug U

r —

We integrate it over each fiber

p M ([1 ur, ua]) = {(uo, wour, uouz) : |uol>(1 + |ur]?® + [uaf?) = 1} ;
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and obtain the second residue:
1 1 / duy  du 1 duy
ro—— [ r—— —— AN—| = —=—.
2me » 2me P 2 U9 2 ug

We know that the form ry does not vanish on L/S* by 6.1. Nevertheless we will
integrate 7o over a cycle I' consisting of the real points of L/S! C P? (or one of its

components):
oo
d
/ ry = 42 / U ,
r u 2\/u3 + pui +q

1 max

where 1 maz is the biggest root of the polynomial u3 + pu; + q. We have obtained
an elliptic integral. The sign depends on the orientation of T'.
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