Abstract: Let \(\mathcal{F} \) (correspondingly \(\mathcal{P} \)) denote the abelian category of functors (strict polynomial functors in the sense of Friedlander and Suslin) from finite dimensional vector spaces over \(F_p \) to vector spaces over \(F_p \). These two categories are related via the exact forgetful functor \(\iota: \mathcal{P} \to \mathcal{F} \).

The category \(\mathcal{F} \) is strongly related to topology and representation theory of symmetric and general linear groups but the homological algebra in \(\mathcal{F} \) is rather mysterious. The category \(\mathcal{P} \) is easier for cohomological calculations. The known \(\text{Ext}_F(\ldots) \) calculations are obtained only for functors which belong to the image of \(\iota \) and are performed using comparison of \(\text{Ext}_P \)- and \(\text{Ext}_F \)-groups induced by \(\iota \). In my talk I am going to overview the categories \(\mathcal{F} \) and \(\mathcal{P} \) and their relation to concepts from algebraic topology. The aim of the talk is to present cohomological conditions which guarantee that a given functor \(F \in \mathcal{F} \) comes from \(\mathcal{P} \) via \(\iota \).