
Veri�cation and certi�cation of Java classes using

BML tools?

Jacek Chrz¡szcz, Aleksy Schubert, and Tadeusz Sznuk

Institute of Informatics,
University of Warsaw,

ul. Banacha 2,
02-097 Warsaw,

Poland

Abstract The Bytecode Modeling Language (BML) is a speci�cation
language for Java bytecode. BML speci�cations can be stored in class
�les, so that they can be shipped together with the bytecode. This makes
BML particularly suited as property speci�cation language in a proof-
carrying code framework. In this paper we present a case study which
demonstrates the usability of the tools within the proof-carrying code
scheme. We describe here all the stages of the certi�ed bytecode gen-
eration. These include the generation of the bytecode class with BML

speci�cations, the generation of the veri�cation conditions to be prooved
in Coq and then packaging of the veri�cation conditions in a class �le.

1 Introduction

Bytecode Modeling Language (BML) [4,6] is a speci�cation language designed to
allow the speci�cation of properties in programs for which the bytecode form is
available. BML is based on the principle of design-by-contract and it is strongly
inspired by the Java Modeling Language (JML) [9,10,11]. JML is the de facto

Java speci�cation language, supported by a wide range of tools [3]. A set of
tools [5] has been developed which allow one to manipulate class �les with BML
speci�cations.

One of the most promising applications of low-level speci�cation languages
such as BML is in the context of proof-carrying code (PCC). In this context, code
that is shipped from the code producer to the code consumer comes together
with a speci�cation and a correctness proof. Since BML can specify executable
code, it seems an appropriate speci�cation language for foundational PCC [2,1],
where a relatively small but expressive framework can capture the class of desir-
able properties of mobile code. Because of its expressiveness, BML speci�cations

? This work was partly supported by Polish government grant 177/6.PR UE/2006/7
and Information Society Technologies programme of the European Commission FET
project IST-2005-015905 MOBIUS. This paper re�ects only authors' views and the
Community is not liable for any use that may be made of the information contained
therein.

can give hints to the prover (e.g., one can supply loop invariants and suggest
appropriate lemmas using assert statements), which can ease the automatic con-
struction of proofs. To be able to ship BML speci�cations together with the code,
a BML representation within Java class �les is de�ned.

When BML is used in a PCC context, we expect it be used as an interme-
diate format. People will rather specify and verify their source code, and then
translate these into properties and proofs of the executable code. Since Java
is our privileged application language, we assume JML will be the source code
speci�cation language. Therefore, translation from JML speci�cations and proofs
to BML should be as straightforward as possible. Realising a PCC platform for
Java to support this use of BML is one of the goals of the MOBIUS project1.

A crucial element for the success of a speci�cation formalism is tool support.
Therefore, a set of prototype tools is developed for BML. This tool set contains
the following tools:

� BMLLib, a library to represent and manipulate speci�cations;

� Umbra, a BML editor within Eclipse IDE;

� JML2BML, a compiler from JML speci�cations to BML;

� BMLVCgen, a generator of veri�cation conditions in Coq for bytecode class
�les enhanced with BML,

� BML2BPL, a translator of bytecode enhanced with BML to BoogiePL, a lan-
guage from which veri�cation conditions can be generated easily; and

� CCT, a tool to store proofs in class �les.

A precise description of the BML language is given in the BML Reference

Manual [6] while the description of the tools is available in [5]. The current pa-
per gives a round trip that shows the way the tools can be used to obtain Java
bytecode augmented with PCC certi�cates. Section 2 presents the way the veri-
�cation conditions are generated. The way the generated conditions are proved
is presented in Section 3. We conclude with the description of the certi�cate
generation and checking in Section 4.

2 Generation of veri�cation conditions

In order to generate the veri�cation conditions to be proved, one has to provide
the properties which are supposed to be checked against the code. The properties
are in our case expressed in BML. Then the actual veri�cations conditions can
be created. In our case these are Coq formulae which express the programs and
their properties in terms of the Bicolano semantics. The translation procedure
is presented in [8]. A more detailed presentation of the procedure is presented
below.

1 See http://mobius.inria.fr for more information.

2

2.1 Adding speci�cations to class �les

The basic tool which enables the possibility to generate class �les with bytecode
and BML is the Umbra editor. It supports editing of BML speci�cations together
with bytecode mnemonics. This editor can manipulate bytecode �les in textual
form in parallel with class �les.

A separate part of the Umbra editor is a library called BMLLib. BMLLib parses
fragments of BML speci�cations, prints them out in the aforementioned textual
format, and reads and writes BML speci�cations in class �les.

The Umbra editor is also equipped with an automatic tool to transform the
JML speci�cations to BML ones called JML2BML. The compiler can also work
as a standalone tool which takes source code with JML annotations, a class �le
and add the BML speci�cations to the class �le. More details are presented in
[7].

In order to understand how the bytecode speci�cations are generated, con-
sider the class presented in Figure 1. This class provides an abstract implemen-
tation of a bill functionality and it calculates an aggregate cost for a series of
investments based on an abstract implementation of a method that calculates
the cost of a single round.

The translated version of the Bill class is presented in Figure 2.

2.2 The generation of the veri�cation conditions in Coq

The bytecode subsystem is able to generate the veri�cation conditions to be
proved in Coq. The tool which does that, BMLVCgen, uses the mechanisms of
the MOBIUS Direct Veri�cation Generator so the resulting conditions are very
similar to the ones obtained from that. This makes possible to conduct direct
veri�cation of bytecode programs when no source code is available. More details
are mentioned in [5].

The MOBIUS DirectVCgen is a tool built upon bico, Bicolano, the ESC/Java2
parser, as well as PVE's prover backend. It is built around two veri�cation con-
dition generators, one over source code and one over bytecode. The BMLVCgen
uses only the bytecode part of the DirectVCgen functionality.

The MOBIUS DirectVCgen is called �direct� because, contrary to the other
veri�cation condition generators of the PVE, it uses a simple weakest precondi-
tion calculi without any use of an intermediate language. The source VCgen is
written in Java and the bytecode VCgen is written in Coq. It is part of the proof
transforming compiler scheme, as explained in the deliverable 4.3 [13].

The background predicates for the bytecode veri�cation condition generator
are found in the theory of Bicolano. The tool bico is used to translate a program
into the Coq formalisation. These mechanisms of the MOBIUS DirectVCgen are
used by the bytecode subsystem to generate veri�cation conditions based on
the bytecode alone and BML speci�cations. The transition between bytecode
combined with BML annotations and the DirectVCgen is done by a tool called
BMLVCgen.

3

1 /∗∗
∗ The Bill class provides an abstract implementation of the bill
∗ functionality . It calculates the aggregate cost for series of
∗ investments based on the implementation of the method which gives

5 ∗ the cost of a single round (to be implemented in subclasses).
∗
∗ @author Hermann Lehner, Aleksy Schubert, Joseph Kiniry
∗/

9

abstract class Bill {
private /∗@ spec_public @∗/ int sum;
/∗@ public invariant 0 <= sum; @∗/

13

//@ modi�es \nothing;
//@ ensures \result <= x;

17 abstract int round_cost(int x) throws Exception;

/∗∗
∗ This method calculates the cost of the whole series of

21 ∗ investments.
∗
∗ @return true when the calculation is successful and
∗ false when the calculation cannot be performed.

25 ∗/
//@ requires 0 <= n && n < 1000000 && sum < 1000000;
//@ ensures sum <= \old(sum) + n∗(n+1)/2;
public boolean produce_bill(�nal int n) {

29 int i = 0;
try {
//@ loop_invariant i <= n + 1 && sum <= \old(sum)+(i+1)∗i/2;
for (i = 1; i <= n; i++) {

33 sum = sum + round_cost(i);
}
return true;

}
37 catch (Exception e) {

return false;
}

}
41 }

Figure1. The initial source code and JML speci�cations for class Bill

4

/∗@
@ requires 0 <= n && n < 1000000 && sum < 1000000

3 @ modi�es \everything
@ ensures sum <= \old(sum) + n ∗ (n + 1) / 2
@ signals (java/lang/Exception) true
@ signals_only \nothing

7 @∗/
public boolean produce_bill(int n)
0: iconst_0
1: istore_2

11 2: iconst_1
3: istore_2
4: goto #24
7: aload_0

15 8: dup
9: get�eld Bill .sum I (23)
12: aload_0
13: iload_2

19 14: invokevirtual Bill .round_cost (I)I (25)
17: iadd
18: put�eld Bill .sum I (23)
21: iinc %2 1

23 /∗@
@ loop_speci�cation
@ loop_inv i <= n + 1 && sum <= \old(sum) + (i + 1) ∗ i / 2
@ decreases 1

27 @∗/
24: iload_2
25: iload_1
26: if_icmple #7

31 29: iconst_1
30: ireturn
31: astore_3
32: iconst_0

35 33: ireturn

Figure2. Bytecodes and BML speci�cations for the method produce_bill in the
Bill class

5

1 Module produce_billT_int.

Definition mk_pre :=

fun (heap: Heap.t) (this: value) (lv_1n: Int.t) =>

(((((((Is_true (le_bool (Int.const (0)) lv_1n)) /\

5 (Is_true (lt_bool lv_1n (Int.const (1000000))))) /\

(Is_true (lt_bool (vInt (do_hget

heap

(Heap.DynamicField

9 this

BillSignature.sumFieldSignature)))

(Int.const (1000000))))) /\

(exists loc, this = Ref loc)) /\

13 (isAlive heap this)) /\

(assign_compatible p heap this

(ReferenceType (ClassType BillType.name)))) /\

(forall (r6: Location) (x4:type),

17 ((((isAlive heap r6) /\

(assign_compatible p heap r6 x4)) /\

(x4 = (ReferenceType (ClassType BillType.name))))

-> (inv heap r6 x4)))).

21

...

End produce_billT_int.

Figure3. A fragment of the Coq �le Bill_annotations.v which contains the
de�nition of the precondition, postcondition and all asserts inside of the class
methods.

2.3 The work with code

In the course of our case study we were able to generate veri�cation condi-
tions for a small application called Demonstrator. This application consists of
15 classes and was designed to be a simple, but typical application on mobile
devices developed by TLS Technologies as a test bed forMOBIUS tools [14]. This
application was subsequently annotated with JML speci�cations by the MOBIUS
team from Radboud University in Nijmegen so that ESC/Java2 does not raise
warnings. This code together with the JML annotations was used by our team.
We successfully translated the JML speci�cations to BML ones with JML2BML
compiler with only minor editing operations in Umbra which gave a little bit bet-
ter structure of the speci�cations. These modi�cations were not essential from
the point of view of the semantics. Based upon these speci�cations we generated
veri�cation conditions in Coq using BMLVCgen.

The task to prove all the veri�cation obligations in Coq turned out to be
very time consuming. Therefore, we were able to verify only one class within the
given time resources. We decided to verify the already mentioned Bill class. A
fragment of the conditions generated for the class is presented in Figure 3.

6

1 /∗∗
∗ The Bill class provides an abstract implementation of the bill
∗ functionality . It calculates the aggregate cost for series of
∗ investments based on the implementation of the method which gives

5 ∗ the cost of a single round (to be implemented in subclasses).
∗
∗ @author Hermann Lehner, Aleksy Schubert, Joseph Kiniry
∗/

9

abstract class Bill {
private /∗@ spec_public @∗/ int sum;
/∗@ public invariant 0 <= sum; @∗/

13

//@ modi�es \nothing;
//@ requires 0 < x;

17 //@ ensures 0 < \result && \result <= x;
abstract int round_cost(int x) throws Exception;

/∗∗
21 ∗ This method calculates the cost of the whole series of

∗ investments.
∗
∗ @return true when the calculation is successful and

25 ∗ false when the calculation cannot be performed.
∗/
//@ requires 0 <= n && n < 10000 && sum < 10000;
//@ ensures sum <= \old(sum) + n∗(n+1)/2;

29 public boolean produce_bill(�nal int n) {
int i = 0;
try {
/∗@ loop_invariant 0 < i && i <= n + 1 &&

33 @ 0 <= \old(sum) && \old(sum) <= 10000 &&
@ 0 <= sum && sum <= \old(sum) + (i−1)∗i/2 &&
@ 0 <= n && n < 10000 && \old(n) == n;
@∗/

37 for (i = 1; i <= n; i++) {
sum = sum + round_cost(i);

}
return true;

41 }
catch (Exception e) {
/∗ in fact this return case requires additional
∗ signals (Exception) \old(sum) == sum;

45 ∗ in the specs of round_cost.
∗/
return false;

}
49 }

}

Figure4. The �nal source code and JML speci�cations for class Bill
7

Problems with the speci�cation The work with the example revealed that the
initial speci�cations, especially the expression of the loop invariant and the initial
bounds on the parameter n in the Bill class are not correct and not complete to
carry the proof out.

First of all the bound on the parameter n in the original requires clauses were
too big. Indeed, the sum of all the natural numbers 1, . . . , 1000000 does not �t
in the 32-bit integers and in case a big number is used the pattern in the ensures
clause does not hold. Additionally, we changed the assumption about the size of
the sum �eld at the entry of the method. This was done to speed up some of the
proofs checked by Coq and does not a�ect neither the correctness of the method
nor the proof.

As far as the loop invariant is concerned, we had to amend it in three major
ways. First, we had to supply the information on the bounds of all the involved
variables. Second, we had to add the information that the variable n is not
changed within the loop (\old(n) == n). Finally, the arithmetic pattern (i +
1) ∗ i/2 which was initially used in the speci�cations as a bound on the value
of the sum �eld was not correct. In particular, it was impossible to infer the
postcondition with the �nal bound n∗(n+1)/2 in case n = 0 using that invariant
form. Therefore, we changed the invariant to contain (i − 1) ∗ i/2. With these
amendments the proof went smoothly.

The �nal speci�cation of the Bill class is presented in Figure 4.

Problems with the veri�cation conditions In the course of the veri�cation, it
turned out that the de�nition of the formula which should be assumed at the
entry to the method was too weak. The formula should specify that certain
condition must hold after the method provided that the method is called in an
appropriate state. In particular, the assumptions in the formula should state that
this variable points to an appropriate object on the heap. These assumptions
were missing and were added by us by hand to make the veri�cation possible.
Figure 3 contains a version of the formula which contains the assumptions added
by hand. These are

Module produce_billT_int.

Definition mk_pre :=

...

(exists loc, this = Ref loc)) /\

(isAlive heap this)) /\

(assign_compatible p heap this

(ReferenceType (ClassType BillType.name)))) /\

...

End produce_billT_int.

Additionally, it turned out that the generated conditions required us to prove
False in case of the abstract method and in case of the implicit constructor. This
choice can be explained in case of the abstract method as the method is actually
not called in any run of the program. However, the choice for the constructor

8

is semantically wrong as the implicit constructor can actually be called in case
the class is subclassed by a class with no explicit constructor or in case the
constructor in the subclass calls explicitly the implicit one in the superclass.

Problems with the process of proving In the course of the case study, it turned
out that it is very di�cult to �nd out what kind of proof obligation one proves in
the particular moment. The original tactics and proof facilitation provided inside
Coq worked relatively well in case all the speci�cations were correct and located
in places predicted by the authors. However, they were extremely di�cult to use
in case something was wrong or slightly di�erent than the authors assumed.

In particular, the invariant originally generated by the BML tools was located
right before the conditional jump that checks the loop condition. However, the
Coq facilities assumed this is located before the whole calculation of the jump
condition starts. The relocation of the invariant to the place predicted by the
authors made the proof simpler.

Another problem that showed up in the course of the proof development was
a wrong modelling of boolean type in Bicolano. The semantics of the Java Virtual
Machine requires that the boolean values are modelled as integers whereas the
Bicolano formalisation assumes that the boolean values are bytes.

We developed a special technique of reducing the goal to head normal form.
This allowed us to learn the whole process of the veri�cation condition reduction
and �nd out where precisely we lack particular assumptions.

3 Proving veri�cation conditions

The veri�cation conditions generated by the VCGen developed to a number
of di�erent subgoals. In order to prove subgoals concerned with inequalities, a
number of auxiliary tactics was developed. Since the Java Virtual Machine model
uses machine integers (i.e. bounded integers with operations modulo), in order
to translate JVM operations into Coq arithmetics, one must make sure there
are no integer over�ows. Moreover, in order to use the Coq arithmetic tactics
(such as omega) one must �rst get rid of layers of abstraction introduced by
the implementation of JVM in Coq. The tactics we developed faciliate these
automatic steps.

The �rst tactic, called zetujg and presented in Fig. 5 translates the VCGen
inequation appearing in the current goal into a Z equation, which can be treated
by omega. For example, a goal which looks like this

Is_true (le_bool (Int.const 1) (Int.add n (Int.const 1)))

is translated into

1 <= Int.toZ n + 1

The tactic works as follows: if the current goal matches the general form of a VC-
Gen inequation, the suitable inequality constant is unfolded, which uncovers the

9

Int.toZ injection. Then the tactic arith is called which applies homomorphism-
like equations to both sides of the inequality in order to push Int.toZ down in
the tree of the expression, transforming machine integer operations into Z ones.
The application of these equations is often guarded by the condition that certain
parts of expression are within the range machine integers. Therefore a number
of auxiliary goals of the form Int.range t can be generated by arith. Some of
them are hopefully trivial though.

Since there is no distinction between the main subgoal and the secondary
ones, we must use the try construction for the rest of the tactic, but in fact
it should never fail on the main subgoal. The rest of the tactic introduces the
Z form of the inequality (the assert tactic) and proves the VCGen inequation
from it. The Z form is left to the user.

Ltac zetujg :=

match goal with

| |- Is_true (le_bool _ _) =>

unfold le_bool;

arith; trivial; try (

match goal with

|- Is_true (Zle_bool ?x ?y) =>

let Hi := fresh in

assert (Zle x y) as Hi; [idtac |

unfold Zle in Hi; (arith; trivial);

try (unfold Zle_bool;

destruct (x ?= y)%Z; simpl; tauto)

]

end)

| |- Is_true (lt_bool _ _) =>

unfold lt_bool;

arith; trivial; try (

match goal with

|- Is_true (Zlt_bool ?x ?y) =>

let Hi := fresh in

assert (Zlt x y) as Hi; [idtac |

unfold Zlt in Hi; (arith; trivial);

try (unfold Zlt_bool;

destruct (x ?= y)%Z; simpl; (discriminate || tauto))

]

end)

| |- Int.range _ =>

red;

let x:=fresh in

set (x:=Int.half_base); compute in x; subst x

end.

Figure5. The tactic zetujg.

10

The last clause of the de�nition of the tactic is concerned with the goals
of the form Int.range t. What it does is unfold certain constants in order to
transform it to the form accepted by omega.

A very similar tactic, treating VCGen inequalities appearing in hypotheses
is zetujh presented in Fig. 6. The way it works is of course very similar with
one exception: since it is much more convenient to work on a goal than on
a hypothesis, it starts with the revert tactic, and in order not to perform
unwanted modi�cations on the original goal it is temporarily folded to a local
de�nition which is unfolded at the end.

4 Generation of certi�cates

The bytecode tool set contains also a small tool CCT which enables the possibility
to pack a certi�cate being e.g. a proof done in Coq to class �les. This tool also
makes possible to unpack and check that the code in the class �le indeed has the
property proven by the certi�cate.

This tool has been adapted to pack Coq proofs in a class level certi�cate as
documented in [12]. The certi�cate is veri�ed at the code consumer side by the
following procedure:

� the generation of the veri�cation conditions using BMLVCgen and the BML
speci�cations in the class �le,

� the extraction of the Coq proofs from the class �le,
� the compilation by Coq of the proofs against the freshly generated veri�ca-

tion conditions.

We consider the class �le correctly veri�ed in case the �nal compilation by Coq
is successfull.

It is worth mentioning that this procedure assumes that BML speci�cations
are in the trusted base. This need not be the case in the actual deployment
environment. However, the mentioned above procedure can easily be supple-
mented by a step in which the BML speci�cations are generated or checked for
consistency with actual security policy at the code consumer's side.

The Bill class with the certi�cate is available from the page http://zls.

mimuw.edu.pl/~alx/umbra/casestudy/.

5 Conclusions

In the course of the case study we were able to generate BML speci�cations for
a small application. The source code speci�cations were expressive enough to
exclude the code warnings issued by ESC/Java2. Therefore, the BML tools are
able to embed a reasonably expressive set of speci�cations into class �les.

The process of the certi�cate generation requires a time consuming proof con-
struction. The proof construction is the stage which requires a lot of additional
work to be usable. In the course of the case study, we have made a small step

11

Ltac zetujh H :=

match type of H with

| Is_true (le_bool _ _) =>

unfold le_bool in H;

match goal with

| |- ?goal =>

let g:=fresh "g" in

set (g:=goal);

revert H;

arith; trivial; try (

intro H;

match type of H with

| Is_true (Zle_bool ?x ?y) =>

let Hi := fresh "Hi" in

assert (Zle x y -> g) as Hi; [

clear H;

intro H;

subst g

|

apply Hi;

clear Hi;

unfold Zle;

unfold Zle_bool in H;

destruct (x ?= y)%Z; intros; (discriminate || tauto)

]

end)

end

| Is_true (lt_bool _ _) =>

unfold lt_bool in H;

match goal with

| |- ?goal =>

let g:=fresh in

set (g:=goal);

revert H;

arith; trivial; try (

intro H;

match type of H with

| Is_true (Zlt_bool ?x ?y) =>

let Hi := fresh in

assert (Zlt x y -> g) as Hi; [

clear H;

intro H;

subst g

|

apply Hi;

clear Hi;

unfold Zlt;

unfold Zlt_bool in H;

destruct (x ?= y)%Z; simpl in H; tauto

]

end)

end

end.

Figure6. The tactic zetujh.

12

to make the process easier by constructing a tactic which transforms Bicolano
formulae to arithmetical formulae.

A big obstacle in the course of the proof construction is the problem that the
formulae the user sees are not comprehensive. In addition, the unfolding of many
de�nitions causes a huge blow up of the formulae. This calls for a development
of a set of intelligent tactics which facilitate a reasonable management of the
proof development.

Moreover, the veri�cation conditions that are generated are not always cor-
rect. A considerable review of the process of the veri�cation condition generation
is necessary. Although, one must say that the veri�cation condition generation
is a di�cult task and it is not unusal to see some small design and development
�aws in software of this size.

References

1. A. W. Appel. Foundational proof-carrying code. In J. Halpern, editor, Logic in
Computer Science, page 247. IEEE Press, June 2001. Invited Talk.

2. A. W. Appel and A. P. Felty. A semantic model of types and machine instructions
for proof-carrying code. In Principles of Programming Languages. ACM Press,
2000.

3. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M. Leino,
and E. Poll. An overview of JML tools and applications. In Workshop on Formal
Methods for Industrial Critical Systems, volume 80 of Electronic Notes in Theoret-
ical Computer Science, pages 73�89. Elsevier, 2003.

4. L. Burdy, M. Huisman, and M. Pavlova. Preliminary design of BML: A behavioral
interface speci�cation language for Java bytecode. In Fundamental Approaches
to Software Engineering, volume 4422 of LNCS, pages 215�229. Springer-Verlag,
2007.

5. J. Chrz¡szcz, M. Huisman, and A. Schubert. BML and related tools. In For-
mal Methods for Components and Objects, Lecture Notes in Computer Science.
Springer-Verlag, 2009. To appear.

6. J. Chrz¡szcz, M. Huisman, A. Schubert, J. Kiniry, M. Pavlova, and E. Poll. BML
Reference Manual, December 2008. In Progress. Available from http://bml.mimuw.

edu.pl.
7. J. Fulara, K. Jakubczyk, and A. Schubert. Supplementing java bytecode with

speci�cations. In T. Hru²ka, L. Madeyski, and M. Ochodek, editors, Software En-
gineering Techniques in Progress, pages 215�228. O�cyna Wydawnicza Politechniki
Wroclawskiej, 2008.

8. B. Grégoire and J.L. Sacchini. Combining a veri�cation condition generator for a
bytecode language with static analyses. In Trustworthy Global Computing: Revised
Selected Papers from the Third Symposium TGC 2007, number 4912 in Lecture
Notes in Computer Science, pages 23�40. Springer-Verlag, 2008.

9. B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Huss-
mann, editor, Fundamental Approaches to Software Engineering, volume 2029 of
Lecture Notes in Computer Science, pages 284�299. Springer-Verlag, 2001.

10. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface speci�cation language for Java. Technical Report TR 98-06y, Iowa State
University, 1998. (revised since then 2004).

13

11. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML
Reference Manual, July 2005. In Progress. Department of Computer Science, Iowa
State University. Available from http://www.jmlspecs.org.

12. MOBIUS Consortium. Deliverable 4.2: Certi�cates, 2007. Available online from
http://mobius.inria.fr.

13. MOBIUS Consortium. Deliverable 4.3: Intermediate report on proof-transforming
compiler, 2007. Available online from http://mobius.inria.fr.

14. MOBIUS Consortium. Deliverable 5.1: Selection of case studies, 2007. Available
online from http://mobius.inria.fr.

14

