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Abstract. Intuitionistic automated theorem proving systems have been
benchmarked on a large problem collection, the ILTP-Library
[Raths et al., 2005], which contains a few previously used formula col-
lections, and part of the TPTP-Library [Sutcliff et al., 1994]. The latter
proves to be appropriate not only for classical but also for intuition-
istic benchmarking. So-called lean theorem provers turn out to be not
only compact but also very efficient compared to complex provers. We
describe the theorem provers, test formulas, and present the results.

1 Introduction

Automated theorem proving (ATP) systems are important tools in interactive
proof assistants like MetaPRL [Hickey et al., 2003], Nuprl and Coq, for they
can prove conceptually simple but technically complex subgoals, and thus re-
lease the user from tedious routine work. In practice however, there is still only
limited use of theorem provers, because a lot of formulas cannot be solved in
a reasonable amount of time. When working with a proof assistant, it makes a
great difference whether a subgoal can be proved within a few seconds or several
minuts (or much longer). Thus, it is worth striving for more efficient proof pro-
cedures. Benchmarking ATP systems can give some hints which proof methods
and implementations are promising, and what can be optimised.

The presented tests focus on intuitionistic theorem provers. Intuitionistic
(constructive) proofs are needed in program verification and synthesis. Since
they contain much more information than classical proofs, they are much harder
to find. Regarding the sequent calculi, classical and intuitionistic logic differ
in the restrictions of the order in which the inference rules are applied. While
in classical first-order logic only the order of the quantifier rules is restricted,
in intuitionistic first-order logic also the order of the so-called special rules is
constrained. The special rules decompose subformulas containing negation, im-
plication, and the universal quantifier. Because of the interaction of these two
constraints, the search space in intuitionistic first-order logic is very large, which
means intuitionistic proving is very hard. In fact, we found only five intuitionistic
first-order ATP systems. We also tested two purely propositional intuitiontistic
provers.



We have estimated the time efficiency of these theorem provers by measuring
the time needed for proving or refuting the formulas. There are also other criteria
determining the usefulness of the ATP systems, such as space efficiency, correct-
ness, completeness. For program verification and synthesis it is also desirable to
supply the proof assistant with a sequent proof in order to extract a program.

Another criterion is the ease of handle and to adapt the theorem prover to the
respective application. Among the tested ATP systems there are also so-called
“lean”-provers consisting of only a few lines of code. In contrast to complex
provers they are easy to adapt, are transparent, can be verified formally to be
correct and complete, and are suited for demonstrations in teaching.

For benchmarking we compiled a comprehensive problem collection, the
Intuitionistic Logic Theorem Proving (ILTP) Library v1.0 [Raths et al., 2005].
This platform contains three small formula sets that have been previously used
for testing intuitionistic ATP systems, and part of the TPTP (Thousands of
Problems for Theorem Provers) Library v2.7.0 [Sutcliff et al., 1994]. The latter
is a large, regularly updated and extended collection of problems from vari-
ous domains (e.g. algebra, set theory, software creation). Originally intended for
evaluating classical ATP systems, the TPTP Library can also be used for in-
tuitionistic benchmarking since classical and intuitionistic logic share the same
syntax. This idea had already been expressed by others, but comprehensive in-
tuitionistic benchmarking using the TPTP Library was probably done here for
the first time.

In the next sections we describe the ATP systems, the test formulas and
conditions, present the results and draw some conclusions.

2 The Provers

Seven intuitionistic ATP systems have been evaluated: ft [Sahlin et al., 1992],
ileanTAP [Otten, 1997], ileanSeP1, ileanCoP [Otten, 2005], JProver
[Schmitt et al., 2001], LJT [Dyckhoff, 1992], STRIP [Larchey-Wendling et al., 2001].
Table 1 classifies them according to their proof procedure (tableau-/connection-
based), the logic they are being applied to (first-order/propositional), their size
(lean/complex), and whether clausal form transformation is performed. In the
following, the ATP systems are described very briefly. The reader is assumed to
be familiar with automatic theorem proving, and is referred to the cited papers.

Probably the first intuitionistic first-order theorem prover is ft
[Sahlin et al., 1992]. ft uses the single-conclusioned sequent calculus, applies the
inference rules backwards (analytically), and introduces free variables when ap-
plying the quantifier rules. Because of the non-invertibility of some rules in the
intuitionistic sequent calculus, backtracking is necessary. ft tries to control the
arising large search space by sophisticated heuristics. For propositional logic, a
decision procedure using the contraction-free sequent calculus [Dyckhoff, 1992]
is provided. There is a C and a Prolog version of ft.2

1 available at http://www.leancop.de/ileansep/
2 In the Prolog version of ft the decision procedure must be called explicitly.
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proof intuitionistic logic size clausal form transformation
procedure first-order propositional with without
tableau-based ft, ileanTAP, LJT, STRIP lean ileanCoP ileanTAP,

ileanSeP ileanSeP
connection-based ileanCoP, complex LJT, STRIP,

JProver ft, JProver

Table 1. Classification of the provers according to their proof procedure, logic, size,
and whether they apply clausal form transformation

ileanSeP, ileanTAP, and ileanCoP are compact and very efficient ATP sys-
tems. They consist of only a few lines of Prolog Code, and are thus easily to
handle and to adapt to the respective application. Due to their modular design
they can be extended to deal with other non-classical logics. ileanSeP 1 uses the
single-conclusioned sequent calculus with free variables and analytic proof search
(similar to ft), but applies skolemization instead of heuristics.

ileanTAP [Otten, 1997] first tries to prove the formula classically by semantic
tableau with free variables. After finding a tableau proof, it aims to unify so-
called prefixes of those literals closing the branches. A prefix of a literal is a
description of its position in the formula tree. The prefix unification ensures the
particular restrictions in intuitionistic logic.

ileanCoP [Otten, 2005] works in a similar way as ileanTAP, but uses a connection-
based method to prove the formula classically in the first step. To keep the proof
procedure compact, it first transforms the formula into clausal form. There is
also a version that implements the so-called Prolog technology: ileanCoP pt rep-
resents the matrix corresponding to the formula in the Prolog database so that
it can be accessed very fast.

JProver [Schmitt et al., 2001] is a theorem prover for classical and intu-
itionistic first-order logic based on a connection method for non-clausal form
and prefix unification [Otten und Kreitz, 1996]. In contrast to ileanCoP, clausal
form transformation is not necessary, but the multiplicities of the submatrices
are increased globally instead of locally. The found matrix proof is converted
into a sequent proof that is used by the interactive proof assistants MetaPRL
[Hickey et al., 2003], Nuprl and Coq. JProver is implemented in OCaml.

All the theorem provers described above can decide a fragment of intuitionis-
tic first-order logic. ft also decides whole propositional logic. LJT [Dyckhoff, 1992]
and STRIP [Larchey-Wendling et al., 2001] are purely propositional intuitionis-
tic ATP systems, which use the contraction-free sequent calculus, apply analytic
proof procedures and provide decision procedures.

3 Test Formulas and Conditions

We used the 1445 problems from the ILTP-Library v1.0 [Raths et al., 2005].
These problems are divided into two sets: the TPTP problem set contains 1337
problems from the TPTP-Library v2.7.0 [Sutcliff et al., 1994], and the ILTP
problem set contains 108 problems from three previously used formula collections.
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Each problem is associated with its status: Theorem, Non-Theorem, Unknown.
Whereas in the ILTP problem set the status of every problem was known in
advance, in the TPTP problem set the intuitionistic status of each problem has
been determined by the ATP systems themselves assuming them to be correct.
There is also a difficulty rating for each problem stating the portion of current
state-of-the-art ATP systems that fail to solve the problem in a reasonable time.
For example, a rating of 0.0 means that all state-of-the-art provers solve the
problem, and a rating of 1.0 says that none of the provers could solve it within
a certain time. 3 To specify the state-of-the-art ATP systems, we selected four
first-order and one purely propositional prover which have solved the highest
number of problems: ft (C-version), JProver, ileanTAP, ileanCoP, and STRIP.

3.1 The TPTP Problem Set

The TPTP-Library v2.7.0 is a collection of about 7000 problems from various
domains for classical benchmarking. It can in principle also be used for intuition-
istic benchmarking, as intuitionistic and classical logic have the same syntax. The
TPTP-Library contains problems in clausal form (CNF), and in non-clausal form
(“first-order form”, FOF). Formulas in clausal form are intuitionistically invalid,
and therefore not interesting for intuitionistic reasoning.4

From the 1745 FOF formulas 408 are classically invalid. These problems are
not interesting as well, since they could be refuted intuitionistically by a classical
ATP system. So we used the remaining 1337 formulas, of which 1279 are classical
theorems, and 58 are not known to be classically valid or invalid.

3.2 The ILTP Problem Set

The ILTP problem set consists of 108 formulas of which 90 are intuitionistically
valid, and 18 classically but not intuitionistically valid. The formulas were taken
from three small previously used benchmark collections.

The first collection contains 39 intuitionistically valid first-order formulas
that were used to test ft [Sahlin et al., 1992]. The formulas ft3.1 to ft3.5 were
left out as these problems (Pelletier 39 to 45) already exist in the TPTP problem set.

The second collection contains 36 propositional formulas from Dyckhoff’s
benchmark collection5. There are six classes, which are formulated in a intu-
itionistically valid and a classically but not intuitionistically valid variant. From
each variant, problems of size 2, 6, and 10 were selected.

The third collection contains 33 intuitionistically valid formulas (21 first-
order, 12 propositional) used to test JProver [Schmitt et al., 2001]. Three formu-
las (barber, fv1, fv3) were omitted because they are already classically invalid,
or cannot be represented in pure first-order logic.
3 We gave the provers 300 seconds to solve a problem (see 3.3). The rating can be 1.0

while the status is Theorem or Non-Theorem, when solving takes more than 300 s.
4 Already p ∨ ¬p does not hold intuitionistically. Also a transformation into clausal

form does not preserve intuitionistic validity, because applied implications such as
¬(A ∧B) → (¬A ∨ ¬B) and ¬¬A → A are intuitionistically invalid.

5 See http://www.dcs.st-and.ac.uk/∼rd/logic/marks.html
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3.3 Test Conditions

The benchmarks have been performed on a Xeon 3 Ghz under Linux 2.4.22. The
ATP systems had 300 seconds to solve a problem. A problem was regarded as
“solved”, i.e. proved or refuted, when the ATP system put out a corresponding
message. Table 2 gives information about the used versions and compilers for
each tested ATP system.6

prover ft ileanSeP ileanTAP ileanCoP LJT STRIP JProver

version 1.23 1.0 1.17 1.0 1.0 1.0 MetaPRL-CVS-

C-version Prolog-vs. 2004.03.07

language C Prolog C OCaml

compiler gcc v.3.3.1 ECLiPSe 5.7 #33 (provided Ocaml v3.06,
(using flag “nodbgcomp.”) binary) OMake v0.7.9

Table 2. Versions and compilers of the tested ATP systems

4 Results

Table 3 shows the overall performance of the tested intuitionistic ATP systems
on the ILTP-Library v1.0. ileanCoP pt and ileanCoP solved the highest number
of problems. Far behind ft, ileanTAP, JProver, and ileanSeP follow. ft’s C-version
does better than its Prolog-version. Regarding only the number of proved for-
mulas, ileanTAP comes between the two ft versions. Of the purely propositional
provers, STRIP performs better than LJT.

All the theorem provers yield error messages for a few formulas. ileanCoP and
ileanCoP pt put out Stack overflow when clausal form transformation generates
too large formulas. The same error message occurs with all tableau-based provers
when managing the open proof branches needs too much stack. The C-version of
ft reports further memory limits. JProver shows an error in its prefix unification
module in certain cases.

None of the tested ATP systems turned out to be incorrect. That means, from
the ILTP problem set only intuitionistically valid formulas have been proved,
and only intuitionistically invalid formulas have been refuted. For the TPTP
problem set we must give a weaker statement, since the status of these formulas
was not known in advance but was determined by the ATP systems themselves:
The formulas that have been proved (refuted) were not refuted (proved) by
any other ATP system. We have also checked JProver’s proof conversion (in a
separate test): Each generated sequent proof was understood by the interactive
proof environment MetaPRL.

For the TPTP problem set, table 4 gives some information about the com-
plexity behaviour of the ATP systems, and their performance on problems of
6 For testing JProver, we chose a version that is integrated in MetaPRL in order to use

its term operations and communication facilities. We slightly adapted MetaPRL’s
first-order theory such that type information is not needed to represent and prove the
formulas. Furthermore, the proof conversion was switched off during benchmarking.
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provers
first-order propositional

ft ileanSeP ileanTAP ileanCoP ileanCoP pt JProver LJT STRIP
Prolog C

solved 199 226 156 184 318 323 162 55 60
proved 173 198 153 181 265 270 160 31 34
TPTP 99 112 87 113 188 193 94 5 5
ILTP 74 86 66 68 77 77 66 26 29

refuted 26 28 3 3 53 53 2 24 26
>300s 1192 673 1212 1201 1064 1050 1267 7 4
avg. time∗ 0.03 <0.01 1.96 0.01 1.50 0.44 0.70 <0.01 0.05
errors∗∗ 54 546 77 60 63 72 16 4 2

Table 3. Overall performance

∗ average time in s, computed only for formulas proved by all first-order provers, or
propos. provers, resp. (7.4% of all formulas, or 42.4% of all propos. formulas, resp.)

∗∗ mainly stack overflow; other errors:

ft (C): segmentation violation (104 formulas), memory allocation error (3)
JProver: Invalid argument JProver bug (Jtunify module) (16)

which the only predicate is equality. All theorem provers solve the most prob-
lems already within the first seconds. Giving the provers more time, the number
of additionally proved formulas decreases exponentially. This is because with
increasing formula size the search space and thus the time needed for proving
increase exponentially.

ft and JProver show a strong decline. This implies that these provers will
not solve much more problems, if more time, a faster system or compiler would
be available, or code optimizations would be carried out. ileanCoP has a softer
decline, meaning that it has the potential to solve more comlex problems.

provers
first-order proposit.

ft ileanSeP ileanTAP ileanCoP ileanCoP pt JProver LJT STRIP
Prolog C

solved 112 125 90 116 234 239 96 17 17
proved 99 112 87 113 188 193 94 5 5
0 - 1 s 93 109 73 107 146 155 78 5 5
1 - 10 s 5 1 8 2 16 12 9 0 0
10 - 100 s 1 2 4 2 17 9 7 0 0
100 - 200 s 0 0 2 0 1 12 0 0 0
200 - 300 s 0 0 0 2 8 5 0 0 0
pure equal. 2 2 1 6 6 7 2 0 0

refuted 13 13 3 3 46 46 2 12 12

Table 4. Performance on the TPTP Problem Set
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Table 5 shows the number of proved problems from each domain of the TPTP
problem set. In the domains MGT (management), SET (set theory), and GEO
(geometry) of which the problems are rated middle or high, ileanCoP performs
far best. In NLP (natural language processing) ileanCoP does quite bad because
clausal transformation produces too large formulas. In SYN (syntactic), which
contains rather constructed and partly very simple problems, ft does best.

Beweiser AGT ALG COM GEO GRP HAL LCL MGT NLP PUZ SET SWC SWV SYN total

ft Prolog 2 0 1 0 0 0 0 7 7 0 15 0 1 66 99
ft C 2 0 2 0 0 0 1 7 7 0 21 0 1 71 112
ileanSeP 5 0 0 1 0 0 0 0 3 0 19 0 1 58 87
ileanTAP 0 6 0 1 0 0 1 6 11 0 26 0 1 61 113
ileanCoP 14 5 1 6 0 0 1 21 3 2 72 0 1 62 188
ileanCoP pt 14 6 1 7 0 0 1 24 3 2 73 0 1 61 193
JProver 0 1 0 0 0 0 1 9 7 0 14 0 1 61 94
LJT 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5
STRIP 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5

Table 5. Number of proved formulas for each domain of the TPTP Problem Set

5 Conclusions

The tested intuitionistic theorem provers, benchmark formulas, and results have
been presented. ileanCoP has solved the highest number of problems, and is
probably the most efficient intuitionistic first-order ATP system at present. This
demonstrates that lean provers are not only compact but also powerful.

The connection method for clausal form seems to be more efficient than the
sequent- or tableau proof methods. However, clausal form transformation often
generates a very large formula that is hard to prove, and makes a conversion
from the matrix proof to a sequent proof difficult. JProver applies a connection
method for non-clausal form. But this procedure increases the multiplicities of
the submatrices globally, which strongly inflates the matrix and results in a
perfomance below that of the tableau provers. One is working on a connection
method for non-clausal form that increases the multiplicities dynamically.

From the tested provers, JProver is currently the only one that is used by
interactive proof assistants. We will extend some of the other ATP systems such
that they yield a sequent proof and can be applied by interactive systems as well.

Besides improving the proof procedures, we also want to build ATP systems
that sequentially try various proof procedures and heuristics (perhaps a few
seconds each) during the overall available time. This idea seems to be promising
since all tested provers solve most problems within the first seconds. A simple
example is the combination of ileanCoP and ileanTAP, giving 150 seconds each,
which proves 14 formulas more than ileanCoP within 300 seconds.

The tests helped compiling the ILTP-Library by determing the status and
rating of the problems. The ILTP-Library is intended as an open platform for in-
tuitionistic theorem proving, and shall be extended by problems which occur e.g.
in current ATP literature, or while using interactive proof development systems.
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