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Identifying proteins is complicated

there are plenty of proteins in a sample 
proteins are frequently fragmented 
even a single protein has a  
complicated signal



Chemical compounds are made of different 
isotopes

isotopic envelope
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huge number of isotopologues



important observation

some isotopic variants are more probable than others

P( ) = 



Assume 

1) variants of isotopes of atoms are independent

2) elements vary in abundances of isotopes

P( ) = 



o0 + o1 + o2 = 200



How much we gain by considering  
the smallest set  

with a fixed probability ?
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To get the smallest set with probability P:
Find the most probable variant
while Total Probability < P :

Get layer so that  p> P(v)>=qp where

Trim the least probable variants from  
the last layer so that Total Probability >= P

p = P(vmin previous layer)



Smallest set with current  
Total Probability

Monotonic Expansion Property:

For each v set {W: P(W)>=P(v) } is adjacent to v

multinomial 
distribution





our OPTIMAL implementation uses

queue for storing subsequent layers

a version of quick select for trimming

complexity

other tricks

O(n) in the total number of configurations



We provide theoretical background  
and get better run times



LC-MS/MS

•data for colorectal 
cancer patients and  
healthy donors 
•ca 1000 peptides 
•preprocessing: spectra 
interpretation and 
retention time aligning
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• the shape of the isotopic cluster extended by the active peak
should pass user predefined filter (see below). By shape we
mean the relative height, positions and the number of peaks
in the cluster.

As a filter for the isotopic cluster we investigate here the pro-
portions of the height of two neighboring peaks. We compute
the possible extreme values for these proportions by consider-
ing polyserine and polyphenyloalanine peptides and we filter
out clusters having these proportions outside computed values.
In fact these extreme values are further relaxed to encompass
sulphur containing peptides. Our algorithm is designed to deal
with small peptides. Hence only two possibilities for monoiso-
topic peak position are considered by the algorithm: either the
first or the second peak in the isotopic cluster can be the highest
one, and all peaks following it have lower height.

The behavior of the algorithm depends on the number of
candidate active isotopic clusters. If there is no candidate cluster
to which we can assign our active peak, we form a new cluster
containing this peak. When there is only one candidate cluster
we extend it with the active peak. In the case when more than
one candidate exists we assign the active peak to the cluster
whose monoisotopic peak has the highest signal. Such a situation
is quite rare but it happens when the signal coming from one
peptide is artificially split in the domain of the retention time
(cf. Fig. 4).

3.4. Step 3: automated charge determination

We have implemented two versions of this step, simple and
fast and a more sophisticated one. The simple version uses only
information from the peak spacing in the isotopic clusters as
prepared in the previous step and it can be viewed as a variation
of the Z-score method from [38]. We assume that the charge is
simply the reciprocal of the distance between two adjacent peaks
in the isotopic cluster. We count results for each possible space
interval and choose the most frequent value as a charge.

Fig. 4. Artificial peak separation in the retention time domain. Isotopic en-
velopes visualized by Sparky. Peaks found by NMRPipe are depicted as black
‘X’. Horizontal axis—m/z, vertical axis—retention time, amplitudes are color
coded increasing from red to blue. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of the article.)

This method is very fast but also susceptible to errors espe-
cially when there are artifacts and split peaks in the spectrum.
This method also cannot determine charges for overlapping iso-
topic envelopes.

Second method is a variation of the method from [29]. It
operates on the list of clusters and raw mass spectrum. The orig-
inal method is designed for 1D spectra. We use here the isotopic
clusters found in the previous step to approximate coordinates
of isotopic clusters in the spectrum. We perform the projection
of the isotopic cluster in the direction of the retention time and
use the combination of Patterson and Fourier transform for the
m/z values of the isotopic cluster to determine the charge. This
method can handle the charge up to half of the spectrum resolu-
tion.

3.5. Step 4: isotopic model (mass decomposition)

Recall that our procedure is designed to deal with small pep-
tides (up to 5000 Da). For such data the averagine model by
Senko et al. [30] is not suitable. However to estimate the signifi-
cance of the cluster we fit its group of peaks to the estimated
theoretical isotopic distribution calculated for the given
monoisotopic mass. This step is coupled with the mass and
charge determination as illustrated in the flowchart (cf. Fig. 5).
We start with the assumption that the first visible peak in the
isotopic cluster corresponds to the monoisotopic mass. If this

Fig. 5. Flowchart summary of the algorithm.

2.3 Isotopic envelopes detection

Figure 2.8: Masses and charges calculated by our algorithm for the fragment

of the spectrum. Peaks are marked as black crosses, small arrow denotes the

monoisotopic peak in each isotopic cluster, the monoisotopic mass (M) and charge

(Q) are given for each identified peptide.
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proteolytic fragmentation



Exopeptidase activity 

•motivation: differential 
exoprotease activities contribute to cancer 
type–specific serum peptidome 
degradation 
•our goal: first formal 
model estimated from 
LC-MS/MS data
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Egzopeptydazy

Villanueva et. al. Di�erential exoprotease

activities confer tumor-specific serum

peptidome patterns. Journal of Clinical

Investigation, 116:271–284, 2006

egzopeptydazy — enzymy katalizuj⇢ce odcinanie
aminokwasów z ko⌧ca peptydu

aminopeptydazy — egzopeptydazy dzia�aj⇢ce na N-ko⌧cu

carboksypeptydazy — egzopeptydazy dzia�aj⇢ce na C-ko⌧cu

Bogus4aw Kluge, Anna Gambin, Wojciech Niemiro Estymacja parametrów procesu Markowa modeluj2cego aktywno53 egzopeptydaz
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all peptide subsequences of length at least 2. A directed edge from node i
to j is placed if subsequence j can be obtained from subsequence i by cutting
o� a single amino acid from the N-terminus or the C-terminus. Each edge
is labeled with the amino acid being cut o� and the terminus it is being cut
o� from, thus the set R of possible labels has 20⇥ 2 elements. The label for
edge i ⇧ j is denoted by r(i, j). We assume that the labeling and structure
of the cleavage graph is known. An exemplary cleavage graph is presented
in Fig.

f_graph
3.2.

It is helpful to think of the peptide subsequences as particles placed at
nodes of the cleavage graph and moving along its edges. Then the probabilis-
tic dynamics of the cleavage process is described by the following intensities
of transition:

• particles are created at node i with intensity a⇥i,

• every particle placed at i can move to j with intensity ar(i,j) indepen-
dently of all other particles, provided that there exists an edge i ⇧ j,

• every particle placed at i can be annihilated with intensity ai† indepen-
dently of all other particles.

We refer to the (ar)r⇤R parameters as the cutting intensities.
More formally, let random variable Xi(t) denote the number of particles

at node i ⌃ V at time t and write X(t) = (Xi(t))i⇤V . We regard (X(t), t ⌅ 0)
as a homogeneous Markov process in the space of configurations x = (xi)i⇤V ,
xi ⌃ {0, 1, . . . }. We use the standard notation for restricted configurations,
writing e.g. x�i = (xk)k⇤V : k ⌅=i. The process has the following intensities of
transition (x ⌥= x⇥):

Q(x, x⇥) =

�
⌅⌅⌅⇤

⌅⌅⌅⇥

a⇥i if x⇥
i = xi + 1, x⇥

�i = x�i for some i,

ar(i,j)xi if x⇥
j = xj + 1, x⇥

i = xi � 1,

and x⇥
�i�j = x�i�j for some i ⇧ j,

ai†xi if x⇥
i = xi � 1, x⇥

�i = x�i for some i.

We assume that the process reached the equilibrium state. At each node,
we are interested in the distribution of the number of particles. Perhaps
surprisingly, we can prove that those numbers are independent and each one
follows a Poisson distribution.

Proposition 1 (Equilibrium distribution) The process (X(t)) has the
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Cleavage graph 
We refer to the (ar)r∈R parameters as the cutting intensities.

More formally, let random variable Xi(t) denote the number of particles at node

i ∈ V at time t and write X(t) = (Xi(t))i∈V . We regard (X(t), t ≥ 0) as a homogeneous

Markov process in the space of configurations x = (xi)i∈V , xi ∈ {0, 1, . . .}. We use the

standard notation for restricted configurations, writing e.g. x−i = (xk)k∈V : k ̸=i. The

process has the following intensities of transition (x ̸= x′):
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a⋆i if x′
i = xi + 1, x′

−i = x−i for some i,

ar(i,j)xi if x′
j = xj + 1, x′

i = xi − 1,

and x′
−i−j = x−i−j for some i → j,

ai†xi if x′
i = xi − 1, x′

−i = x−i for some i.

We assume that the process reached the equilibrium state. At each node, we are

interested in the distribution of the number of particles. Perhaps surprisingly, we can

prove that those numbers are independent and each one follows a Poisson distribution.

Proposition 1 (Equilibrium distribution) The process (X(t)) has the equilibrium

(stationary) distribution π given by:

π(x) =
∏

i∈V

eλi
λxi

i

xi!
,

where the configuration of intensities (λi)i∈V is the unique solution to the following

system of “balance” equations:

∑

k→i

λkar(k,i) + a⋆i = λi

(

∑

i→j

ar(i,j) + ai†

)

for every i ∈ V.

Note that it is easy to solve the system of “balance” equations recursively starting from

the nodes without parents. The proposition can be proved by simply checking the global

balance condition (i.e. that for every configuration x the equality
∑

x′ ̸=x π(x)Q(x, x′) =
∑

x′ ̸=x π(x′)Q(x′, x) holds).

6

create

move

annihilate/degrade

transition intensities for Markov process 
describing the flow of particles through the graph 
i.e. the process of peptidome degradation
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FIG. 2. The cleavage graph for two precursor peptides, FTSSTS and SSTSY, with source and sink nodes added.

More formally, let random variable Xi .t/ denote the number of particles at node i 2 V at time t and
write X.t/ D .Xi .t//i2V . We regard .X.t/; t ! 0/ as a homogeneous Markov process in the space of
configurations x D .xi /i2V , xi 2 f0; 1; : : : g. We use the standard notation for restricted configurations,
writing e.g., x!i D .xk/k2V W k¤i . The process has the following intensities of transition (x ¤ x0):

Q.x; x0/ D
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:

a?i if x0
i D xi C 1, x0

!i D x!i for some i ,

ar.i;j /xi if x0
j D xj C 1, x0

i D xi " 1;

and x0
!i!j D x!i!j for some i ! j ,

ai!xi if x0
i D xi " 1, x0

!i D x!i for some i .

We assume that the process reached the equilibrium state. At each node, we are interested in the distri-
bution of the number of particles. Perhaps surprisingly, we can prove that those numbers are independent
and each one follows a Poisson distribution.

Proposition 1 (Equilibrium distribution). The process .X.t// has the equilibrium (stationary) dis-
tribution ! given by:

!.x/ D
Y

i2V

e"i
"xi

i

xi Š
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where the configuration of intensities .!i /i2V is the unique solution to the following system of “balance”

equations:

X

k!i

!kar.k;i/ C a?i D !i

0

@

X

i!j

ar.i;j / C ai!

1

A for every i 2 V :

Note that it is easy to solve the system of “balance” equations recursively starting from the nodes without
parents. The proposition can be proved by simply checking the global balance condition (i.e., that for every
configuration x the equality

P

x0¤x ".x/Q.x; x0/ D
P

x0¤x ".x0/Q.x0; x/ holds).
The above description of the cleavage process is valid for any directed acyclic graph. Since we are

concerned with exopeptidase activity modeling, we impose some restrictions. Let Vin be the set of nodes
that have no parents. We set a?i to 0 for i 2 V nVin and ai! to 0 if node i has children. If i has no children
then ˛i! is expressed as a sum of two elements from far j r 2 Rg, corresponding to the amino acids on
both ends of subsequence i .

In order to go further with the description of the model, we need to change the parameterization a little
bit. Write b?i D s!1

1 a?i for i 2 V, where s1 D
P

i2V a?i forcing
P

i2V b?i D 1 and similarly br D s!1
2 ar

for r 2 R, where s2 D
P

r2R ar forcing
P

r2R br D 1. Now we can express !i as s#i , s D s2
s1

for i 2 V

where #i depend only on .br /r2R and .b?k/k2Vin . We place a Gamma prior with parameters .Sshape; Srate/
on s and a Dirichlet prior with parameters .Br /r2R on .br /r2R and .B?i /i2Vin on .b?i /i2Vin . Since we are
interested in relative intensities only, our goal is to estimate .br /r2R, which we will call the normalized
cutting intensities.

2.2. Model for data acquisition

Ideally, after the data preprocessing step one would get an exact reading on the numbers of particles
corresponding to every possible subsequence present in the cleavage graph. In reality, we must deal with
many kinds of experimental errors.

First of all, many readings are missing. We can see which readings are missing and which are not. A
vector of binary variables .$i /i2V indicates the non-missing readings.

Some of the non-missing readings may be incorrect, meaning that they are taken from the wrong peaks
from the LC-MS spectra, and have little to do with the peptides mentioned in the cleavage graph. This
information is hidden and modeled by the ı variables coming from a Bernoulli process with success
probability q.

Moreover, assuming that each correct reading is a sample from a Poisson distribution would imply
low relative errors for readings from high peaks. This is clearly not realistic in case of the LC-MS data.
Therefore, we assume that correct readings yi for i such that ıi D 1 come from independent log-normal
distributions with parameters ln xi and % (see Equation (1)), where x is the hidden realization of the
cleavage process. Incorrect readings yi for i such that ıi D 0 come independently from a background
distribution with density bg. This density is estimated from the data (all mono-isotopic peak intensities in
an LC-MS sample).

Note that from now on we define ıi , xi and yi only for i 2 V such that $i D 1. When we write i W ıi D 1
we mean only those indices i , for which ıi is defined. When we write x, we mean .xi /i W "i D1, for example.

2.3. Posterior distribution

The dependence structure of the variables in the hierarchical Bayesian model is shown in Figure 3. The
posterior distribution can be written as:

f .s; b?; b; ı; x j y/ / f .y j s; b?; b; ı; x/f .s; b?; b; ı; x/

D f .y j ı; x/f .ı/f .x j s; b?; b/f .s/f .b?/f .b/;

in equilibrium

old as the hills, but…



(Br)r2R

(br)r2R�
Dir((Br)r2R)
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(b?i)i2Vin�
Dir((B?i)i2Vin)

Sshape, Srate

s � Gamma(Sshape, Srate)

�i = �i(s, b?, b) for i ⇥ V (✏i)i2V q

�i � Bern(q) for i : ✏i = 1xi � Poiss(�i) for i : ✏i = 1 ⌧

yi � LogNormal(xi, ⌧) for i : �i = 1
yi � Background for i : �i = 0

Figure 3.3: The hierarchical Bayesian model of cleavage activity and data
acquisition.modelStructure

are taken from the wrong peaks from the LC-MS spectra, and have little to
do with the peptides mentioned in the cleavage graph. This information is
hidden and modeled by the � variables coming from a Bernoulli process with
success probability q.

Moreover, assuming that each correct reading is a sample from a Poisson
distribution would imply low relative errors for readings from high peaks.
This is clearly not realistic in case of the LC-MS data. Therefore, we assume
that correct readings yi for i such that �i = 1 come from independent log-
normal distributions with parameters lnxi and ⇤ (see Eqn. (

logNorm
3.1)), where x

is the hidden realization of the cleavage process. Incorrect readings yi for i
such that �i = 0 come independently from a background distribution with
density bg. This density is estimated from the data (all mono-isotopic peak
intensities in an LC-MS sample).

Note that from now on we define �i, xi and yi only for i ⇥ V such that ⇥i =
1. When we write i : �i = 1 we mean only those indices i, for which �i is
defined. When we write x we mean (xi)i : �i=1, etc.

Posterior distribution

The dependence structure of the variables in the hierarchical Bayesian model
is shown in Fig.

modelStructure
3.3. The posterior distribution can be written as:

f(s, b⇥, b, �, x | y) � f(y | s, b⇥, b, �, x)f(s, b⇥, b, �, x)
= f(y | �, x)f(�)f(x | s, b⇥, b)f(s)f(b⇥)f(b),
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hierarchical Bayesian model

missing readings

errors

Metropolis-Hastings 
to sample from posterior:



NON TRIVIAL TASK: filling the 
cleavage graph with real data

• 1000 peptides: mass, 
charge,  retention time 

• 243 precursor peptides 
• ca. 40 000 subsequences
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• the shape of the isotopic cluster extended by the active peak
should pass user predefined filter (see below). By shape we
mean the relative height, positions and the number of peaks
in the cluster.

As a filter for the isotopic cluster we investigate here the pro-
portions of the height of two neighboring peaks. We compute
the possible extreme values for these proportions by consider-
ing polyserine and polyphenyloalanine peptides and we filter
out clusters having these proportions outside computed values.
In fact these extreme values are further relaxed to encompass
sulphur containing peptides. Our algorithm is designed to deal
with small peptides. Hence only two possibilities for monoiso-
topic peak position are considered by the algorithm: either the
first or the second peak in the isotopic cluster can be the highest
one, and all peaks following it have lower height.

The behavior of the algorithm depends on the number of
candidate active isotopic clusters. If there is no candidate cluster
to which we can assign our active peak, we form a new cluster
containing this peak. When there is only one candidate cluster
we extend it with the active peak. In the case when more than
one candidate exists we assign the active peak to the cluster
whose monoisotopic peak has the highest signal. Such a situation
is quite rare but it happens when the signal coming from one
peptide is artificially split in the domain of the retention time
(cf. Fig. 4).

3.4. Step 3: automated charge determination

We have implemented two versions of this step, simple and
fast and a more sophisticated one. The simple version uses only
information from the peak spacing in the isotopic clusters as
prepared in the previous step and it can be viewed as a variation
of the Z-score method from [38]. We assume that the charge is
simply the reciprocal of the distance between two adjacent peaks
in the isotopic cluster. We count results for each possible space
interval and choose the most frequent value as a charge.

Fig. 4. Artificial peak separation in the retention time domain. Isotopic en-
velopes visualized by Sparky. Peaks found by NMRPipe are depicted as black
‘X’. Horizontal axis—m/z, vertical axis—retention time, amplitudes are color
coded increasing from red to blue. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of the article.)

This method is very fast but also susceptible to errors espe-
cially when there are artifacts and split peaks in the spectrum.
This method also cannot determine charges for overlapping iso-
topic envelopes.

Second method is a variation of the method from [29]. It
operates on the list of clusters and raw mass spectrum. The orig-
inal method is designed for 1D spectra. We use here the isotopic
clusters found in the previous step to approximate coordinates
of isotopic clusters in the spectrum. We perform the projection
of the isotopic cluster in the direction of the retention time and
use the combination of Patterson and Fourier transform for the
m/z values of the isotopic cluster to determine the charge. This
method can handle the charge up to half of the spectrum resolu-
tion.

3.5. Step 4: isotopic model (mass decomposition)

Recall that our procedure is designed to deal with small pep-
tides (up to 5000 Da). For such data the averagine model by
Senko et al. [30] is not suitable. However to estimate the signifi-
cance of the cluster we fit its group of peaks to the estimated
theoretical isotopic distribution calculated for the given
monoisotopic mass. This step is coupled with the mass and
charge determination as illustrated in the flowchart (cf. Fig. 5).
We start with the assumption that the first visible peak in the
isotopic cluster corresponds to the monoisotopic mass. If this

Fig. 5. Flowchart summary of the algorithm.
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Figure 3.2: The cleavage graph for 2 precursor peptides FTSSTS and SSTSY
with source and sink nodes added.f_graph

processing and analysis workflow is depicted in Fig.
f_workflow
3.1.

Availability

The source code (R with C) of our estimation procedure is freely available
at
http://bioputer.mimuw.edu.pl/papers/exopep. The site also contains
additional figures and peptide sequences generating the cleavage graph.

3.0.6 Results and discussion

Our model has two main components: the first one describes the cleavage
(peptide degradation) process itself, while the second accounts for imperfec-
tions at the data acquisition stage.

Model for the cleavage process

Peptide sequences whose proteolysis we wish to model give rise to a graph (V , E),
which we will call the cleavage graph. Nodes V of this graph correspond to
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convenience if v † w /⇥ V then define ⇥vw = 0). Define �z for z ⇥ V as a vector of dimension |V| with
only one non-zero coordinate corresponding to the vertex z. The process has the following intensities of
transition from state x to state x� where x ⇤= x�:

Qxx� =

�
cT⇥vwxu if x� = x� �u + �v + �w and u = v † w ,

0 otherwise.

2.2. First moment characterization

The simplified model of exopeptidase activity presented in [14] allowed for the full characterization of the
underlying Markov process. In the present setting the splitting reactions corresponding to endopeptidase
proteolytic events make the system behavior more complex. Especially, there are no analytic results for
Markov processes modeling such systems. In our approach we focus on time evolution of the expected
numbers of particles.

Consider the probability distribution characterizing the time evolution of a Markov process (X(t))t>0:

P (x, t) = P(X(t) = x).
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1.4. Organization of the paper

In Section 2 we introduce the mathematical model of serum proteolysis process and present a method to
calculate expected values of peptide amounts in time. The approach to model parameters estimation is
described in Section 3. The method for incorporating the biological information about proteolytic events
into the model and for filling the model with mass spectrometry data is presented in Section 4. Finally,
Section 5 contains results of experiments and discussion of further research.

2. Proteolysis model

2.1. Cleavage process

Peptide sequences whose proteolysis we wish to model give rise to a bipartite multidigraph, which we
call the cleavage graph. The first set of nodes of this graph corresponds to all subsequences of the
peptides considered. We call them peptide nodes, and denote by V . The second set of nodes, called event
nodes, corresponds to all possible proteolytic events. By proteolytic event we mean the cleavage of a
specific substrate at specific site made by a specific peptidase. Hence each event node is labelled by a
peptidase, and has one ingoing edge (leading from the substrate of proteolysis) and two outgoing edges
(leading to peptide prefix and suffix obtained by cutting the substrate at a single site).

It is helpful to think of the peptide subsequences as particles placed at peptide nodes of the cleavage
graph. The particles are moving along the edges of the graph according to the Petri net operational
semantics, i.e. the transition (event node) consumes one substrate particle, and produces two particles
(prefix and suffix of the substrate). As every transition needs exactly one token to occur, our system
belongs to the subclass of communication-free nets [6].

We assume that the labeling and structure of the cleavage graph is known. In Section 4 we show how
to fill the peptide nodes with mass spectrometry readouts and how to assign specific enzymes to event
nodes. An exemplary cleavage graph is presented in Figure 1.

In the exemplary graph four proteolytic events which engage three peptidases are depicted. For
u, v, w ⇥ V we use the notation u = v † w when peptides v and w can be obtained directly by cutting u
(v is a non-empty strict prefix and w is a non-empty strict suffix of u). The operation † can be viewed as
string concatenation. To identify a cleavage site we write simply v † w.

Denote by P the set of all peptidases whose activity is modeled. Coefficients �pvw (for peptidase
p ⇥ P and cleavage v † w) put over the event nodes in Figure 1 correspond to the affinity between the
peptidase cleavage pattern and the cleavage site composition (we call them affinity coefficients). They
are defined for every possible cleavage v †w and calculated at the graph construction stage (see Section 4
for details).

Our ultimate goal is to estimate peptidase cutting intensities vector c = (cp)p�P . We assume that the
propensity of a given peptidase p to perform the cleavage v † w is proportional to its overall intensity cp
weighted with the appropriate affinity coefficient (i. e. �pvw). The cleavage intensity for a given site v †w
is a weighted sum of intensities of all peptidases considered in our model.

To define the probabilistic dynamics of the cleavage process more formally, let random variables
Xi(t) denote the number of particles at peptide node i ⇥ V at time t and write X(t) = (Xi(t))i�V . We
regard (X(t), t � 0) as a homogeneous Markov process in the space of configurations x = (xi)i�V ,
xi ⇥ {0, 1, . . . }. Denote by �vw the vector of all peptidase affinity coefficients for the cleavage v †w (for
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convenience if v † w /⇥ V then define ⇥vw = 0). Define �z for z ⇥ V as a vector of dimension |V| with
only one non-zero coordinate corresponding to the vertex z. The process has the following intensities of
transition from state x to state x� where x ⇤= x�:

Qxx� =

�
cT⇥vwxu if x� = x� �u + �v + �w and u = v † w ,

0 otherwise.

2.2. First moment characterization

The simplified model of exopeptidase activity presented in [14] allowed for the full characterization of the
underlying Markov process. In the present setting the splitting reactions corresponding to endopeptidase
proteolytic events make the system behavior more complex. Especially, there are no analytic results for
Markov processes modeling such systems. In our approach we focus on time evolution of the expected
numbers of particles.

Consider the probability distribution characterizing the time evolution of a Markov process (X(t))t>0:

P (x, t) = P(X(t) = x).
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The distribution P is the solution of the chemical master equation:

⌥

⌥t
P (x, t) =

⌅

y ⇥=x

(QyxP (y, t)�QxyP (x, t))

=
⌅

u=v†w
cT⇤vw [(xu + 1)P (x+ �u � �v � �w, t)� xuP (x, t)]

=
⌅

u=v†w
cT⇤vw[x

�
uP (x�, t)� xuP (x, t)],

where x� = x+ �u � �v � �w, i.e. x� denotes a configuration before the cleavage v † w.
Denote by Eq (t) the expected number of instances of peptide q at time t. We have from the chemical

master equation above:

Eq (t) =
⌅

x

xqP (x, t),

⌥

⌥t
Eq (t) =

⌅

x

xq
⌥

⌥t
P (x, t)

=
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xq
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u=v†w
cT⇤vw [(xu + 1)P (x+ �u � �v � �w, t)� xuP (x, t)]
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u=v†w
cT⇤vw
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⌅

u=v†w
cT⇤vw
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(x� �u + �v + �w)qxuP (x, t)�
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x

xqxuP (x, t)

⇥

=
⌅

u=v†w
cT⇤vw

⌅

x

(��u + �v + �w)qxuP (x, t).

Now observe that for all q /⇤ {u, v, w} the summands are zero (as (��u + �v + �w)q = 0) and consider
three cases: v = q, w = q and u = q (the first two may overlap if v = w = q). The following holds:

⌥

⌥t
Eq (t) =

⌅

u=q†w
cT⇤qw Eu (t) +

⌅

u=v†q
cT⇤vq Eu (t)�

⌅

q=v†w
cT⇤vw Eq (t) . (1)

The first two summands correspond to the creation of particle q from u by performing two kinds of
cleavages: q†w or v†q, i.e. the word q can form a suffix or a prefix of u. The third summand corresponds
to the consumption of the particle q. It happens when q is cleaved at some site.

We introduce the notation q ⇥ v if v can be directly obtained by cutting q, i.e. v is a non-empty
strict prefix or a non-empty strict suffix of q. Note that q ⇥ v means that there exists the cleavage site
q = v † w or q = z † v or both.

Denote by ⇥uq the intensity of creating q from u by a single cleavage of the form u = q†w or u = v†q,
i.e. ⇥uq = cT(⇤qw + ⇤vq). Let ⇥qq = �

⇤
q=v†w cT⇤vw, i.e. minus the intensity of consuming q in all
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cleavages involving this peptide. Note that the following equality holds:

�qq = �1

2

⇤

⌥⌥⇧
⌦

q=v†w
�qv +

⌦

q=z†v
�qv �

⌦

q=v†w
q=z†v

�qv

⌅

��⌃ = �1

2

⌦

q⇥v

�qv.

Now the equations (1) have the following form:

�
⇧

⇧t
Eq (t) =

⌦

u⇥q

�uq Eu (t) + �qq Eq (t)

⇥

q⇤V

. (2)

The solution of the system of linear constant coefficient ordinary differential equations like (2) is given
by:

E (t) = E (0)T exp(�t), (3)

where E (t) = (Ev (t))v⇤V , E (0) = (Ev (0))v⇤V and matrix � = (�vw)v,w⇤V . The matrix exponen-
tiation in Equation (3) can be computed by dozens of methods [20] that originate from mathematical
analysis, matrix theory or approximation theory. In this paper we propose a new method, which can be a
tempting alternative to existing ones, as long as the coefficient matrix is triangular.

2.3. Matrix exponentiation

Define relation < on all subsequences as a transitive closure of the relation ⌅, i.e. v < u ⇧⌃
v is a non-empty substring of u. We also write v ⇥ u when v < u or v = u.

Notice that the system (2) can be solved by processing equations in the topological order (in terms of
the ⇥ partial order, starting from the maximal elements). One can postulate (or check) that the solution
can be written as:

Eu (t) =
⌦

v�u

buv exp(�vvt), where buv =
⌦

w�v

auvw Ew (0) .

This way Eu (t) =
 

w�v�u auvw exp(�vvt) Ew (0). Define auvw = 0 when w ⇤ v ⇤ u does not hold.
Now we can write those equations in vectorized form:

Eu (t) = E (0)T
⌦

v�u

auv exp(�vvt),

where auv = (auvw)w⇤V . Notice that
 

v�u auv exp(�vvt) corresponds to the u-th column of the matrix
exp(�t).

The auvw for w ⇤ v ⇤ u coefficients are real numbers that can be calculated from the system of
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Figure 5. The graphical representation of the matrix � = (�vw)v,w2V for peptide VAHRFKDLGEEN.

operation always shortens the involved sequence.

The expected amounts of peptides were taken for time points 0, 1, 3, 7, 15, 31, 63 and 127 and per-
turbed data was simulated by adding gaussian noise with standard deviation 0 (no perturbation), 0.1, 0.2
or 0.3. This step reflects the measurement errors in MS technology. Next a fraction (0%, 20% or 40%)
of readings was randomly selected for removal from the datasets to mimic missing readings (i.e. corre-
sponding to not being able to find a peak in the LC-MS spectrum for a given peptide). Thus in total there
were 4� 3 combinations of the perturbation level and missing readings number. For each combination 8
datasets were generated.

For each of the 96 datasets the L-BFGS-B method implemented in the function optim in R [24] was
run 8 times in order to recover the true cutting intensities (ctryps, cpeps) and the true expected amounts
of peptides at time 0 (denoted by E (0)). The objective was to minimize the ⇥ function defined in
Section 3. Best results (in terms of the ⇥ function) out of 8 runs were taken. The accuracy of the
estimation procedure depends on the introduced noice level, as depicted in Figure 6.

The outcome of the modeling is very promising: the parameter estimation is robust to the noise in the
data and it can handle datasets with missing values. The validation of our model on real data is planned.
To this end we intend to tune the model using time series of good quality tandem mass spectrometry
experiments for a very simple system (e.g. a single protein digested by one enzyme). After successful
model tuning on easy experimental data we would like to cope with complex peptide mixtures, like
human serum samples. It is worth noting that the peptidase activity model described in this paper has the
potential to diagnose pathological states, particularly to predict cancer spread, as during the metastasis
many proteolytic enzymes are engaged in the extracellular matrix digestion.
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