
Category Theory in Foundations of Computer Science
Exam assignment 2023/24

Concepts, terminology and notation:

We rely on the standard definitions of algebraic signature Σ, Σ-algebra and Σ-homomorphism, the
category Alg(Σ) of Σ-algebras and their homomorphisms, and on the related notation, as introduced
during the course.

A bin-signature ∆ = ⟨Σ, δ⟩ consists of an algebraic signature Σ = ⟨S,Ω⟩ and a family of functions
δ = ⟨δf⟩f∈Ω, where for each f : s1 × . . .× sn → s in Σ, δf : {0, 1}n → {0, 1} (the same n). A bin-
signature ∆ = ⟨Σ, δ⟩ is monotone if for each f : s1 × . . .× sn → s, δf : {0, 1}n → {0, 1} is monotone
(w.r.t. the standard order on {0, 1}, where 0 ≤ 1, and induced component-wise order on {0, 1}n).

Let, ∆ = ⟨Σ, δ⟩, with Σ = ⟨S, . . .⟩, be a bin-signature.

A ∆-bin-algebra A = ⟨A,α⟩ consists of a Σ-algebra A ∈ |Alg(Σ)| and a family of functions α =
⟨αs: |A|s → {0, 1}⟩s∈S (called the bin-map of A) such that for all f : s1 × . . .× sn → s in Σ and a1 ∈
|A|s1 , . . . , an ∈ |A|sn , δf (αs1(a1), . . . , αsn(an)) ≤ αs(fA(a1, . . . , an)). Such a ∆-bin-algebra A = ⟨A,α⟩
is strict if for each f : s1 × . . .× sn → s in Σ and a1 ∈ |A|s1 , . . . , an ∈ |A|sn , δf (αs1(a1), . . . , αsn(an)) =
αs(fA(a1, . . . , an)).

Then, given ∆-bin-algebras A = ⟨A,α⟩ and B = ⟨B, β⟩, a ∆-bin-homomorphism h:A → B is any
Σ-homomorphism h:A → B such that for each a ∈ |A|s, s ∈ S, αs(a) ≤ βs(hs(a)). Such a ∆-bin-
homomorphism h:A → B is strict if for each a ∈ |A|s, s ∈ S, αs(a) = βs(hs(a)).

A ∆-inequality ∀X.t ≤ t′ consists of an S-sorted set X (of variables) and two terms t, t′ ∈ |TΣ(X)|s of
a common sort, s ∈ S. A ∆-bin-algebra A = ⟨A,α⟩ satisfies (or is a model of) such a ∆-inequality,
written A |= ∀X.t ≤ t′, if for all valuations v:X → |A|, αs(tA[v]) ≤ αs(t

′
A[v]), where as usual

qA[v] ∈ |A|s is the value of term q ∈ |TΣ(X)|s, s ∈ S, in Σ-algebra A under valuation v.

With the usual composition of homomorphisms, this defines the following categories, for any bin-
signature ∆ and set Φ of ∆-inequalities:

� BAlg(∆,Φ): the category of ∆-bin-
algebras that satisfy all ∆-inequalities
in Φ, with ∆-bin-homomorphisms as
morphisms

� BAlgst(∆,Φ): the category of strict ∆-
bin-algebras that satisfy all ∆-inequalities
in Φ, with strict ∆-bin-homomorphisms as
morphisms

Moreover, we have the following “forgetful” functors:

� G∆,Φ:BAlg(∆,Φ) → SetS � Gst
∆,Φ:BAlgst(∆,Φ) → SetS

where SetS is the category of S-sorted sets, as usual, and for any ∆-bin-algebra A = ⟨A,α⟩,
G∆,Φ(A) = |A|, for any ∆-bin-homomorphism h:A → B, where A = ⟨A,α⟩ and B = ⟨B, β⟩,
G∆,Φ(h) = h: |A| → |B|, and Gst

∆,Φ is the restriction of G∆,Φ to the objects and morphisms in
BAlgst(∆,Φ).

Finally, we put:

� BAlg(∆) = BAlg(∆, ∅)
� G∆ = G∆,∅:BAlg(∆) → SetS

� BAlgst(∆) = BAlgst(∆, ∅)
� Gst

∆ = Gst
∆,∅:BAlgst(∆) → SetS



To do:

Prove a positive answer or give a counterexample to the following questions:

1. Consider categories:
(a) BAlg(∆,Φ)

(b) BAlgst(∆,Φ)

(c) BAlg(∆)

(d) BAlgst(∆)
Which of the categories above is
C. complete

CC. cocomplete
for all bin-signatures ∆ and, where applicable, all sets Φ of ∆-inequalities?

2. Consider functors:
(a) G∆,Φ:BAlg(∆,Φ) → SetS

(b) Gst
∆,Φ:BAlgst(∆,Φ) → SetS

(c) G∆:BAlg(∆) → SetS

(d) Gst
∆:BAlgst(∆) → SetS

Which of the functors above has a left adjoint for all bin-signatures ∆ and, where applicable,
all sets Φ of ∆-inequalities?

3. Again, consider categories:
(a) BAlg(∆,Φ)

(b) BAlgst(∆,Φ)

(c) BAlg(∆)

(d) BAlgst(∆)
Which of the categories above is
C. complete

CC. cocomplete
for all monotone bin-signatures ∆ and, where applicable, all sets Φ of ∆-inequalities?

4. Consider functors:
(a) G∆,Φ:BAlg(∆,Φ) → SetS

(b) Gst
∆,Φ:BAlgst(∆,Φ) → SetS

(c) G∆:BAlg(∆) → SetS

(d) Gst
∆:BAlgst(∆) → SetS

Which of the functors above has a left adjoint for all monotone bin-signatures ∆ and, where
applicable, all sets Φ of ∆-inequalities?

Notes:

� All constructions and facts presented during the course may be used without proofs. This
applies in particular to the existence and constructions of limits and colimits in Alg(Σ).

� The answers to the questions above are not independent. For instance, a proof of 2.a implies
the positive answer to 2.c as well, a counterexample to 1.d.CC is a counterexample to 1.b.CC,
a proof for any of 1.{a,b,c,d}.{C,CC} proves the corresponding 3.{a,b,c,d}.{C,CC}, and
a counterexample for any of 3.{a,b,c,d}.{C,CC} is a counterexample for the corresponding
1.{a,b,c,d}.{C,CC}, etc. No need to repeat detailed arguments in such cases, indicating the
dependency is enough.

� Still, there are quite a few questions: deal with as many of them as you can. . .
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Sketch of a solution:

The “strict” case:

Consider a bin-signature ∆ = ⟨Σ, δ⟩, with Σ = ⟨S, . . .⟩.

Let BN = ⟨BN , id{0,1}⟩ be a ∆-bin-algebra, with |BN |s = {0, 1} for s ∈ S, and fBN = δf : {0, 1}n →
{0, 1} for f : s1 × . . .× sn → s in Σ.

Then BAlgst(∆) is the same as the slice category Alg(Σ)↓BN (the category of Alg(Σ)-objects over
BN ). The slice category is complete (a limit of a diagram D in BAlgst(∆) is the limit in Alg(Σ) of
the obvious projection of the diagram D with an additional new node carrying BN and new edges
from the nodes of D to this node carrying the bin-maps) and cocomplete (a colimit of a diagram D in
BAlgst(∆) is the colimit in Alg(Σ) of the projection of D with the bin-map induced by the colimit
property). This directly gives:

YES: {1,3}.d.{C,CC}

Moreover, since the terminal object in BAlgst(∆) (i.e., in Alg(Σ)↓BN ) is BN , which shows that
G∆:BAlgst(∆) → SetS is not continuous, we have:

NO: {2,4}.{b,d}

Consider a bin-signature ∆1 = ⟨Σ1, δ1⟩, where Σ1 has a single sort s and two constants a, b: s and
(δ1)a = 1, (δ1)b = 0. Now, the inequality a ≤ b has no strict ∆1-model, which shows:

NO: {1,3}.b.{C,CC} (and {2,4}.b)

The “lax” case:

Consider a bin-signature ∆ = ⟨Σ, δ⟩, with Σ = ⟨S, . . .⟩, and a set Φ of ∆-inequalities.

Completeness (monotone ∆): Let A = ⟨A,α⟩ and B = ⟨B, β⟩ be ∆-bin-algebras that satisfy Φ,
and let h, h′:A → B be bin-homomorphisms. Let then e:E → A be an equaliser of h, h′:A → B
in Alg(Σ), and ε = e;α. Given the construction of equalisers in Alg(Σ), it follows now that
e: ⟨E, ε⟩ → A is an equaliser of h, h′:A → B in BAlg(∆,Φ).
Let Ai = ⟨Ai, αi⟩, i ∈ J , be a family of ∆-bin-algebras that satisfy Φ. Let A with projections
πi:A → Ai, i ∈ J , be a product of ⟨Ai⟩i∈J in Alg(Σ). For s ∈ S, define αs: |A|s → {0, 1} as
follows: given a ∈ |A|, αs(a) = 1 iff for all i ∈ J , (αi)s(πi(a)) = 1 (and so αs(a) = 0 iff for some
i ∈ J , (αi)s(πi(a)) = 0). This implies that αs(a) ≤ (αi)s((πi)s(a)). Then for f : s1 × . . .× sn →
s and a1 ∈ |A|s1 , . . . , an ∈ |A|sn , we show δf (αs1(a1), . . . , αsn(an)) ≤ αs(fA(a1, . . . , an)), i.e., if
αs(fA(a1, . . . , an)) = 0 then δf (αs1(a1), . . . , αsn(an)) = 0 as well. Namely, αs(fA(a1, . . . , an)) = 0
implies (αi)s(fAi

((πi)s1(a1), . . . , (πi)ss(an))) = 0 for some i ∈ J . Now, since ∆ is monotone, we
get: δf (αs1(a1), . . . , αsn(an)) ≤ δf ((αi)s1((πi)s1(a1)), . . . , (αi)s1((πi)ss(an))) = 0. Consequently,
A = ⟨A,α = ⟨αs⟩s∈S⟩ is a ∆-bin-algebra. It is easy to check now that A is a model of Φ, and in
fact is a product of Ai = ⟨Ai, αi⟩, i ∈ J , with projections πi:A → Ai, i ∈ J , in BAlg(Σ,Φ).
The above proves:

YES: 3.{a,c}.C
Counterexample (non-monotone ∆): Consider ∆2 = ⟨Σ2, δ2⟩ where Σ2 has a single sort s, con-

stant a: s and operation f : s → s, with (δ2)a = 0 and (δ2)f (0) = 1, (δ2)f (1) = 0. Consider now
two ∆2-bin-algebras, A = ⟨TΣ2 , α⟩ and B = ⟨TΣ2 , β⟩, where TΣ2 is the usual algebra of ground
Σ2-terms of the form fn(a), n ≥ 0, and:
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αs(f
n(a)) =

{
0 for even n
1 for odd n

βs(f
n(a)) =

{
1 for even n
0 for odd n

Suppose now there is a ∆2-bin-algebra C = ⟨C, γ⟩ with ∆2-bin-homomorphisms hA: C → A
and hB: C → B. Since (hA)s(aC) = a, γs(aC) ≤ αs(a) = 0. Then γs(fC(ac)) ≥ (δ2)f (0) = 1.
But (hB)s(fC(ac)) = f(a), with βs(f(a)) = 0, and so hB is not a bin-homomorphism. This
contradiction shows that there is no product of A and B in BAlg(∆), and that there is no
initial ∆2-bin-algebra, which proves

NO: 1.{a,c}.{C,CC}
Moreover, since left adjoints preserve initial objects, there is no free ∆2-bin-algebra w.r.t. G∆2

over the empty set, and so:
NO: 2.{a,c}

Construction of the minimal bin-map: Consider a Σ-algebra A ∈ Alg(Σ). Given a family of ∆-
bin-algebras Ai = ⟨Ai, αi⟩ with Σ-homomorphisms hi:Ai → A, i ∈ J , there is the least (w.r.t.
the order on bin-maps induced by the standard order on {0, 1}) bin-map α = ⟨αs: |A|s →
{0, 1}⟩s∈S such that

� A = ⟨A,α⟩ is a ∆-bin-algebra

� A = ⟨A,α⟩ |= Φ

� all hi:Ai → A, i ∈ J , are ∆-bin-homomorphisms

More explicitly, for all s ∈ S, a ∈ |A|s, define αs(a) =
⊔
{αk

s(a) | k ≥ 0} (the least upper bound
w.r.t. the standard order on {0, 1} of αk

s(a), k ≥ 0), where αk = ⟨αk
s : |A| → {0, 1}⟩s∈S, are

defined inductively:

� for s ∈ S, a ∈ |A|s, α0
s(a) =

⊔
{(αi)s(ai) | i ∈ J , (hi)s(ai) = a}.

� for k ≥ 0, for s ∈ S, a ∈ |A|s, αk+1
s (a) is the least upper bound of the following elements:

– αk
s(a)

– δf (α
k
s1
(a1), . . . , α

k
sn(an)) for all f : s1 × . . .× sn → s in Σ and a1 ∈ |A|s1 , . . . , an ∈ |A|sn

such that fA(a1, . . . , an) = a

– αk
s(tA[v]) for all inequalities ∀X.t ≤ t′ in Φ and valuations v:X → |A| such that

t′A[v] = a.

As usual, the least upper bound of the empty set is 0. The required properties of the so
defined bin-map α are now easy to check, since for s ∈ S, a ∈ |A|s, for some m ≥ 0 we have
αs(a) = αk

s(a) for all k ≥ m.
Moreover, if ∆ is monotone, we get:

� given any B = ⟨B, β⟩ ∈ |BAlg(∆,Φ)| and Σ-homomorphism h:A → B, if all hi;h:Ai → B,
i ∈ J , are ∆-bin-homomorphisms then so is h:A → B.

To see this, it is enough to notice that for all s ∈ S, a ∈ |A|s, αk
s(a) ≤ β(hs(a)) for all k ≥ 0 —

easy proof by induction follows:

� α0
s(a) =

⊔
{(αi)s(ai) | i ∈ J , (hi)s(ai) = a} ≤ βs(hs(a)), since for i ∈ J , ai ∈ |Ai|s,

(αi)s(ai) ≤ βs(hs((hi)s(ai))).

� for k ≥ 0, if for all s ∈ S, a ∈ |A|s:
– for f : s1 × . . .× sn → s in Σ and a1 ∈ |A|s1 , . . . , an ∈ |A|sn with fA(a1, . . . , an) = a, by
the inductive hypothesis αk

s1
(a1) ≤ βs1(hs1(a1)), . . . , α

k
sn(an) ≤ βsn(hsn(an)). Then,

since ∆ is monotone:
δf (α

k
s1
(a1), . . . , α

k
sn(an)) ≤ δf (βs1(hs1(a1)), . . . , βsn(hsn(an))

≤ βs(fB(hs1(a1), . . . , hsn(an)))
= βs(hs(a)).
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– for all inequalities ∀X.t ≤ t′ in Φ and valuations v:X → |A| such that t′A[v] = a, by
the inductive hypothesis and since B |= Φ: αk

s(tA[v]) ≤ βs(hs(tA[v])) = βs(tA[v;h])) ≤
βs(t

′
A[v;h])) = βs(hs(tA[v]) = βs(hs(a)).

Hence, αk+1
s (a) ≤ βs(hs(a)).

Cocompleteness (monotone ∆): Consider now any diagram D in BAlg(∆,Φ) with nodes n ∈ N
and edges e ∈ E, i.e., for each node n ∈ N we have a ∆-bin-algebra satisfying Φ, Dn =
⟨An, αn⟩ ∈ |BAlg(∆,Φ)|, and for each edge e:n → m in E we have ∆-bin-homomorphism
De:Dn → Dm. Let now D be the projection of D to Alg(Σ), i.e., D is the diagram of the same
shape as D and for all nodes n ∈ N , Dn = An ∈ Alg(Σ), and for all edges e:n → m in E,
Dn = Dn:An → Am. Let A with injections ιn:An → A be a colimit of D in Alg(Σ). Given the
construction above, we can now equip A with the least bin-map α = ⟨αs: |A|s → {0, 1]⟩s∈S such
that

� A = ⟨A,α⟩ is a ∆-bin-algebra

� A = ⟨A,α⟩ |= Φ

� all ιi:Ai → A, i ∈ J , are ∆-bin-homomorphisms

and since ∆ is monotone

� given any B = ⟨B, β⟩ ∈ |BAlg(∆,Φ)| and Σ-homomorphism h:A → B, if all ιi;h:Ai → B,
i ∈ J , are ∆-bin-homomorphisms then so is h:A → B.

It is easy to check now that A = ⟨A,α⟩ with injections ιn:An → A is a colimit of D in
BAlg(∆,Φ). This proves:

YES: {3}.{a,c}.CC

Left adjoints (monotone ∆): Given an S-sorted setX, equip the usual Σ-algebra of terms, TΣ(X),
with the least bin-map α = ⟨αs: |TΣ(X)| → {0, 1}⟩s∈S induced by the empty family (of ∆-
bin-algebras with Σ-homomorphisms) and the set of ∆-inequalities Φ. Since ∆ is mono-
tone, it follows now that ⟨TΣ(X), α⟩ with the usual injection ηX :X → |TΣ(X)| is free over
X w.r.t. G∆,Φ:BAlg(∆,Φ) → SetS, which proves:

YES: 4.{a,c}
Summing up:

BAlg(∆,Φ) BAlgst(∆,Φ) BAlg(∆) BAlgst(∆)
.a. .b. .c. .d.

1. .C NO NO NO YES

1. .CC NO NO NO YES

monotone: 3. .C YES NO YES YES

monotone: 3. .CC YES NO YES YES

left adjoint to G
( )
( ): 2. NO NO NO NO

monotone, left adjoint to G
( )
( ): 4. YES NO YES NO
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