Category Theory in Foundations of Computer Science
 Exam assignment 2023/24

Concepts, terminology and notation:

We rely on the standard definitions of algebraic signature Σ, Σ-algebra and Σ-homomorphism, the category $\operatorname{Alg}(\Sigma)$ of Σ-algebras and their homomorphisms, and on the related notation, as introduced during the course.

A bin-signature $\Delta=\langle\Sigma, \delta\rangle$ consists of an algebraic signature $\Sigma=\langle S, \Omega\rangle$ and a family of functions $\delta=\left\langle\delta_{f}\right\rangle_{f \in \Omega}$, where for each $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ in $\Sigma, \delta_{f}:\{0,1\}^{n} \rightarrow\{0,1\}$ (the same n). A binsignature $\Delta=\langle\Sigma, \delta\rangle$ is monotone if for each $f: s_{1} \times \ldots \times s_{n} \rightarrow s, \delta_{f}:\{0,1\}^{n} \rightarrow\{0,1\}$ is monotone (w.r.t. the standard order on $\{0,1\}$, where $0 \leq 1$, and induced component-wise order on $\{0,1\}^{n}$).

Let, $\Delta=\langle\Sigma, \delta\rangle$, with $\Sigma=\langle S, \ldots\rangle$, be a bin-signature.
A Δ-bin-algebra $\mathcal{A}=\langle A, \alpha\rangle$ consists of a Σ-algebra $A \in|\operatorname{Alg}(\Sigma)|$ and a family of functions $\alpha=$ $\left.\left.\left\langle\alpha_{s}:\right| A\right|_{s} \rightarrow\{0,1\}\right\rangle_{s \in S}$ (called the bin-map of \mathcal{A}) such that for all $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ in Σ and $a_{1} \in$ $|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}, \delta_{f}\left(\alpha_{s_{1}}\left(a_{1}\right), \ldots, \alpha_{s_{n}}\left(a_{n}\right)\right) \leq \alpha_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)$. Such a Δ-bin-algebra $\mathcal{A}=\langle A, \alpha\rangle$ is strict if for each $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ in Σ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}, \delta_{f}\left(\alpha_{s_{1}}\left(a_{1}\right), \ldots, \alpha_{s_{n}}\left(a_{n}\right)\right)=$ $\alpha_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)$.

Then, given Δ-bin-algebras $\mathcal{A}=\langle A, \alpha\rangle$ and $\mathcal{B}=\langle B, \beta\rangle$, a Δ-bin-homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ is any Σ-homomorphism $h: A \rightarrow B$ such that for each $a \in|A|_{s}, s \in S, \alpha_{s}(a) \leq \beta_{s}\left(h_{s}(a)\right)$. Such a Δ-binhomomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$ is strict if for each $a \in|A|_{s}, s \in S, \alpha_{s}(a)=\beta_{s}\left(h_{s}(a)\right)$.
A Δ-inequality $\forall X . t \leq t^{\prime}$ consists of an S-sorted set X (of variables) and two terms $t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ of a common sort, $s \in S$. A Δ-bin-algebra $\mathcal{A}=\langle A, \alpha\rangle$ satisfies (or is a model of) such a Δ-inequality, written $\mathcal{A} \models \forall X . t \leq t^{\prime}$, if for all valuations $v: X \rightarrow|A|, \alpha_{s}\left(t_{A}[v]\right) \leq \alpha_{s}\left(t_{A}^{\prime}[v]\right)$, where as usual $q_{A}[v] \in|A|_{s}$ is the value of term $q \in\left|T_{\Sigma}(X)\right|_{s}, s \in S$, in Σ-algebra A under valuation v.

With the usual composition of homomorphisms, this defines the following categories, for any binsignature Δ and set Φ of Δ-inequalities:

- $\operatorname{BAlg}(\Delta, \Phi)$: the category of Δ-binalgebras that satisfy all Δ-inequalities in Φ, with Δ-bin-homomorphisms as morphisms
- $\operatorname{BAlg}^{s t}(\Delta, \Phi)$: the category of strict Δ -bin-algebras that satisfy all Δ-inequalities in Φ, with strict Δ-bin-homomorphisms as morphisms

Moreover, we have the following "forgetful" functors:

$$
\text { - } \mathbf{G}_{\Delta, \Phi}: \operatorname{BAlg}(\Delta, \Phi) \rightarrow \operatorname{Set}^{S} \quad \text { - } \mathbf{G}_{\Delta, \Phi}^{s t}: \mathbf{B A l g}{ }^{s t}(\Delta, \Phi) \rightarrow \boldsymbol{\operatorname { S e t }}^{S}
$$

where Set^{S} is the category of S-sorted sets, as usual, and for any Δ-bin-algebra $\mathcal{A}=\langle A, \alpha\rangle$, $\mathbf{G}_{\Delta, \Phi}(\mathcal{A})=|A|$, for any Δ-bin-homomorphism $h: \mathcal{A} \rightarrow \mathcal{B}$, where $\mathcal{A}=\langle A, \alpha\rangle$ and $\mathcal{B}=\langle B, \beta\rangle$, $\mathbf{G}_{\Delta, \Phi}(h)=h:|A| \rightarrow|B|$, and $\mathbf{G}_{\Delta, \Phi}^{s t}$ is the restriction of $\mathbf{G}_{\Delta, \Phi}$ to the objects and morphisms in $\mathrm{BAlg}^{s t}(\Delta, \Phi)$.

Finally, we put:

- $\operatorname{BAlg}(\Delta)=\operatorname{BAlg}(\Delta, \emptyset)$
- $\mathbf{G}_{\Delta}=\mathbf{G}_{\Delta, \emptyset}: \mathbf{B A l g}(\Delta) \rightarrow \operatorname{Set}^{S}$
- $\operatorname{BAlg}^{s t}(\Delta)=\operatorname{BAlg}^{s t}(\Delta, \emptyset)$
- $\mathbf{G}_{\Delta}^{s t}=\mathbf{G}_{\Delta, \emptyset}^{s t}: \operatorname{BAlg}^{s t}(\Delta) \rightarrow \operatorname{Set}^{S}$

To do:

Prove a positive answer or give a counterexample to the following questions:

1. Consider categories:
(a) $\operatorname{BAlg}(\Delta, \Phi)$
(b) $\operatorname{BAlg}^{s t}(\Delta, \Phi)$
(c) $\operatorname{BAlg}(\Delta)$
(d) $\mathrm{BAlg}^{s t}(\Delta)$

Which of the categories above is
C. complete
CC. cocomplete
for all bin-signatures Δ and, where applicable, all sets Φ of Δ-inequalities?
2. Consider functors:
(a) $\mathbf{G}_{\Delta, \Phi}: \mathbf{B A l g}(\Delta, \Phi) \rightarrow \boldsymbol{\operatorname { S e t }}^{S}$
(b) $\mathbf{G}_{\Delta, \Phi}^{s t}: \operatorname{BAlg}^{s t}(\Delta, \Phi) \rightarrow \mathbf{S e t}^{S}$
(c) $\mathbf{G}_{\Delta}: \mathbf{B A l g}(\Delta) \rightarrow \operatorname{Set}^{S}$
(d) $\mathbf{G}_{\Delta}^{s t}: \mathbf{B A l g}{ }^{s t}(\Delta) \rightarrow \operatorname{Set}^{S}$

Which of the functors above has a left adjoint for all bin-signatures Δ and, where applicable, all sets Φ of Δ-inequalities?
3. Again, consider categories:
(a) $\operatorname{BAlg}(\Delta, \Phi)$
(b) $\operatorname{BAlg}^{s t}(\Delta, \Phi)$
(c) $\operatorname{BAlg}(\Delta)$
(d) $\mathrm{BAlg}^{s t}(\Delta)$

Which of the categories above is
C. complete
CC. cocomplete
for all monotone bin-signatures Δ and, where applicable, all sets Φ of Δ-inequalities?
4. Consider functors:
(a) $\mathbf{G}_{\Delta, \Phi}: \mathbf{B A l g}(\Delta, \Phi) \rightarrow \operatorname{Set}^{S}$
(b) $\mathbf{G}_{\Delta, \Phi}^{s t}: \operatorname{BAlg}^{s t}(\Delta, \Phi) \rightarrow \operatorname{Set}^{S}$
(c) $\mathbf{G}_{\Delta}: \operatorname{BAlg}(\Delta) \rightarrow \operatorname{Set}^{S}$
(d) $\mathbf{G}_{\Delta}^{s t}: \mathbf{B A l g}^{s t}(\Delta) \rightarrow \operatorname{Set}^{S}$

Which of the functors above has a left adjoint for all monotone bin-signatures Δ and, where applicable, all sets Φ of Δ-inequalities?

Notes:

- All constructions and facts presented during the course may be used without proofs. This applies in particular to the existence and constructions of limits and colimits in $\operatorname{Alg}(\Sigma)$.
- The answers to the questions above are not independent. For instance, a proof of 2.a implies the positive answer to 2.c as well, a counterexample to 1.d.CC is a counterexample to 1.b.CC,
 a counterexample for any of $\mathbf{3 . \{ a , b , c , d \} . \{ \mathbf { C } , \mathbf { C C } \} \text { is a counterexample for the corresponding }}$ 1. $\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathrm{d}\} \cdot\{\mathbf{C}, \mathbf{C C}\}$, etc. No need to repeat detailed arguments in such cases, indicating the dependency is enough.
- Still, there are quite a few questions: deal with as many of them as you can...

Sketch of a solution:

The "strict" case:

Consider a bin-signature $\Delta=\langle\Sigma, \delta\rangle$, with $\Sigma=\langle S, \ldots\rangle$.
Let $\mathcal{B N}=\left\langle B N, i d_{\{0,1\}}\right\rangle$ be a Δ-bin-algebra, with $|B N|_{s}=\{0,1\}$ for $s \in S$, and $f_{B N}=\delta_{f}:\{0,1\}^{n} \rightarrow$ $\{0,1\}$ for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ in Σ.

Then $\mathrm{BAlg}^{s t}(\Delta)$ is the same as the slice category $\operatorname{Alg}(\Sigma) \downarrow B N$ (the category of $\operatorname{Alg}(\Sigma)$-objects over $B N$). The slice category is complete (a limit of a diagram D in $\operatorname{BAlg}{ }^{s t}(\Delta)$ is the limit in $\operatorname{Alg}(\Sigma)$ of the obvious projection of the diagram D with an additional new node carrying $B N$ and new edges from the nodes of D to this node carrying the bin-maps) and cocomplete (a colimit of a diagram D in $\operatorname{BAlg}^{s t}(\Delta)$ is the colimit in $\operatorname{Alg}(\Sigma)$ of the projection of D with the bin-map induced by the colimit property). This directly gives:

YES: $\{1,3\} . d .\{\mathrm{C}, \mathrm{CC}\}$

Moreover, since the terminal object in $\operatorname{BAlg}^{s t}(\Delta)$ (i.e., in $\left.\operatorname{Alg}(\Sigma) \downarrow B N\right)$ is $\mathcal{B N}$, which shows that $\mathbf{G}_{\Delta}: \boldsymbol{B A l g}^{s t}(\Delta) \rightarrow \boldsymbol{\operatorname { S e t }}^{S}$ is not continuous, we have:

NO: $\{2,4\} .\{b, d\}$

Consider a bin-signature $\Delta_{1}=\left\langle\Sigma_{1}, \delta_{1}\right\rangle$, where Σ_{1} has a single sort s and two constants a, b : s and $\left(\delta_{1}\right)_{a}=1,\left(\delta_{1}\right)_{b}=0$. Now, the inequality $a \leq b$ has no strict Δ_{1}-model, which shows:

NO: $\{1,3\} . b .\{\mathrm{C}, \mathrm{CC}\}$ (and $\{2,4\} . \mathrm{b})$

The "lax" case:

Consider a bin-signature $\Delta=\langle\Sigma, \delta\rangle$, with $\Sigma=\langle S, \ldots\rangle$, and a set Φ of Δ-inequalities.
Completeness (monotone Δ): Let $\mathcal{A}=\langle A, \alpha\rangle$ and $\mathcal{B}=\langle B, \beta\rangle$ be Δ-bin-algebras that satisfy Φ, and let $h, h^{\prime}: \mathcal{A} \rightarrow \mathcal{B}$ be bin-homomorphisms. Let then $e: E \rightarrow A$ be an equaliser of $h, h^{\prime}: A \rightarrow B$ in $\operatorname{Alg}(\Sigma)$, and $\varepsilon=e ; \alpha$. Given the construction of equalisers in $\operatorname{Alg}(\Sigma)$, it follows now that $e:\langle E, \varepsilon\rangle \rightarrow \mathcal{A}$ is an equaliser of $h, h^{\prime}: \mathcal{A} \rightarrow \mathcal{B}$ in $\operatorname{BAlg}(\Delta, \Phi)$.
Let $\mathcal{A}_{i}=\left\langle A_{i}, \alpha_{i}\right\rangle, i \in \mathcal{J}$, be a family of Δ-bin-algebras that satisfy Φ. Let A with projections $\pi_{i}: A \rightarrow A_{i}, i \in \mathcal{J}$, be a product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{J}}$ in $\operatorname{Alg}(\Sigma)$. For $s \in S$, define $\alpha_{s}:|A|_{s} \rightarrow\{0,1\}$ as follows: given $a \in|A|, \alpha_{s}(a)=1$ iff for all $i \in \mathcal{J},\left(\alpha_{i}\right)_{s}\left(\pi_{i}(a)\right)=1$ (and so $\alpha_{s}(a)=0$ iff for some $\left.i \in \mathcal{J},\left(\alpha_{i}\right)_{s}\left(\pi_{i}(a)\right)=0\right)$. This implies that $\alpha_{s}(a) \leq\left(\alpha_{i}\right)_{s}\left(\left(\pi_{i}\right)_{s}(a)\right)$. Then for $f: s_{1} \times \ldots \times s_{n} \rightarrow$ s and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$, we show $\delta_{f}\left(\alpha_{s_{1}}\left(a_{1}\right), \ldots, \alpha_{s_{n}}\left(a_{n}\right)\right) \leq \alpha_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)$, i.e., if $\alpha_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=0$ then $\delta_{f}\left(\alpha_{s_{1}}\left(a_{1}\right), \ldots, \alpha_{s_{n}}\left(a_{n}\right)\right)=0$ as well. Namely, $\alpha_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=0$ implies $\left(\alpha_{i}\right)_{s}\left(f_{A_{i}}\left(\left(\pi_{i}\right)_{s_{1}}\left(a_{1}\right), \ldots,\left(\pi_{i}\right)_{s_{s}}\left(a_{n}\right)\right)\right)=0$ for some $i \in \mathcal{J}$. Now, since Δ is monotone, we get: $\delta_{f}\left(\alpha_{s_{1}}\left(a_{1}\right), \ldots, \alpha_{s_{n}}\left(a_{n}\right)\right) \leq \delta_{f}\left(\left(\alpha_{i}\right)_{s_{1}}\left(\left(\pi_{i}\right)_{s_{1}}\left(a_{1}\right)\right), \ldots,\left(\alpha_{i}\right)_{s_{1}}\left(\left(\pi_{i}\right)_{s_{s}}\left(a_{n}\right)\right)\right)=0$. Consequently, $\mathcal{A}=\left\langle A, \alpha=\left\langle\alpha_{s}\right\rangle_{s \in S}\right\rangle$ is a Δ-bin-algebra. It is easy to check now that \mathcal{A} is a model of Φ, and in fact is a product of $\mathcal{A}_{i}=\left\langle A_{i}, \alpha_{i}\right\rangle, i \in \mathcal{J}$, with projections $\pi_{i}: \mathcal{A} \rightarrow \mathcal{A}_{i}, i \in \mathcal{J}$, in $\mathbf{B A l g}(\Sigma, \Phi)$. The above proves:

YES: 3. $\{\mathrm{a}, \mathrm{c}\}$.C

Counterexample (non-monotone Δ): Consider $\Delta_{2}=\left\langle\Sigma_{2}, \delta_{2}\right\rangle$ where Σ_{2} has a single sort s, constant a : s and operation $f: s \rightarrow s$, with $\left(\delta_{2}\right)_{a}=0$ and $\left(\delta_{2}\right)_{f}(0)=1,\left(\delta_{2}\right)_{f}(1)=0$. Consider now two Δ_{2}-bin-algebras, $\mathcal{A}=\left\langle T_{\Sigma_{2}}, \alpha\right\rangle$ and $\mathcal{B}=\left\langle T_{\Sigma_{2}}, \beta\right\rangle$, where $T_{\Sigma_{2}}$ is the usual algebra of ground Σ_{2}-terms of the form $f^{n}(a), n \geq 0$, and:

$$
\alpha_{s}\left(f^{n}(a)\right)=\left\{\begin{array}{ll}
0 & \text { for even } n \\
1 & \text { for odd } n
\end{array} \quad \beta_{s}\left(f^{n}(a)\right)= \begin{cases}1 & \text { for even } n \\
0 & \text { for odd } n\end{cases}\right.
$$

Suppose now there is a Δ_{2}-bin-algebra $\mathcal{C}=\langle C, \gamma\rangle$ with Δ_{2}-bin-homomorphisms h_{A} : $\mathcal{C} \rightarrow \mathcal{A}$ and $h_{B}: \mathcal{C} \rightarrow \mathcal{B}$. Since $\left(h_{A}\right)_{s}\left(a_{C}\right)=a, \gamma_{s}\left(a_{C}\right) \leq \alpha_{s}(a)=0$. Then $\gamma_{s}\left(f_{C}\left(a_{c}\right)\right) \geq\left(\delta_{2}\right)_{f}(0)=1$. But $\left(h_{B}\right)_{s}\left(f_{C}\left(a_{c}\right)\right)=f(a)$, with $\beta_{s}(f(a))=0$, and so h_{B} is not a bin-homomorphism. This contradiction shows that there is no product of \mathcal{A} and \mathcal{B} in $\operatorname{BAlg}(\Delta)$, and that there is no initial Δ_{2}-bin-algebra, which proves

NO: 1. $\{\mathrm{a}, \mathrm{c}\} .\{\mathrm{C}, \mathrm{CC}\}$
Moreover, since left adjoints preserve initial objects, there is no free Δ_{2}-bin-algebra w.r.t. $\mathbf{G}_{\Delta_{2}}$ over the empty set, and so:

NO: $2 .\{\mathrm{a}, \mathrm{c}\}$

Construction of the minimal bin-map: Consider a Σ-algebra $A \in \operatorname{Alg}(\Sigma)$. Given a family of Δ -bin-algebras $\mathcal{A}_{i}=\left\langle A_{i}, \alpha_{i}\right\rangle$ with Σ-homomorphisms $h_{i}: A_{i} \rightarrow A, i \in \mathcal{J}$, there is the least (w.r.t. the order on bin-maps induced by the standard order on $\{0,1\}$) bin-map $\alpha=\left.\left\langle\alpha_{s}:\right| A\right|_{s} \rightarrow$ $\{0,1\}\rangle_{s \in S}$ such that

- $\mathcal{A}=\langle A, \alpha\rangle$ is a Δ-bin-algebra
- $\mathcal{A}=\langle A, \alpha\rangle \models \Phi$
- all $h_{i}: \mathcal{A}_{i} \rightarrow \mathcal{A}, i \in \mathcal{J}$, are Δ-bin-homomorphisms

More explicitly, for all $s \in S, a \in|A|_{s}$, define $\alpha_{s}(a)=\bigsqcup\left\{\alpha_{s}^{k}(a) \mid k \geq 0\right\}$ (the least upper bound w.r.t. the standard order on $\{0,1\}$ of $\left.\alpha_{s}^{k}(a), k \geq 0\right)$, where $\alpha^{k}=\left\langle\alpha_{s}^{k}:\right| A|\rightarrow\{0,1\}\rangle_{s \in S}$, are defined inductively:

- for $s \in S, a \in|A|_{s}, \alpha_{s}^{0}(a)=\bigsqcup\left\{\left(\alpha_{i}\right)_{s}\left(a_{i}\right) \mid i \in \mathcal{J},\left(h_{i}\right)_{s}\left(a_{i}\right)=a\right\}$.
- for $k \geq 0$, for $s \in S, a \in|A|_{s}, \alpha_{s}^{k+1}(a)$ is the least upper bound of the following elements:
$-\alpha_{s}^{k}(a)$
$-\delta_{f}\left(\alpha_{s_{1}}^{k}\left(a_{1}\right), \ldots, \alpha_{s_{n}}^{k}\left(a_{n}\right)\right)$ for all $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ in Σ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$ such that $f_{A}\left(a_{1}, \ldots, a_{n}\right)=a$
$-\alpha_{s}^{k}\left(t_{A}[v]\right)$ for all inequalities $\forall X . t \leq t^{\prime}$ in Φ and valuations $v: X \rightarrow|A|$ such that $t_{A}^{\prime}[v]=a$.
As usual, the least upper bound of the empty set is 0 . The required properties of the so defined bin-map α are now easy to check, since for $s \in S, a \in|A|_{s}$, for some $m \geq 0$ we have $\alpha_{s}(a)=\alpha_{s}^{k}(a)$ for all $k \geq m$.
Moreover, if Δ is monotone, we get:
- given any $\mathcal{B}=\langle B, \beta\rangle \in|\mathbf{B A l g}(\Delta, \Phi)|$ and Σ-homomorphism $h: A \rightarrow B$, if all $h_{i} ; h: \mathcal{A}_{i} \rightarrow \mathcal{B}$, $i \in \mathcal{J}$, are Δ-bin-homomorphisms then so is $h: \mathcal{A} \rightarrow \mathcal{B}$.
To see this, it is enough to notice that for all $s \in S, a \in|A|_{s}, \alpha_{s}^{k}(a) \leq \beta\left(h_{s}(a)\right)$ for all $k \geq 0-$ easy proof by induction follows:
- $\alpha_{s}^{0}(a)=\bigsqcup\left\{\left(\alpha_{i}\right)_{s}\left(a_{i}\right) \mid i \in \mathcal{J},\left(h_{i}\right)_{s}\left(a_{i}\right)=a\right\} \leq \beta_{s}\left(h_{s}(a)\right)$, since for $i \in \mathcal{J}, a_{i} \in\left|A_{i}\right|_{s}$, $\left(\alpha_{i}\right)_{s}\left(a_{i}\right) \leq \beta_{s}\left(h_{s}\left(\left(h_{i}\right)_{s}\left(a_{i}\right)\right)\right)$.
- for $k \geq 0$, if for all $s \in S, a \in|A|_{s}$:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ in Σ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$ with $f_{A}\left(a_{1}, \ldots, a_{n}\right)=a$, by the inductive hypothesis $\alpha_{s_{1}}^{k}\left(a_{1}\right) \leq \beta_{s_{1}}\left(h_{s_{1}}\left(a_{1}\right)\right), \ldots, \alpha_{s_{n}}^{k}\left(a_{n}\right) \leq \beta_{s_{n}}\left(h_{s_{n}}\left(a_{n}\right)\right)$. Then, since Δ is monotone:

$$
\begin{aligned}
\delta_{f}\left(\alpha_{s_{1}}^{k}\left(a_{1}\right), \ldots, \alpha_{s_{n}}^{k}\left(a_{n}\right)\right) & \leq \delta_{f}\left(\beta_{s_{1}}\left(h_{s_{1}}\left(a_{1}\right)\right), \ldots, \beta_{s_{n}}\left(h_{s_{n}}\left(a_{n}\right)\right)\right. \\
& \leq \beta_{s}\left(f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)\right) \\
& =\beta_{s}\left(h_{s}(a)\right) .
\end{aligned}
$$

- for all inequalities $\forall X . t \leq t^{\prime}$ in Φ and valuations $v: X \rightarrow|A|$ such that $t_{A}^{\prime}[v]=a$, by the inductive hypothesis and since $\left.\mathcal{B} \models \Phi: \alpha_{s}^{k}\left(t_{A}[v]\right) \leq \beta_{s}\left(h_{s}\left(t_{A}[v]\right)\right)=\beta_{s}\left(t_{A}[v ; h]\right)\right) \leq$ $\left.\beta_{s}\left(t_{A}^{\prime}[v ; h]\right)\right)=\beta_{s}\left(h_{s}\left(t_{A}[v]\right)=\beta_{s}\left(h_{s}(a)\right)\right.$.
Hence, $\alpha_{s}^{k+1}(a) \leq \beta_{s}\left(h_{s}(a)\right)$.
Cocompleteness (monotone Δ): Consider now any diagram \mathcal{D} in $\operatorname{BAlg}(\Delta, \Phi)$ with nodes $n \in N$ and edges $e \in E$, i.e., for each node $n \in N$ we have a Δ-bin-algebra satisfying $\Phi, \mathcal{D}_{n}=$ $\left\langle A_{n}, \alpha_{n}\right\rangle \in|\operatorname{BAlg}(\Delta, \Phi)|$, and for each edge $e: n \rightarrow m$ in E we have Δ-bin-homomorphism $\mathcal{D}_{e}: \mathcal{D}_{n} \rightarrow \mathcal{D}_{m}$. Let now D be the projection of \mathcal{D} to $\operatorname{Alg}(\Sigma)$, i.e., D is the diagram of the same shape as \mathcal{D} and for all nodes $n \in N, D_{n}=A_{n} \in \operatorname{Alg}(\Sigma)$, and for all edges $e: n \rightarrow m$ in E, $D_{n}=\mathcal{D}_{n}: A_{n} \rightarrow A_{m}$. Let A with injections $\iota_{n}: A_{n} \rightarrow A$ be a colimit of D in $\operatorname{Alg}(\Sigma)$. Given the construction above, we can now equip A with the least bin-map $\left.\alpha=\left.\left\langle\alpha_{s}:\right| A\right|_{s} \rightarrow\{0,1]\right\rangle_{s \in S}$ such that
- $\mathcal{A}=\langle A, \alpha\rangle$ is a Δ-bin-algebra
- $\mathcal{A}=\langle A, \alpha\rangle \models \Phi$
- all $\iota_{i}: \mathcal{A}_{i} \rightarrow \mathcal{A}, i \in \mathcal{J}$, are Δ-bin-homomorphisms
and since Δ is monotone
- given any $\mathcal{B}=\langle B, \beta\rangle \in|\mathbf{B A l g}(\Delta, \Phi)|$ and Σ-homomorphism $h: A \rightarrow B$, if all $\iota_{i} ; h: \mathcal{A}_{i} \rightarrow \mathcal{B}$, $i \in \mathcal{J}$, are Δ-bin-homomorphisms then so is $h: \mathcal{A} \rightarrow \mathcal{B}$.

It is easy to check now that $\mathcal{A}=\langle A, \alpha\rangle$ with injections $\iota_{n}: \mathcal{A}_{n} \rightarrow \mathcal{A}$ is a colimit of \mathcal{D} in $\operatorname{BAlg}(\Delta, \Phi)$. This proves:

YES: $\{3\} .\{a, c\} . C C$
Left adjoints (monotone Δ): Given an S-sorted set X, equip the usual Σ-algebra of terms, $T_{\Sigma}(X)$, with the least bin-map $\alpha=\left\langle\alpha_{s}:\right| T_{\Sigma}(X)|\rightarrow\{0,1\}\rangle_{s \in S}$ induced by the empty family (of Δ -bin-algebras with Σ-homomorphisms) and the set of Δ-inequalities Φ. Since Δ is monotone, it follows now that $\left\langle T_{\Sigma}(X), \alpha\right\rangle$ with the usual injection $\eta_{X}: X \rightarrow\left|T_{\Sigma}(X)\right|$ is free over X w.r.t. $\mathbf{G}_{\Delta, \Phi}: \mathbf{B A l g}(\Delta, \Phi) \rightarrow \operatorname{Set}^{S}$, which proves:

YES: 4. $\{\mathrm{a}, \mathrm{c}\}$

Summing up:

	BAlg (Δ, Φ) _.a._	$\mathrm{BAlg}^{s t}(\Delta, \Phi)$..b._	BAlg (Δ) _.c.	BAlg ${ }^{s t}(\Delta)$..d._
1._.C	NO	NO	NO	YES
1._.CC	NO	NO	NO	YES
monotone: 3._.C	YES	NO	YES	YES
monotone: 3._.CC	YES	NO	YES	YES
left adjoint to $\mathbf{G}_{(-)}^{(-): 2 .-}$	NO	NO	NO	NO
monotone, left adjoint to $\mathbf{G}_{(-)}^{(-)}: 4 .-$	YES	NO	YES	NO

