Universal constructions: limits and colimits

Consider and arbitrary but fixed category \mathbf{K} for a while.

Initial and terminal objects

An object $I \in|\mathbf{K}|$ is initial in \mathbf{K} if for each object $A \in|\mathbf{K}|$ there is exactly one morphism from I to A.

Examples:

- \emptyset is initial in Set.
- For any signature $\Sigma \in|\mathbf{A l g S i g}|, T_{\Sigma}$ is initial in $\operatorname{Alg}(\Sigma)$.
- For any signature $\Sigma \in|\mathbf{A l g S i g}|$ and set of Σ-equations Φ, the initial model of $\langle\Sigma, \Phi\rangle$ is initial in $\operatorname{Mod}(\Sigma, \Phi)$, the full subcategory of $\operatorname{Alg}(\Sigma)$ determined by the class $\operatorname{Mod}(\Sigma, \Phi)$ of all models of Φ.

Look for initial objects in other categories.

Fact: Initial objects, if exist, are unique up to isomorphism:

- Any two initial objects in \mathbf{K} are isomorphic.
- If I is initial in \mathbf{K} and I^{\prime} is isomorphic to I in \mathbf{K} then I^{\prime} is initial in \mathbf{K} as well.

Terminal objects

An object $I \in|\mathbf{K}|$ is terminal in \mathbf{K} if for each object $A \in|\mathbf{K}|$ there is exactly one morphism from A to I.

$$
\text { terminal }=c o \text {-initial }
$$

Exercises:
Dualise those for initial objects.

- Look for terminal objects in standard categories.
- Show that terminal objects are unique to within an isomorphism.
- Look for categories where there is an object which is both initial and terminal.

Products

A product of two objects $A, B \in|\mathbf{K}|$, is any object $A \times B \in|\mathbf{K}|$ with two morphisms (product projections) $\pi_{1}: A \times B \rightarrow A$ and $\pi_{2}: A \times B \rightarrow B$ such that for any object $C \in|\mathbf{K}|$ with morphisms $f_{1}: C \rightarrow A$ and $f_{2}: C \rightarrow B$ there exists a unique morphism $h: C \rightarrow A \times B$ such that $h ; \pi_{1}=f_{1}$ and $h ; \pi_{2}=f_{2}$.

In Set, Cartesian product is a product

We write $\left\langle f_{1}, f_{2}\right\rangle$ for h defined as above. Then:
$\left\langle f_{1}, f_{2}\right\rangle ; \pi_{1}=f_{1}$ and $\left\langle f_{1}, f_{2}\right\rangle ; \pi_{2}=f_{2}$. Moreover, for any h into the product $A \times B: h=\left\langle h ; \pi_{1}, h ; \pi_{2}\right\rangle$.
 Essentially, this equationally defines a product!

Fact: Products are defined to within an isomorphism (which commutes with projections).

Exercises

- Product commutes (up to isomorphism): $A \times B \cong B \times A$
- Product is associative (up to isomorphism): $(A \times B) \times C \cong A \times(B \times C)$
- What is a product of two objects in a preorder category?
- Define the product of any family of objects. What is the product of the empty family?
- For any algebraic signature $\Sigma \in|\mathbf{A l g S i g}|$, try to define products in $\mathbf{A l g}(\Sigma)$, $\mathbf{P A l g}_{\mathbf{s}}(\Sigma), \mathbf{P A l g}(\Sigma)$. Expect troubles in the two latter cases...
- Define products in the category of partial functions, Pfn, with sets (as objects) and partial functions as morphisms between them.
- Define products in the category of relations, Rel, with sets (as objects) and binary relations as morphisms between them.
- BTW: What about products in $\mathbf{R e l}^{o p}$?

Coproducts

$$
\text { coproduct }=c o \text {-product }
$$

A coproduct of two objects $A, B \in|\mathbf{K}|$, is any object $A+B \in|\mathbf{K}|$ with two morphisms (coproduct injections) $\iota_{1}: A \rightarrow A+B$ and $\iota_{2}: B \rightarrow A+B$ such that for any object $C \in|\mathbf{K}|$ with morphisms $f_{1}: A \rightarrow C$ and $f_{2}: B \rightarrow C$ there exists a unique morphism $h: A+B \rightarrow C$ such that $\iota_{1} ; h=f_{1}$ and $\iota_{2} ; h=f_{2}$.

In Set, disjoint union is a coproduct

We write $\left[f_{1}, f_{2}\right]$ for h defined as above. Then: $\iota_{1} ;\left[f_{1}, f_{2}\right]=f_{1}$ and $\iota_{2} ;\left[f_{1}, f_{2}\right]=f_{2}$. Moreover, for any h from the coproduct $A+B: h=\left[\iota_{1} ; h, \iota_{2} ; h\right]$.

Essentially, this equationally defines a product!

Fact: Coproducts are defined to within an isomorphism (which commutes with injections).

Equalisers

An equaliser of two "parallel" morphisms $f, g: A \rightarrow B$ is a morphism $e: E \rightarrow A$ such that $e ; f=e ; g$, and such that for all $h: H \rightarrow A$, if $h ; f=h ; g$ then for a unique morphism $k: H \rightarrow E, k ; e=h$.

- Equalisers are unique up to isomorphism.
- Every equaliser is mono.
- Every epi equaliser is iso.

In Set, given functions $f, g: A \rightarrow B$, define $E=\{a \in A \mid f(a)=g(a)\}$
The inclusion $e: E \hookrightarrow A$ is an equaliser of f and g.

Define equalisers in $\operatorname{Alg}(\Sigma)$.
Try also in: $\mathbf{P A l g}_{\mathbf{s}}(\Sigma), \mathbf{P A l g}(\Sigma), \mathbf{P f n}, \mathbf{R e l}, \ldots$

Coequalisers

A coequaliser of two "parallel" morphisms $f, g: A \rightarrow B$ is a morphism $c: B \rightarrow C$ such that $f ; c=g ; c$, and such that for all $h: B \rightarrow H$, if $f ; h=g ; h$ then for a unique morphism $k: C \rightarrow H, c ; k=h$.

- Coequalisers are unique up to isomorphism.
- Every coequaliser is epi.
- Every mono coequaliser is iso.

In Set, given functions $f, g: A \rightarrow B$, let $\equiv \subseteq B \times B$ be the least equivalence such that $f(a) \equiv g(a)$ for all $a \in A$ The quotient function $[-]_{\equiv}: B \rightarrow B / \equiv$ is a coequaliser of f and g.

Define coequalisers in $\operatorname{Alg}(\Sigma)$.
Try also in: $\mathbf{P A l g}_{\mathbf{s}}(\Sigma), \mathbf{P A l g}(\Sigma), \mathbf{P f n}$, Rel, ..

Most general unifiers are coequalisers in Subst $_{\Sigma}$

Pullbacks

A pullback of two morphisms with common target $f: A \rightarrow C$ and $g: B \rightarrow C$ is an object $P \in|\mathbf{K}|$ with morphisms $j: P \rightarrow A$ and $k: P \rightarrow B$ such that $j ; f=k ; g$, and such that for all $P^{\prime} \in|\mathbf{K}|$ with morphisms $j^{\prime}: P^{\prime} \rightarrow A$ and $k^{\prime}: P^{\prime} \rightarrow B$, if $j^{\prime} ; f=k^{\prime} ; g$ then for a unique morphism $h: P^{\prime} \rightarrow P, h ; j=j^{\prime}$ and $h ; k=k^{\prime}$.

In Set, given functions $f: A \rightarrow C$ and $f: B \rightarrow C$,
define $P=\{\langle a, b\rangle \in A \times B \mid f(a)=g(b)\}$
Then P with obvious projections on A and B, respectively, is a pullback of f and g.

Define pullbacks in $\operatorname{Alg}(\Sigma)$.
Try also in: $\mathbf{P A l g}_{\mathbf{s}}(\Sigma), \mathbf{P A l g}(\Sigma), \mathbf{P f n}, \mathbf{R e l}, \ldots$
Wait for a hint to come...

Few facts

- Pullbacks are unique up to isomorphism.
- If \mathbf{K} has all products (of pairs of objects) and all equalisers (of pairs of parallel morphisms) then it has all pullbacks (of pairs of morphisms with common target).
- If \mathbf{K} has all pullbacks and a terminal object then it has all binary products and equalisers. HINT: to build an equaliser of $f, g: A \rightarrow B$, consider a pullback of $\left\langle i d_{A}, f\right\rangle,\left\langle i d_{A}, g\right\rangle: A \rightarrow A \times B$.
- Pullbacks translate monos to monos: if the following is a pullback square and f is mono then f^{\prime} is mono as well.

A pushout of two morphisms with common source $f: C \rightarrow A$ and $g: C \rightarrow A$ is an object $P \in|\mathbf{K}|$ with morphisms $j: A \rightarrow P$ and $k: B \rightarrow P$ such that $f ; j=g ; k$, and such that for all $P^{\prime} \in|\mathbf{K}|$ with morphisms $j^{\prime}: A \rightarrow P^{\prime}$ and $k^{\prime}: B \rightarrow P^{\prime}$, if $f ; j^{\prime}=g ; k^{\prime}$ then for a unique morphism $h: P \rightarrow P^{\prime}, j ; h=j^{\prime}$ and $k ; h=k^{\prime}$.

In Set, given two functions $f: A \rightarrow C$ and $g: B \rightarrow$ C, define the least equivalence \equiv on $A \uplus B$ such that $f(c) \equiv g(c)$ for all $c \in C$ The quotient $(A \uplus B) / \equiv$ with compositions of injections and the quotient function is a pushout of f and g.

Dualise facts for pullbacks!

Example

Pushouts put objects together taking account of the indicated sharing

Example in AlgSig

$$
\begin{aligned}
& \text { sort String } \\
& \text { ops } a, \ldots, z \text { : String; } \\
& \text { - String } \times \text { String } \\
& \rightarrow \text { String } \\
& \text { (}
\end{aligned}
$$

sorts String, Nat, Array [String] ops $a, \ldots, z:$ String;
${ }_{-}{ }^{-}$_ $:$String \timesString \rightarrow String;
empty: Array[String];
put: Nat \times String \times Array $[$ String $]$ \rightarrow Array $[$ String $] ;$
get : Nat \times Array $[$ String $] \rightarrow$ String

sorts Elem, Nat, Array[Elem]
ops empty: Array[Elem $;$ put: Nat \times Elem \times Array $[$ Elem $]$ \rightarrow Array $[$ Elem $] ;$ get $:$ Nat \times Array $[$ Elem $] \rightarrow$ Elem

Graphs

A graph consists of sets of nodes and edges, and indicate source and target nodes for each edge

$$
\begin{aligned}
\Sigma_{\text {Graph }}= & \text { sorts } \text { nodes, edges } \\
& \text { opns source }: \text { edges } \rightarrow \text { nodes } \\
& \text { target }: \text { edges } \rightarrow \text { nodes }
\end{aligned}
$$

Graph is any $\Sigma_{\text {Graph-algebra. }}$
The category of graphs:

$$
\mathbf{G r a p h}=\mathbf{A} \lg \left(\Sigma_{G r a p h}\right)
$$

For any small category \mathbf{K}, define its graph, $G(\mathbf{K})$
For any graph $G \in|\mathbf{G r a p h}|$, define the category of paths in $G, \operatorname{Path}(G)$:

- objects: $|G|_{\text {nodes }}$
- morphisms: paths in G, i.e., sequences $n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}$ of nodes $\overline{\overline{n_{0}, \ldots, n_{k}}} \in|G|_{\text {nodes }}$ and edges $e_{1}, \ldots, e_{k} \in|G|_{\text {edges }}$ such that $\operatorname{source}\left(e_{i}\right)=n_{i-1}$ and $\operatorname{target}\left(e_{i}\right)=n_{i}$ for $i=1, \ldots, k$.

Diagrams

> A diagram in \mathbf{K} is a graph with nodes labelled with \mathbf{K}-objects and edges labelled with \mathbf{K}-morphisms with appropriate sources and targets.

A diagram D consists of:

- a graph $G(D)$,
- an object $D_{n} \in|\mathbf{K}|$ for each node $n \in|G(D)|_{\text {nodes }}$,
- a morphism $D_{e}: D_{\text {source(e) }} \rightarrow D_{\text {target }(e)}$ for each edge $e \in|G(D)|_{\text {edges }}$.

For any small category \mathbf{K}, define its diagram, $D(\mathbf{K})$, with graph $G(D(\mathbf{K}))=G(\mathbf{K})$

BTW: A diagram D commutes (or is commutative) if for any two paths in $G(D)$ with common source and target, the compositions of morphisms that label the edges of each of them coincide.

Diagram categories

Given a graph G with nodes $N=|G|_{\text {nodes }}$ and edges $E=|G|_{\text {edges }}$, the category of diagrams of shape G in $\mathbf{K}, \mathbf{D i a g}_{\mathbf{K}}^{G}$, is defined as follows:

- objects: all diagrams D in \mathbf{K} with $G(D)=G$
- morphisms: for any two diagrams D and D^{\prime} in \mathbf{K} of shape G, a morphism $\mu: D \rightarrow D^{\prime}$ is any family $\mu=\left\langle\mu_{n}: D_{n} \rightarrow D_{n}^{\prime}\right\rangle_{n \in N}$ of morphisms in \mathbf{K} such that for each edge $e \in E$ with $\operatorname{source}_{G(D)}(e)=n$ and $\operatorname{target}_{G(D)}(e)=m$,

$$
\mu_{n} ; D_{e}^{\prime}=D_{e} ; \mu_{m}
$$

Let D be a diagram over $G(D)$ with nodes $N=|G(D)|_{\text {nodes }}$ and edges $E=|G(D)|_{\text {edges }}$.

Cones and cocones

A cone on D (in \mathbf{K}) is an object $X \in|\mathbf{K}|$ together with a family of morphisms $\left\langle\alpha_{n}: X \rightarrow D_{n}\right\rangle_{n \in N}$ such that for each edge $e \in E$ with source $_{G(D)}(e)=n$ and $\operatorname{target}_{G(D)}(e)=m, \alpha_{n} ; D_{e}=\alpha_{m}$.

A cocone on D (in \mathbf{K}) is an object $X \in|\mathbf{K}|$ together with a family of morphisms $\left\langle\alpha_{n}: D_{n} \rightarrow X\right\rangle_{n \in N}$ such that for each edge $e \in E$ with source $_{G(D)}(e)=n$ and $\operatorname{target}_{G(D)}(e)=m, \alpha_{n}=D_{e} ; \alpha_{m}$.

Limits and colimits

A limit of $D($ in $\mathbf{K})$ is a cone $\left\langle\alpha_{n}: X \rightarrow D_{n}\right\rangle_{n \in N}$ on D such that for all cones $\left\langle\alpha_{n}^{\prime}: X^{\prime} \rightarrow D_{n}\right\rangle_{n \in N}$ on D, for a unique morphism $h: X^{\prime} \rightarrow X, h ; \alpha_{n}=\alpha_{n}^{\prime}$ for all $n \in N$.

A colimit of $D($ in $\mathbf{K})$ is a cocone $\left\langle\alpha_{n}: D_{n} \rightarrow X\right\rangle_{n \in N}$ on D such that for all cocones $\left\langle\alpha_{n}^{\prime}: D_{n} \rightarrow X^{\prime}\right\rangle_{n \in N}$ on D, for a unique morphism $h: X \rightarrow X^{\prime}, \alpha_{n} ; h=\alpha_{n}^{\prime}$ for all $n \in N$.

Some limits

diagram	limit	in Set
(empty)	terminal object	$\{*\}$
$A \quad B$	product	$A \times B$
$A \xrightarrow[g]{\stackrel{f}{\longrightarrow}} B$	equaliser	$\{a \in A \mid f(a)=g(a)\} \hookrightarrow A$
$A \xrightarrow{f} C \stackrel{g}{\longleftrightarrow} B$	pullback	$\{(a, b) \in A \times B \mid f(a)=g(b)\}$

... \& colimits

diagram	colimit	in Set
(empty)	initial object	\emptyset
A coproduct	$A \uplus B$	
$A \underset{g}{\stackrel{f}{\longrightarrow}} B$	coequaliser	$B \longrightarrow B / \equiv$
$A \stackrel{f}{\longleftrightarrow} C \xrightarrow{g} B$	pushout	$(A \uplus B) / \equiv$

Exercises

- For any diagram D, define the category of cones over $D, \operatorname{Cone}(D)$:
- objects: all cones over D
- morphisms: a morphism from $\left\langle\alpha_{n}: X \rightarrow D_{n}\right\rangle_{n \in N}$ to $\left\langle\alpha_{n}^{\prime}: X^{\prime} \rightarrow D_{n}\right\rangle_{n \in N}$ is any K-morphism $h: X \rightarrow X^{\prime}$ such that $h ; \alpha_{n}^{\prime}=\alpha_{n}$ for all $n \in N$.
- Show that limits of D are terminal objects in $\operatorname{Cone}(D)$. Conclude that limits are defined uniquely up to isomorphism (which commutes with limit projections).
- Construct a limit in Set of the following diagram:

$$
A_{0} \stackrel{f_{0}}{\longleftarrow} A_{1} \stackrel{f_{1}}{\leftarrow} A_{2} \stackrel{f_{2}}{\longleftarrow} \cdots
$$

- Show that limiting cones are jointly mono, i.e., if $\left\langle\alpha_{n}: X \rightarrow D_{n}\right\rangle_{n \in N}$ is a limit of D then for all $f, g: A \rightarrow X, f=g$ whenever $f ; \alpha_{n}=g ; \alpha_{n}$ for all $n \in N$.

Dualise all the exercises above!

Completeness and cocompleteness

A category \mathbf{K} is (finitely) complete if any (finite) diagram in \mathbf{K} has a limit.

A category \mathbf{K} is (finitely) cocomplete if any (finite) diagram in \mathbf{K} has a colimit.

- If \mathbf{K} has a terminal object, binary products (of all pairs of objects) and equalisers (of all pairs of parallel morphisms) then it is finitely complete.
- If \mathbf{K} has products of all families of objects and equalisers (of all pairs of parallel morphisms) then it is complete.

Prove completeness of $\boldsymbol{\operatorname { S e t }}, \mathbf{A l g}(\Sigma), \mathbf{A l g S i g}, \mathbf{P f n}, \ldots$

When a preorder category is complete?

BTW: If a small category is complete then it is a preorder.
Dualise the above!

