## Functors

 and
## natural transformations

| functors | $\leadsto$ | category morphisms |
| ---: | :--- | :--- |
| natural transformations | $\leadsto$ | functor morphisms |

## Functors

A functor $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ from a category $\mathbf{K}$ to a category $\mathbf{K}^{\prime}$ consists of:

- a function $\mathbf{F}:|\mathbf{K}| \rightarrow\left|\mathbf{K}^{\prime}\right|$, and
- for all $A, B \in|\mathbf{K}|$, a function $\mathbf{F}: \mathbf{K}(A, B) \rightarrow \mathbf{K}^{\prime}(\mathbf{F}(A), \mathbf{F}(B))$
such that:
Make explicit categories in which we work at various places here
- F preserves identities, i.e.,

$$
\mathbf{F}\left(i d_{A}\right)=i d_{\mathbf{F}(A)}
$$

for all $A \in|\mathbf{K}|$, and

- $\mathbf{F}$ preserves composition, i.e.,

$$
\mathbf{F}(f ; g)=\mathbf{F}(f) ; \mathbf{F}(g)
$$

for all $f: A \rightarrow B$ and $g: B \rightarrow C$ in $\mathbf{K}$. We really should differentiate between various components of $F$

## Examples

- identity functors: $\mathbf{I d}_{\mathbf{K}}: \mathbf{K} \rightarrow \mathbf{K}$, for any category $\mathbf{K}$
- inclusions: $\mathbf{I}_{\mathbf{K} \hookrightarrow \mathbf{K}^{\prime}}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for any subcategory $\mathbf{K}$ of $\mathbf{K}^{\prime}$
- constant functors: $\mathbf{C}_{A}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for any categories $\mathbf{K}, \mathbf{K}^{\prime}$ and $A \in\left|\mathbf{K}^{\prime}\right|$, with $\mathbf{C}_{A}(f)=i d_{A}$ for all morphisms $f$ in $\mathbf{K}$
- powerset functor: $\mathbf{P}:$ Set $\rightarrow$ Set given by
$-\mathbf{P}(X)=\{Y \mid Y \subseteq X\}$, for all $X \in|\boldsymbol{S e t}|$
$-\mathbf{P}(f): \mathbf{P}(X) \rightarrow \mathbf{P}\left(X^{\prime}\right)$ for all $f: X \rightarrow X^{\prime}$ in Set, $\mathbf{P}(f)(Y)=\{f(y) \mid y \in Y\}$ for all $Y \subseteq X$
- contravariant powerset functor: $\mathbf{P}_{-1}$ : Set ${ }^{o p} \rightarrow$ Set given by
$-\mathbf{P}_{-1}(X)=\{Y \mid Y \subseteq X\}$, for all $X \in \mid$ Set $\mid$
$-\mathbf{P}_{-1}(f): \mathbf{P}\left(X^{\prime}\right) \rightarrow \mathbf{P}(X)$ for all $f: X \rightarrow X^{\prime}$ in Set, $\mathbf{P}_{-1}(f)\left(Y^{\prime}\right)=\left\{x \in X \mid f(x) \in Y^{\prime}\right\}$ for all $Y^{\prime} \subseteq X^{\prime}$


## Examples, cont'd.

- projection functors: $\pi_{1}: \mathbf{K} \times \mathbf{K}^{\prime} \rightarrow \mathbf{K}, \pi_{2}: \mathbf{K} \times \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime}$
- list functor: List: Set $\rightarrow$ Monoid, where Monoid is the category of monoids (as objects) with monoid homomorphisms as morphisms:
$-\operatorname{List}(X)=\left\langle X^{*}, \uparrow, \epsilon\right\rangle$, for all $X \in|\boldsymbol{\operatorname { S e t }}|$, where $X^{*}$ is the set of all finite lists of elements from $X,{ }^{\wedge}$ is the list concatenation, and $\epsilon$ is the empty list.
$-\operatorname{List}(f): \operatorname{List}(X) \rightarrow \boldsymbol{\operatorname { L i s t }}\left(X^{\prime}\right)$ for $f: X \rightarrow X^{\prime}$ in $\boldsymbol{\operatorname { S e t }}$, $\boldsymbol{\operatorname { L i s t }}(f)\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle$ for all $x_{1}, \ldots, x_{n} \in X$
- totalisation functor: Tot: $\mathbf{P f n} \rightarrow \mathbf{S e t}_{*}$, where $\mathbf{S e t}_{*}$ is the subcategory of Set of sets with a distinguished element $*$ and $*$-preserving functions
$-\boldsymbol{\operatorname { T o t }}(X)=X \uplus\{*\}$
Define $\mathbf{S e t}_{*}$ as the category of algebras
$-\operatorname{Tot}(f)(x)= \begin{cases}f(x) & \text { if it is defined } \\ * & \text { otherwise }\end{cases}$


## Examples, cont'd.

- carrier set functors: $\left.\right|_{-} \mid: \mathbf{A l g}(\Sigma) \rightarrow \mathbf{S e t}^{S}$, for any algebraic signature $\Sigma=\langle S, \Omega\rangle$, yielding the algebra carriers and homomorphisms as functions between them
- reduct functors: $-\sigma^{2}: \mathbf{A l g}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$, for any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, as defined earlier
- term algebra functors: $\mathbf{T}_{\Sigma}: \mathbf{S e t} \rightarrow \mathbf{A l g}(\Sigma)$ for all (single-sorted) algebraic signatures $\Sigma \in|\mathbf{A l g S i g}| \quad$ Generalise to many-sorted signatures
- $\mathbf{T}_{\Sigma}(X)=T_{\Sigma}(X)$ for all $X \in \mid$ Set $\mid$
$-\mathbf{T}_{\Sigma}(f)=f^{\#}: T_{\Sigma}(X) \rightarrow T_{\Sigma}\left(X^{\prime}\right)$ for all functions $f: X \rightarrow X^{\prime}$
- diagonal functors: $\Delta_{\mathbf{K}}^{G}: \mathbf{K} \rightarrow \mathbf{D i a g}_{\mathbf{K}}^{G}$ for any graph $G$ with nodes $N=|G|_{\text {nodes }}$ and edges $E=|G|_{\text {edges }}$, and category $\mathbf{K}$
$-\Delta_{\mathbf{K}}^{G}(A)=D^{A}$, where $D^{A}$ is the "constant" diagram, with $D_{n}^{A}=A$ for all $n \in N$ and $D_{e}^{A}=i d_{A}$ for all $e \in E$
$-\Delta_{\mathbf{K}}^{G}(f)=\mu^{f}: D^{A} \rightarrow D^{B}$, for all $f: A \rightarrow B$, where $\mu_{n}^{f}=f$ for all $n \in N$


## Hom-functors

Given a locally small category $\mathbf{K}$, define
$\operatorname{Hom}_{\mathbf{K}}: \mathbf{K}^{o p} \times \mathbf{K} \rightarrow$ Set
a binary hom-functor, contravariant on the first argument and covariant on the second argument, as follows:

- $\operatorname{Hom}_{\mathbf{K}}(\langle A, B\rangle)=\mathbf{K}(A, B)$, for all $\langle A, B\rangle \in\left|\mathbf{K}^{o p} \times \mathbf{K}\right|$, i.e., $A, B \in|\mathbf{K}|$
- $\operatorname{Hom}_{\mathbf{K}}(\langle f, g\rangle): \mathbf{K}(A, B) \rightarrow \mathbf{K}\left(A^{\prime}, B^{\prime}\right)$, for $\langle f, g\rangle:\langle A, B\rangle \rightarrow\left\langle A^{\prime}, B^{\prime}\right\rangle$ in $\mathbf{K}^{o p} \times \mathbf{K}$, i.e., $f: A^{\prime} \rightarrow A$ and $g: B \rightarrow B^{\prime}$ in $\mathbf{K}$, as a function given by $\operatorname{Hom}_{\mathbf{K}}(\langle f, g\rangle)(h)=f ; h ; g$.

Also: $\operatorname{Hom}_{\mathbf{K}}(A,-): \mathbf{K} \rightarrow$ Set $\boldsymbol{H o m}_{\mathbf{K}}(-, B): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$


## Functors preserve...

- Check whether functors preserve:
- monomorphisms
- epimorphisms
- (co)retractions
- isomorphisms
- (co)cones
- (co)limits
- ...
- A functor is (finitely) continuous if it preserves all existing (finite) limits. Which of the above functors are (finitely) continuous?


## Functors compose...

Given two functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$, their composition $\mathbf{F} ; \mathbf{G}: \mathbf{K} \rightarrow \mathbf{K}^{\prime \prime}$ is defined as expected:

- $(\mathbf{F} ; \mathbf{G})(A)=\mathbf{G}(\mathbf{F}(A))$ for all $A \in|\mathbf{K}|$
- $(\mathbf{F} ; \mathbf{G})(f)=\mathbf{G}(\mathbf{F}(f))$ for all $f: A \rightarrow B$ in $\mathbf{K}$ Cat, the category of (sm)all categories
- objects: (sm)all categories
- morphisms: functors between them
- composition: as above

Characterise isomorphisms in Cat

Define products, terminal objects, equalisers and pullback in Cat

Try to define their duals

## Comma categories

Given two functors with a common target, $\mathbf{F}: \mathbf{K} \mathbf{1} \rightarrow \mathbf{K}$ and $\mathbf{G}: \mathbf{K} \mathbf{2} \rightarrow \mathbf{K}$, define their comma category

$$
(\mathbf{F}, \mathbf{G})
$$

$-\underline{ }$ objects: triples $\left\langle A_{1}, f: \mathbf{F}\left(A_{1}\right) \rightarrow \mathbf{G}\left(A_{2}\right), A_{2}\right\rangle$, where $A_{1} \in|\mathbf{K} \mathbf{1}|, A_{2} \in|\mathbf{K} \mathbf{2}|$, and $\overline{f: \mathbf{F}\left(A_{1}\right)} \rightarrow \mathbf{G}\left(A_{2}\right)$ in $\mathbf{K}$

- morphisms: a morphism in ( $\mathbf{F}, \mathbf{G}$ ) is any pair
$\left.\overline{\left\langle h_{1}, h_{2}\right\rangle:\langle } A_{1}, f: \mathbf{F}\left(A_{1}\right) \rightarrow \mathbf{G}\left(A_{2}\right), A_{2}\right\rangle \rightarrow\left\langle B_{1}, g: \mathbf{F}\left(B_{1}\right) \rightarrow \mathbf{G}\left(B_{2}\right), B_{2}\right\rangle$, where $h_{1}: A_{1} \rightarrow B_{1}$ in K1, $h_{2}: A_{2} \rightarrow B_{2}$ in K2, and $\mathbf{F}\left(h_{1}\right) ; g=f ; \mathbf{G}\left(h_{2}\right)$ in $\mathbf{K}$.



K2:

- composition: component-wise
$\stackrel{A_{1}}{A_{1}}{ }_{\square}^{1}$



## Examples

- The category of graphs as a comma category:

$$
\text { Graph }=\left(\mathbf{I d}_{\mathbf{S e t}}, \mathbf{C P}\right)
$$

where $\mathbf{C P}:$ Set $\rightarrow$ Set is the (Cartesian) product functor $(\mathbf{C P}(X)=X \times X$ and $\left.\mathbf{C P}(f)\left(\left\langle x, x^{\prime}\right\rangle\right)=\left\langle f(x), f\left(x^{\prime}\right)\right\rangle\right)$. Hint: write objects of this category as $\langle E,\langle$ source, target $\rangle: E \rightarrow N \times N, N\rangle$

- The category of algebraic signatures as a comma category:

$$
\operatorname{AlgSig}=\left(\mathbf{I d}_{\text {Set }},(-)^{+}\right)
$$

where $(-)^{+}$: Set $\rightarrow$ Set is the non-empty list functor $\left((X)^{+}\right.$is the set of all non-empty lists of elements from $\left.X,(f)^{+}\left(\left\langle x_{1}, \ldots, x_{n}\right\rangle\right)=\left\langle f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\rangle\right)$. Hint: write objects of this category as $\left\langle\Omega,\langle\right.$ arity, sort $\left.\rangle: \Omega \rightarrow S^{+}, S\right\rangle$

Define $\mathbf{K}^{\rightarrow}, \mathbf{K} \downarrow A$ as comma categories. The same for $\mathbf{A l g}(\Sigma)$.

## Cocompleteness of comma categories

Fact: If $\mathbf{K} \mathbf{1}$ and $\mathbf{K} \mathbf{2}$ are (finitely) cocomplete categories, $\mathbf{F}: \mathbf{K} \mathbf{1} \rightarrow \mathbf{K}$ is a (finitely) cocontinuous functor, and $\mathbf{G}: \mathbf{K 2} \rightarrow \mathbf{K}$ is a functor then the comma category $(\mathbf{F}, \mathbf{G})$ is (finitely) cocomplete.

Proof (idea):
Construct coproducts and coequalisers in ( $\mathbf{F}, \mathbf{G}$ ), using the corresponding constructions in K1 and K2, and cocontinuity of $\mathbf{F}$.

State and prove the dual fact, concerning completeness of comma categories

Coproducts:


Coequalisers:


## Indexed categories

An indexed category is a functor

## $\mathcal{C}:$ Ind $^{o p} \rightarrow \mathbf{C a t}$

Standard example: Alg: AlgSig ${ }^{o p} \rightarrow \mathbf{C a t}$
The Grothendieck construction: Given $\mathcal{C}:$ Ind $^{o p} \rightarrow \mathbf{C a t}$, define a category $\mathbf{F l a t}(\mathcal{C})$ :

- objects: $\langle i, A\rangle$ for all $i \in|\mathbf{I n d}|, A \in|\mathcal{C}(i)|$
- morphisms: a morphism from $\langle i, A\rangle$ to $\langle j, B\rangle,\langle\sigma, f\rangle:\langle i, A\rangle \rightarrow\langle j, B\rangle$, consists of a morphism $\sigma: i \rightarrow j$ in Ind and a morphism $f: A \rightarrow \mathcal{C}(\sigma)(B)$ in $\mathcal{C}(i)$
- composition: given $\langle\sigma, f\rangle:\langle i, A\rangle \rightarrow\left\langle i^{\prime}, A^{\prime}\right\rangle$ and $\left\langle\sigma^{\prime}, f^{\prime}\right\rangle:\left\langle i^{\prime}, A^{\prime}\right\rangle \rightarrow\left\langle i^{\prime \prime}, A^{\prime \prime}\right\rangle$, their composition in $\operatorname{Flat}(\mathcal{C}),\langle\sigma, f\rangle ;\left\langle\sigma^{\prime}, f^{\prime}\right\rangle:\langle i, A\rangle \rightarrow\left\langle i^{\prime \prime}, A^{\prime \prime}\right\rangle$, is given by

$$
\langle\sigma, f\rangle ;\left\langle\sigma^{\prime}, f^{\prime}\right\rangle=\left\langle\sigma ; \sigma^{\prime}, f ; \mathcal{C}(\sigma)\left(f^{\prime}\right)\right\rangle
$$

Fact: If Ind is complete, $\mathcal{C}(i)$ are complete for all $i \in|\mathbf{I n d}|$, and $\mathcal{C}(\sigma)$ are continuous for all $\sigma: i \rightarrow j$ in Ind, then $\operatorname{Flat}(\mathcal{C})$ is complete.

Try to formulate and prove a theorem concerning cocompleteness of Flat $(\mathcal{C})$

## Natural transformations

Given two parallel functors $\mathbf{F}, \mathbf{G}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, a natural transformation from $\mathbf{F}$ to $\mathbf{G}$

$$
\tau: \mathbf{F} \rightarrow \mathbf{G}
$$

is a family $\tau=\left\langle\tau_{A}: \mathbf{F}(A) \rightarrow \mathbf{G}(A)\right\rangle_{A \in|\mathbf{K}|}$ of $\mathbf{K}^{\prime}$-morphisms such that for all $f: A \rightarrow B$ in $\mathbf{K}$ (with $A, B \in|\mathbf{K}|), \tau_{A} ; \mathbf{G}(f)=\mathbf{F}(f) ; \tau_{B}$

Then, $\tau$ is a natural isomorphism if for all $A \in|\mathbf{K}|, \tau_{A}$ is an isomorphism.
$\mathbf{K}: \quad \mathbf{K}^{\prime}:$



## Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$
- singleton functions: sing: $\mathbf{I d}_{\text {Set }} \rightarrow \mathbf{P}(:$ Set $\rightarrow$ Set $)$, where for all $X \in \mid$ Set $\mid$, $\operatorname{sing}_{X}: X \rightarrow \mathbf{P}(X)$ is a function defined by $\operatorname{sing}_{X}(x)=\{x\}$ for $x \in X$
- singleton-list functions: sing $^{\text {List }}: \mathbf{I d}_{\text {Set }} \rightarrow \mid$ List $\mid(:$ Set $\rightarrow$ Set $)$, where $\mid$ List $|=\mathbf{L i s t} ;|-|: \operatorname{Set}(\rightarrow$ Monoid $) \rightarrow \mathbf{S e t}$, and for all $X \in| \operatorname{Set} \mid$, $\sin g_{X}^{\text {List }}: X \rightarrow X^{*}$ is a function defined by $\operatorname{sing}{ }_{X}^{\text {List }}(x)=\langle x\rangle$ for $x \in X$
- append functions: append: $\mid$ List $|; \mathbf{C P} \rightarrow|$ List $\mid$ (: Set $\rightarrow$ Set $)$, where for all $X \in|\boldsymbol{\operatorname { S e t }}|$, append $_{X}:\left(X^{*} \times X^{*}\right) \rightarrow X^{*}$ is the usual append function (list concatenation) polymorphic functions between algebraic types


## Polymorphic functions

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_{1} \ldots \alpha_{n} \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket: \boldsymbol{S e t}^{n} \rightarrow \mathbf{S e t}$
- argue that in a representative subset of Standard ML, for each polymorphic expression $E: \forall \alpha_{1} \ldots \alpha_{n} \cdot T \rightarrow T^{\prime}$ its semantics is a natural transformation $\llbracket E \rrbracket: \llbracket T \rrbracket \rightarrow \llbracket T^{\prime} \rrbracket$

Theorems for free! (see Wadler 89)

## Yoneda lemma

Given a locally small category $\mathbf{K}$, functor $\mathbf{F}: \mathbf{K} \rightarrow$ Set and object $A \in|\mathbf{K}|$ :

$$
\operatorname{Nat}\left(\operatorname{Hom}_{\mathbf{K}}(A,-), \mathbf{F}\right) \cong \mathbf{F}(A)
$$

> natural transformations from $\operatorname{Hom}_{\mathbf{K}}\left(A,,_{-}\right)$to $\mathbf{F}$, between functors from $\mathbf{K}$ to Set, are given exactly by the elements of the set $\mathbf{F}(A)$

## EXERCISES:

- Dualise: for G: K ${ }^{o p} \rightarrow$ Set,

$$
N a t\left(\operatorname{Hom}_{\mathbf{K}}(-, A), \mathbf{G}\right) \cong \mathbf{G}(A)
$$

- Characterise all natural transformations from $\operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right)$to $\operatorname{Hom}_{\mathbf{K}}\left(B,{ }_{-}\right)$, for all objects $A, B \in|\mathbf{K}|$.


## Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B)$ given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in $\mathbf{K}$. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,
$\mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a))$
$=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)$
$=\tau_{C}^{a}\left(\operatorname{Hom}_{\mathbf{K}}(A, g)(f)\right)$
Then $\tau_{A}^{a}\left(i d_{A}\right)=a$, and so for distinct $a, a^{\prime} \in \mathbf{F}(A), \tau^{a}$ and $\tau^{a^{\prime}}$ differ.

K:


Set:


- If $\tau: \operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right) \rightarrow \mathbf{F}$ is a natural transformation then $\tau=\tau^{a}$, where we put $a=\tau_{A}\left(i d_{A}\right)$, since for $B \in|\mathbf{K}|$ and $f: A \rightarrow B, \tau_{B}(f)=\mathbf{F}(f)\left(\tau_{A}\left(i d_{A}\right)\right)$ by naturality of $\tau$ :


B

$$
\begin{gathered}
\mathbf{K}(A, A) \xrightarrow{\tau_{A}} \mathbf{F}(A) \\
(-) ; f=\mid \operatorname{Hom}_{\mathbf{K}}(A, f) \\
\mathbf{K}(A, B) \xrightarrow{\tau_{B}} \mathbf{F}(f) \\
\mathbf{F}(B)
\end{gathered}
$$

## Compositions

vertical composition:


## horizontal composition:




## Vertical composition



The vertical composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{F}^{\prime} \rightarrow \mathbf{F}^{\prime \prime}$ between parallel functors $\mathbf{F}, \mathbf{F}^{\prime}, \mathbf{F}^{\prime \prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$

$$
\tau ; \sigma: \mathbf{F} \rightarrow \mathbf{F}^{\prime \prime}
$$

is a natural transformation given by $(\tau ; \sigma)_{A}=\tau_{A} ; \sigma_{A}$ for all $A \in|\mathbf{K}|$.



The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}=\mathbf{G}\left(\tau_{A}\right) ; \sigma_{\mathbf{F}^{\prime}(A)}=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.
Multiplication by functor:

$$
\begin{aligned}
- & \tau \cdot \mathbf{G}=\tau \cdot i d_{\mathbf{G}}: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G} \\
& \text { i.e., }(\tau \cdot \mathbf{G})_{A}=\mathbf{G}\left(\tau_{A}\right) \\
- & \mathbf{F} \cdot \sigma=i d_{\mathbf{F}} \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F} ; \mathbf{G}^{\prime} \\
& \text { i.e., }(\mathbf{F} \cdot \sigma)_{A}=\sigma_{\mathbf{F}(A)}
\end{aligned}
$$

$\mathbf{K}^{\prime}:$
$\mathbf{F}(A)$
$\tau_{A}$
$\mathbf{F}^{\prime}(A)$


Show that indeed, $\tau \cdot \sigma$ is a natural transformation

## Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from $\mathbf{K}^{\prime}$ to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from $\mathbf{K}^{\prime}$ to $\mathbf{K}$
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations


## Exercises:

- View the category of $S$-sorted sets, $\mathbf{S e t}^{S}$, as a functor category
- Show how any functor $\mathbf{F}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}^{\prime}$ induces a functor $(\mathbf{F} ;-): \mathbf{K}^{\mathbf{K}^{\prime}} \rightarrow \mathbf{K}^{\mathbf{K}^{\prime \prime}}$
- Check whether $\mathbf{K}^{\mathbf{K}^{\prime}}$ is (finitely) (co)complete whenever $\mathbf{K}$ is so.
- Check when $(\mathbf{F} ;-): \mathbf{K}^{\mathbf{K}^{\prime}} \rightarrow \mathbf{K}^{\mathbf{K}^{\prime \prime}}$ is (finitely) (co)continuous, for a given functor $\mathbf{F}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}^{\prime}$


## Yoneda embedding

Given a category $\mathbf{K}$, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \operatorname{Set}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$
- $\mathcal{Y}(f)_{X}=(-; f): \operatorname{Hom}_{\mathbf{K}}(X, A) \rightarrow \mathbf{H o m}_{\mathbf{K}}(X, B)$, for $f: A \rightarrow B$ in $\mathbf{K}$, for $X \in\left|\mathbf{K}^{o p}\right|$.

Fact: The category of presheaves $\mathbf{S e t} \mathbf{K}^{\mathbf{K}^{\text {p }}}$ is complete and cocomplete.
Fact: $\mathcal{Y}: \mathbf{K} \rightarrow \mathbf{S e t}^{\mathbf{K}^{\text {op }}}$ is full and faithful.

## Diagrams as functors

Each diagram $D$ over graph $G$ in category $\mathbf{K}$ yields a functor $\mathbf{F}_{D}: \mathbf{P a t h}(G) \rightarrow \mathbf{K}$ given by:

- $\mathbf{F}_{D}(n)=D_{n}$, for all nodes $n \in|G|_{\text {nodes }}$
- $\mathbf{F}_{D}\left(n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}\right)=D_{e_{1}} ; \ldots ; D_{e_{k}}$, for paths $n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}$ in $G$ Moreover:
- for distinct diagrams $D$ and $D^{\prime}$ of shape $G, \mathbf{F}_{D}$ and $\mathbf{F}_{D^{\prime}}$ are different
- all functors from $\operatorname{Path}(G)$ to $\mathbf{K}$ are given by diagrams over $G$

Diagram morphisms $\mu: D \rightarrow D^{\prime}$ between diagrams of the same shape $G$ are exactly natural transformations $\mu: \mathbf{F}_{D} \rightarrow \mathbf{F}_{D^{\prime}}$.

$$
\operatorname{Diag}_{\mathbf{K}}^{G} \cong \mathbf{K}^{\operatorname{Path}(G)}
$$

Diagrams are functors from small (shape) categories

## Double law

Given:

then:

$$
(\tau \cdot \sigma) ;\left(\tau^{\prime} \cdot \sigma^{\prime}\right)=\left(\tau ; \tau^{\prime}\right) \cdot\left(\sigma ; \sigma^{\prime}\right)
$$



This holds in Cat, which is a paradigmatic example of a twocategory.
A category $\mathbf{K}$ is a two-category when for all objects $A, B \in$ $|\mathbf{K}|, \mathbf{K}(A, B)$ is again a category, with 1-morphisms (the usual K-morphisms) as objects and 2morphisms between them. Those 2-morphisms compose vertically (in the categories $\mathbf{K}(A, B)$ ) and horizontally, subject to the double law as stated here.
In two-category Cat, we have $\operatorname{Cat}\left(\mathbf{K}^{\prime}, \mathbf{K}\right)=\mathbf{K}^{\mathbf{K}^{\prime}}$.

## Equivalence of categories

- Two categories $\mathbf{K}$ and $\mathbf{K}^{\prime}$ are isomorphic if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ such that $\mathbf{F} ; \mathbf{G}=\mathbf{I d}_{\mathbf{K}}$ and $\mathbf{G} ; \mathbf{F}=\mathbf{I d}_{\mathbf{K}^{\prime}}$.
- Two categories $\mathbf{K}$ and $\mathbf{K}^{\prime}$ are equivalent if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural isomorphisms $\eta: \mathbf{I d}_{\mathbf{K}} \rightarrow \mathbf{F} ; \mathbf{G}$ and $\epsilon: \mathbf{G} ; \mathbf{F} \rightarrow \mathbf{I d}_{\mathbf{K}^{\prime}}$.
- A category is skeletal if any two isomorphic objects are identical.
- A skeleton of a category is any of its maximal skeletal subcategory.

Fact: Two categories are equivalent iff they have isomorphic skeletons.

[^0]
[^0]:    All "categorical" properties are preserved under equivalence of categories

