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Functors

A functor F : K→ K′ from a category K to a category K′ consists of:

• a function F : |K| → |K′|, and

• for all A,B ∈ |K|, a function F : K(A,B)→ K′(F(A),F(B))

such that: Make explicit categories in which we work at various places here

• F preserves identities, i.e.,

F(idA) = idF(A)

for all A ∈ |K|, and

• F preserves composition, i.e.,

F(f ;g) = F(f);F(g)

for all f : A→ B and g : B → C in K.

We really should differentiate between various components of F
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Examples

• identity functors: IdK : K→ K, for any category K

• inclusions: IK↪→K′ : K→ K′, for any subcategory K of K′

• constant functors: CA : K→ K′, for any categories K,K′ and A ∈ |K′|, with

CA(f) = idA for all morphisms f in K

• powerset functor : P : Set→ Set given by

− P(X) = {Y | Y ⊆ X}, for all X ∈ |Set|
− P(f) : P(X)→ P(X ′) for all f : X → X ′ in Set, P(f)(Y ) = {f(y) | y ∈ Y }

for all Y ⊆ X

• contravariant powerset functor : P−1 : Setop → Set given by

− P−1(X) = {Y | Y ⊆ X}, for all X ∈ |Set|
− P−1(f) : P(X ′)→ P(X) for all f : X → X ′ in Set,

P−1(f)(Y ′) = {x ∈ X | f(x) ∈ Y ′} for all Y ′ ⊆ X ′
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Examples, cont’d.

• projection functors: π1 : K×K′ → K, π2 : K×K′ → K′

• list functor : List : Set→Monoid, where Monoid is the category of monoids

(as objects) with monoid homomorphisms as morphisms:

− List(X) = 〈X∗, ̂, ε〉, for all X ∈ |Set|, where X∗ is the set of all finite lists

of elements from X, ̂ is the list concatenation, and ε is the empty list.

− List(f) : List(X)→ List(X ′) for f : X → X ′ in Set,

List(f)(〈x1, . . . , xn〉) = 〈f(x1), . . . , f(xn)〉 for all x1, . . . , xn ∈ X

• totalisation functor : Tot : Pfn→ Set∗, where Set∗ is the subcategory of Set

of sets with a distinguished element ∗ and ∗-preserving functions

− Tot(X) = X ] {∗} Define Set∗ as the category of algebras

− Tot(f)(x) =

 f(x) if it is defined

∗ otherwise
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Examples, cont’d.

• carrier set functors: | | : Alg(Σ)→ SetS , for any algebraic signature Σ = 〈S,Ω〉,
yielding the algebra carriers and homomorphisms as functions between them

• reduct functors: σ : Alg(Σ′)→ Alg(Σ), for any signature morphism

σ : Σ→ Σ′, as defined earlier

• term algebra functors: TΣ : Set→ Alg(Σ) for all (single-sorted) algebraic

signatures Σ ∈ |AlgSig| Generalise to many-sorted signatures

− TΣ(X) = TΣ(X) for all X ∈ |Set|
− TΣ(f) = f# : TΣ(X)→ TΣ(X ′) for all functions f : X → X ′

• diagonal functors: ∆G
K : K→ DiagGK for any graph G with nodes N = |G|nodes

and edges E = |G|edges , and category K

− ∆G
K(A) = DA, where DA is the “constant” diagram, with DA

n = A for all

n ∈ N and DA
e = idA for all e ∈ E

− ∆G
K(f) = µf : DA → DB , for all f : A→ B, where µfn = f for all n ∈ N
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Hom-functors

Given a locally small category K, define

HomK : Kop ×K→ Set

a binary hom-functor , contravariant on the first argument and covariant on the

second argument, as follows:

• HomK(〈A,B〉) = K(A,B), for all 〈A,B〉 ∈ |Kop ×K|, i.e., A,B ∈ |K|

• HomK(〈f, g〉) : K(A,B)→ K(A′, B′), for 〈f, g〉 : 〈A,B〉 → 〈A′, B′〉 in

Kop ×K, i.e., f : A′ → A and g : B → B′ in K, as a function given by

HomK(〈f, g〉)(h) = f ;h;g.

Also: HomK(A, ) : K→ Set

HomK( , B) : Kop → Set

A A′

B B′

� f

-g

�

�

�


K(A,B)

�

�

�


K(A′, B′)

� 6HomK(f, g)

?
h

?
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Functors preserve. . .

• Check whether functors preserve:

− monomorphisms

− epimorphisms

− (co)retractions

− isomorphisms

− (co)cones

− (co)limits

− . . .

• A functor is (finitely) continuous if it preserves all existing (finite) limits.

Which of the above functors are (finitely) continuous?

Dualise!
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Functors compose. . .

Given two functors F : K→ K′ and G : K′ → K′′, their composition F;G : K→ K′′

is defined as expected:

• (F;G)(A) = G(F(A)) for all A ∈ |K|
• (F;G)(f) = G(F(f)) for all f : A→ B in K

Cat, the category of (sm)all categories

− objects: (sm)all categories

− morphisms: functors between them

− composition: as above
Characterise isomorphisms in Cat

Define products, terminal objects, equalisers and pullback in Cat

Try to define their duals
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Comma categories

Given two functors with a common target, F : K1→ K and G : K2→ K, define

their comma category

(F,G)

− objects: triples 〈A1, f : F(A1)→ G(A2), A2〉, where A1 ∈ |K1|, A2 ∈ |K2|, and

f : F(A1)→ G(A2) in K

− morphisms: a morphism in (F,G) is any pair

〈h1, h2〉 : 〈A1, f : F(A1)→ G(A2), A2〉 → 〈B1, g : F(B1)→ G(B2), B2〉, where

h1 : A1 → B1 in K1, h2 : A2 → B2 in K2, and F(h1);g = f ;G(h2) in K.

K1: K: K2:
A1 F(A1) G(A2) A2

B1 F(B1) G(B2) B2

-f

-g?
h1

?
h2

?
F(h1)

?
G(h2)

− composition: component-wise
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Examples

• The category of graphs as a comma category:

Graph = (IdSet,CP)

where CP : Set→ Set is the (Cartesian) product functor (CP(X) = X ×X
and CP(f)(〈x, x′〉) = 〈f(x), f(x′)〉). Hint: write objects of this category as

〈E, 〈source, target〉 : E → N ×N,N〉

• The category of algebraic signatures as a comma category:

AlgSig = (IdSet, ( )+)

where ( )+ : Set→ Set is the non-empty list functor ((X)+ is the set of all

non-empty lists of elements from X, (f)+(〈x1, . . . , xn〉) = 〈f(x1), . . . , f(xn)〉).

Hint: write objects of this category as 〈Ω, 〈arity , sort〉 : Ω→ S+, S〉

Define K→, K↓A as comma categories. The same for Alg(Σ).
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Cocompleteness of comma categories

Fact: If K1 and K2 are (finitely) cocomplete categories, F : K1→ K is a (finitely)

cocontinuous functor, and G : K2→ K is a functor then the comma category (F,G)

is (finitely) cocomplete.

Proof (idea):

Construct coproducts and coequalisers in (F,G), using the corresponding

constructions in K1 and K2, and cocontinuity of F.

State and prove the dual fact,

concerning completeness of comma categories
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Coproducts:

A1 F(A1) G(A2) A2

B1 F(B1) G(B2) B2

A1 +B1 F(A1 +B1) G(A2 +B2) A2 +B2

-f

-g

-

�
���

ιA1

A
AAKιB1

A
AAU

ιA2

�
���ιB2

�
���
G(ιA2

)

A
AAKG(ιB2

)

A
AAU

F(ιA1
)

�
���F(ιB1

)

Coequalisers:

A1 F(A1) G(A2) A2

B1 F(B1) G(B2) B2

C1 F(C1) G(C2) C2

-f

-g

-

?
h1

?
h′1

?
c1

?
h2

?
h′2

?
c2

?
F(h1)

?
F(h′1)

?
F(c1)

?
G(h2)

?
G(h′2)

?
G(c2)
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Indexed categories

An indexed category is a functor C : Indop → Cat .

Standard example: Alg : AlgSigop → Cat

The Grothendieck construction: Given C : Indop → Cat, define a category Flat(C):

− objects: 〈i, A〉 for all i ∈ |Ind|, A ∈ |C(i)|
− morphisms: a morphism from 〈i, A〉 to 〈j, B〉, 〈σ, f〉 : 〈i, A〉 → 〈j, B〉, consists of

a morphism σ : i→ j in Ind and a morphism f : A→ C(σ)(B) in C(i)
− composition: given 〈σ, f〉 : 〈i, A〉 → 〈i′, A′〉 and 〈σ′, f ′〉 : 〈i′, A′〉 → 〈i′′, A′′〉,

their composition in Flat(C), 〈σ, f〉;〈σ′, f ′〉 : 〈i, A〉 → 〈i′′, A′′〉, is given by

〈σ, f〉;〈σ′, f ′〉 = 〈σ;σ′, f ;C(σ)(f ′)〉

Fact: If Ind is complete, C(i) are complete for all i ∈ |Ind|, and C(σ) are

continuous for all σ : i→ j in Ind, then Flat(C) is complete.

Try to formulate and prove a theorem concerning cocompleteness of Flat(C)
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Natural transformations

Given two parallel functors F,G : K→ K′, a natural transformation from F to G

τ : F→ G

is a family τ = 〈τA : F(A)→ G(A)〉A∈|K| of K′-morphisms such that for all

f : A→ B in K (with A,B ∈ |K|), τA;G(f) = F(f);τB

Then, τ is a natural isomorphism if for

all A ∈ |K|, τA is an isomorphism.

K: K′:

A F(A) G(A)

B F(B) G(B)

-τA

-τB
?

f

?

F(f)

?

G(f)
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Examples

• identity transformations: idF : F→ F, where F : K→ K′ , for all objects

A ∈ |K|, (idF)A = idA : F(A)→ F(A)

• singleton functions: sing : IdSet → P ( : Set→ Set), where for all X ∈ |Set|,
singX : X → P(X) is a function defined by singX(x) = {x} for x ∈ X

• singleton-list functions: singList : IdSet → |List| ( : Set→ Set), where

|List| = List;| | : Set(→Monoid)→ Set, and for all X ∈ |Set|,
singList

X : X → X∗ is a function defined by singList
X (x) = 〈x〉 for x ∈ X

• append functions: append : |List|;CP→ |List| ( : Set→ Set), where for all

X ∈ |Set|, appendX : (X∗ ×X∗)→ X∗ is the usual append function (list

concatenation) polymorphic functions between algebraic types
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Polymorphic functions

Work out the following generalisation of the last two examples:

− for each algebraic type scheme ∀α1 . . . αn · T , built in Standard ML using at

least products and algebraic data types (no function types though), define the

corresponding functor [[T ]] : Setn → Set

− argue that in a representative subset of Standard ML, for each polymorphic

expression E : ∀α1 . . . αn · T → T ′ its semantics is a natural transformation

[[E]] : [[T ]]→ [[T ′]]

Theorems for free!

(see Wadler 89)
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Yoneda lemma

Given a locally small category K, functor F : K→ Set and object A ∈ |K|:

Nat(HomK(A, ),F) ∼= F(A)

natural transformations from HomK(A, ) to F, between functors

from K to Set, are given exactly by the elements of the set F(A)

EXERCISES:

• Dualise: for G : Kop → Set,

Nat(HomK( , A),G) ∼= G(A)

.

• Characterise all natural transformations from HomK(A, ) to HomK(B, ), for

all objects A,B ∈ |K|.
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Proof

• For a ∈ F(A), define τa : HomK(A, )→ F, as the family of functions

τaB : K(A,B)→ F(B) given by τaB(f) = F(f)(a) for f : A→ B in K.

This is a natural transformation, since for g : B → C and then f : A→ B,

F(g)(τaB(f)) = F(g)(F(f)(a))

= F(f ;g)(a) = τaC(f ;g)

= τaC(HomK(A, g)(f))

Then τaA(idA) = a, and so for distinct

a, a′ ∈ F(A), τa and τa
′

differ.

K: Set:

B K(A,B) F(B)

C K(A,C) F(C)

-τaB

-τaC
?

g

?

( );g = HomK(A, g)

?

F(g)

• If τ : HomK(A, ) → F is a natural

transformation then τ = τa, where we

put a = τA(idA), since for B ∈ |K| and

f : A → B, τB(f) = F(f)(τA(idA))

by naturality of τ :

A K(A,A) F(A)

B K(A,B) F(B)

-τA

-τB
?

f

?

( );f = HomK(A, f)

?

F(f)
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Compositions

vertical composition:

From:

K K′

� �F

-F′

� �
F′′

?

6

ñ
ñ
òτ

ñ
ñ
òσ

to:

K K′

� �F

� �
F′′

?

6

ñ
ñ
ñ
ñ
ñ
ñ
ñ
ò

τ ;σ

horizontal composition:

From:

K K′

� �F

� �
F′

?

6

ñ
ñ
ñ
ñ
ñ
ñ
ñ
ò

τ K′′

� �G

� �
G′

?

6

ñ
ñ
ñ
ñ
ñ
ñ
ñ
ò

σ

to:

K

� �F;G

� �
F′;G′

?

6

ñ
ñ
ñ
ñ
ñ
ñ
ñ
ò

τ ·σ K′′
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Vertical composition
K K′

� �F

-F′

� �
F′′

?

6
ñ
ñ
òτ

ñ
ñ
òσ

The vertical composition of natural transformations τ : F→ F′ and σ : F′ → F′′

between parallel functors F,F′,F′′ : K→ K′

τ ;σ : F→ F′′

is a natural transformation given by (τ ;σ)A = τA;σA for all A ∈ |K|.

K: K′:

A F(A) F′(A) F′′(A)

B F(B) F′(B) F′′(B)

-τA

-τB

-σA

-σB
?

f

?

F(f)

?

F′(f)

?

F′′(f)
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Horizontal composition K K′

� �F

� �
F′

?

6

ñ
ñ
ñ
ñ
ñ
ñ
ñ
ò

τ K′′

� �G

� �
G′

?

6

ñ
ñ
ñ
ñ
ñ
ñ
ñ
ò

σ

The horizontal composition of natural transformations τ : F→ F′ and σ : G→ G′

between composable pairs of parallel functors F,F′ : K→ K′, G,G′ : K′ → K′′

τ ·σ : F;G→ F′;G′

is a natural transformation given by (τ ·σ)A = G(τA);σF′(A) = σF(A);G
′(τA) for all

A ∈ |K|.
K′: K′′:

F(A) G(F(A)) G′(F(A))

F′(A) G(F′(A)) G′(F′(A))

-
σF(A)

-
σF′(A)

?

τA

?

G(τA)

?

G′(τA)

HH
HHH

HHj

(τ ·σ)A

Multiplication by functor :
− τ ·G = τ ·idG : F;G→ F′;G,

i.e., (τ ·G)A = G(τA)
− F·σ = idF·σ : F;G→ F;G′,

i.e., (F·σ)A = σF(A)

Show that indeed, τ ·σ is a natural transformation
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Functor categories

Given two categories K,K′, define the category of functors from K′ to K, KK′
, as

follows:

− objects: functors from K′ to K

− morphisms: natural transformations between them

− composition: vertical composition of the natural transformations

Exercises:

• View the category of S-sorted sets, SetS , as a functor category

• Show how any functor F : K′′ → K′ induces a functor (F; ) : KK′ → KK′′

• Check whether KK′
is (finitely) (co)complete whenever K is so.

• Check when (F; ) : KK′ → KK′′
is (finitely) (co)continuous, for a given functor

F : K′′ → K′
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Yoneda embedding

Given a category K, define

Y : K→ SetK
op

• Y(A) = HomK( , A) : Kop → Set, for A ∈ |K|

• Y(f)X = ( ;f) : HomK(X,A)→ HomK(X,B), for f : A→ B in K, for

X ∈ |Kop |.

Fact: The category of presheaves SetK
op

is complete and cocomplete.

Fact: Y : K→ SetK
op

is full and faithful.
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Diagrams as functors

Each diagram D over graph G in category K yields a functor FD : Path(G)→ K

given by:

− FD(n) = Dn, for all nodes n ∈ |G|nodes
− FD(n0e1n1 . . . nk−1eknk) = De1 ; . . . ;Dek , for paths n0e1n1 . . . nk−1eknk in G

Moreover:

− for distinct diagrams D and D′ of shape G, FD and FD′ are different

− all functors from Path(G) to K are given by diagrams over G

Diagram morphisms µ : D → D′ between diagrams of the same shape G are exactly

natural transformations µ : FD → FD′ .
DiagGK

∼= KPath(G)

Diagrams are functors from small (shape) categories
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Double law

Given:

K K′

� �F

-F′

� �
F′′

?

6

ñ
ñ
òτ

ñ
ñ
òτ ′

K′′

� �G

-G′

� �
G′′

?

6

ñ
ñ
òσ

ñ
ñ
òσ′

then:

(τ ·σ);(τ ′·σ′) = (τ ;τ ′)·(σ;σ′)

K

� �F;G

� �
F′′;G′′

?

6

ñ
ñ
ñ
ñ
ñ
ñ
ñ
ò

(τ ·σ);(τ ′·σ′) (τ ;τ ′)·(σ;σ′) K′′

This holds in Cat, which is a

paradigmatic example of a two-

category.

A category K is a two-category

when for all objects A,B ∈
|K|, K(A,B) is again a cate-

gory, with 1-morphisms (the usual

K-morphisms) as objects and 2-

morphisms between them. Those

2-morphisms compose vertically

(in the categories K(A,B)) and

horizontally, subject to the double

law as stated here.

In two-category Cat, we have

Cat(K′,K) = KK′
.
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Equivalence of categories

• Two categories K and K′ are isomorphic if there are functors F : K→ K′ and

G : K′ → K such that F;G = IdK and G;F = IdK′ .

• Two categories K and K′ are equivalent if there are functors F : K→ K′ and

G : K′ → K and natural isomorphisms η : IdK → F;G and ε : G;F→ IdK′ .

• A category is skeletal if any two isomorphic objects are identical.

• A skeleton of a category is any of its maximal skeletal subcategory.

Fact: Two categories are equivalent iff they have isomorphic skeletons.

All “categorical” properties are preserved under equivalence of categories
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