
Donald Sannella and Andrzej Tarlecki

Foundations of Algebraic
Specification and Formal
Software Development

September 29, 2010

Springer

Page: v job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

Page: xiv job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

Contents

0 Introduction . 1
0.1 Modelling software systems as algebras . 1
0.2 Specifications . 5
0.3 Software development . 8
0.4 Generality and abstraction . 10
0.5 Formality . 12
0.6 Outlook . 14

1 Universal algebra . 15
1.1 Many-sorted sets . 15
1.2 Signatures and algebras . 18
1.3 Homomorphisms and congruences . 22
1.4 Term algebras . 27
1.5 Changing signatures . 32

1.5.1 Signature morphisms . 32
1.5.2 Derived signature morphisms . 36

1.6 Bibliographical remarks . 38

2 Simple equational specifications. 41
2.1 Equations . 41
2.2 Flat specifications . 44
2.3 Theories . 50
2.4 Equational calculus . 54
2.5 Initial models . 58
2.6 Term rewriting . 66
2.7 Fiddling with the definitions . 72

2.7.1 Conditional equations . 72
2.7.2 Reachable semantics . 74
2.7.3 Dealing with partial functions: error algebras 78
2.7.4 Dealing with partial functions: partial algebras 84
2.7.5 Partial functions: order-sorted algebras 87

xv

xvi Contents

2.7.6 Other options . 91
2.8 Bibliographical remarks . 93

3 Category theory. 97
3.1 Introducing categories . 99

3.1.1 Categories . 99
3.1.2 Constructing categories . 105
3.1.3 Category-theoretic definitions . 109

3.2 Limits and colimits . 111
3.2.1 Initial and terminal objects . 111
3.2.2 Products and coproducts . 113
3.2.3 Equalisers and coequalisers . 115
3.2.4 Pullbacks and pushouts . 116
3.2.5 The general situation . 119

3.3 Factorisation systems . 123
3.4 Functors and natural transformations . 127

3.4.1 Functors . 128
3.4.2 Natural transformations . 135
3.4.3 Constructing categories, revisited . 139

3.5 Adjoints . 144
3.5.1 Free objects . 144
3.5.2 Left adjoints . 145
3.5.3 Adjunctions . 150

3.6 Bibliographical remarks . 152

4 Working within an arbitrary logical system . 155
4.1 Institutions . 157

4.1.1 Examples of institutions . 161
4.1.2 Constructing institutions . 179

4.2 Flat specifications in an arbitrary institution. 186
4.3 Constraints . 192
4.4 Exact institutions . 197

4.4.1 Abstract model theory . 204
4.4.2 Free variables and quantification . 207

4.5 Institutions with reachability structure . 210
4.5.1 The method of diagrams . 213
4.5.2 Abstract algebraic institutions . 215
4.5.3 Liberal abstract algebraic institutions . 216
4.5.4 Characterising abstract algebraic institutions that admit

reachable initial models . 219
4.6 Bibliographical remarks . 221

Page: xvi job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

Contents xvii

5 Structured specifications. 227
5.1 Specification-building operations . 228
5.2 Towards specification languages . 234
5.3 An example . 238
5.4 A property-oriented semantics of specifications 243
5.5 The category of specifications . 247
5.6 Algebraic laws for structured specifications . 250
5.7 Bibliographical remarks . 255

6 Parameterisation. 257
6.1 Modelling parameterised programs . 258
6.2 Specifying parameterised programs . 268
6.3 Parameterised specifications . 274
6.4 Higher-order parameterisation . 278
6.5 An example . 285
6.6 Bibliographical remarks . 288

7 Formal program development . 291
7.1 Simple implementations . 292
7.2 Constructor implementations . 300
7.3 Modular decomposition . 307
7.4 Example . 314
7.5 Bibliographical remarks . 320

8 Behavioural specifications. 323
8.1 Motivating example . 324
8.2 Behavioural equivalence and abstraction . 327

8.2.1 Behavioural equivalence . 328
8.2.2 Behavioural abstraction . 333
8.2.3 Weak behavioural equivalence . 335

8.3 Behavioural satisfaction . 338
8.3.1 Behavioural satisfaction vs. behavioural abstraction 342

8.4 Behavioural implementations . 346
8.4.1 Implementing specifications up to behavioural equivalence . 347
8.4.2 Stepwise development and stability . 348
8.4.3 Stable and behaviourally trivial constructors 351
8.4.4 Global stability and behavioural correctness 356
8.4.5 Summary . 363

8.5 To partial algebras and beyond . 364
8.5.1 Behavioural specifications inFPL . 364
8.5.2 A larger example . 371
8.5.3 Behavioural specifications in an arbitrary institution 382

8.6 Bibliographical remarks . 394

Page: xvii job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

xviii Contents

9 Proofs for specifications. 399
9.1 Entailment systems . 400
9.2 Proof in structured specifications . 414
9.3 Entailment between specifications . 427
9.4 Correctness of constructor implementations. 435
9.5 Proof and parameterisation . 440
9.6 Proving behavioural properties . 451

9.6.1 Behavioural consequence . 451
9.6.2 Behavioural consequence for specifications 463
9.6.3 Behavioural consequence between specifications 466
9.6.4 Correctness of behavioural implementations 470
9.6.5 A larger example, revisited . 472

9.7 Bibliographical remarks . 479

10 Working with multiple logical systems . 483
10.1 Moving specifications between institutions . 484

10.1.1 Institution semi-morphisms . 485
10.1.2 Duplex institutions . 489
10.1.3 Migrating specifications . 491

10.2 Institution morphisms . 500
10.3 The category of institutions . 509
10.4 Institution comorphisms . 517
10.5 Bibliographical remarks . 528

References. 533

Page: xviii job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

Chapter 3
Category theory

One of the main purposes of this book is to present a general, abstract theory of
specifications, which is independent from the exact details of the semantic struc-
tures (algebras) used to model particular aspects of program behaviour. Appropriate
mathematical tools are required to support the development of such a theory. The
basics of category theory provide us with just what we need: a simple, yet pow-
erful language that allows definitions and results to be formulated at a sufficiently
general, abstract level.

The most fundamental “categorical dogma” is that for many purposes it does not
really matter exactly what the objects we study are; more important are their mutual
relationships. Hence, objects should never be considered on their own, they should
always come equipped with an appropriate notion of amorphismbetween them. In
many typical examples, the objects are sets with some additional structure imposed
on them, and their morphisms are maps that preserve this structure. “Categorical
dogma” states that the interesting properties of objects may be formulated purely in
terms of morphisms, without referring to the internal structure of objects at all. As
a very simple example, consider the following two definitions.

Definition. Given two setsA andB, the Cartesian productof A andB is the set
A×B that consists of all the pairs of elements fromA andB, respectively:A×B =
{〈a,b〉 | a∈ A,b∈ B} ut

Definition. Given two setsA andB, aproductof A andB is a setP together with two
functionsπ1:P→ A andπ2:P→ B such that for any setC with functions f :C→ A
andg:C→B there exists a unique functionh:C→Psuch thath;π1 = f andh;π2 = g.

A

C

P B

�
�

�
�

�
�

�	

f

@
@

@
@

@
@
@R

g

�
π1

-
π2

?

∃!h

97

98 3 Category theory
ut

It is easy to see that the Cartesian product of any two sets is a product in the
sense of the latter definition, where the functionsπ1 andπ2 are the projections on
the first and second components respectively (HINT : Defineh:C→A×B by h(c) =
〈 f (c),g(c)〉 for all c∈C). Moreover, although a productP of two setsA andB does
not have to be their Cartesian productA×B since the elements ofP do not have to
be pairs of objects fromA andB, P is always isomorphic toA×B (there is a one-to-
one correspondence between elements ofP and ofA×B). Thus, the two definitions
may be viewed as equivalent for many purposes.

The reader may feel that the former definition (of the Cartesian product) is far
simpler than the latter (of a product). Indeed, to most of us, brought up to consider
set-theoretic concepts as the basis of all mathematics, this is in fact the case. How-
ever, the former definition suffers from a serious deficiency: it is formulated in terms
of elements and the membership relation for sets (which constitute the specific inter-
nal structure of sets). Consequently, it is very specifically oriented towards defining
the Cartesian product of sets and of sets only. If we now wanted to define the Carte-
sian product of, say, algebras (cf. Definition 1.2.9) we would have to reformulate
this definition substantially (in this case, by adding definitions of operations for
product algebras). To define the Cartesian product of structures of yet another kind,
yet another different version of this definition would have to be explicitly stated. It is
obviously desirable to avoid such repetition of the same story for different specific
kinds of objects whenever possible.

The latter definition (of a product) is quite different from this point of view. It
does not make reference to the internal structure of sets at all; it defines a product
of two sets entirely in terms of its relationships with these sets and with other sets.
To obtain a definition of a product of two algebras, it is enough to replace “set”
by “algebra” and “function” by “homomorphism”. The same would apply to other
kinds of structures, as long as there is an appropriate notion of a morphism between
them.

The conclusion we draw from this example is that, first of all, objects of any kind
should be considered together with an appropriate notion of a morphism between
them, and then, that the structure imposed on the collection of objects by these
morphisms should be exploited to formulate definitions at an appropriate level of
generality and abstraction.

Let us have a look at another example:

Definition. A function f :A→ B is surjectiveif for every b∈ B there existsa∈ A
such thatb = f (a). ut

Definition. A function f :A→B is anepimorphismif for any two functionsg,g′:B→
C, f ;g = f ;g′ impliesg = g′. ut

Definition. A function f :A→ B is a retraction if there exists a functiong:B→ A
such thatg; f = idB. ut

All the three definitions above are equivalent: a function is surjective if and only
if it is an epimorphism, if and only if it is a retraction. As with the previous example,

Page: 98 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.1 Introducing categories 99

one may argue that the first of these definitions is very much specific to sets, and so
not abstract and not general enough. The two other definitions lack this deficiency:
they do not refer to the internal structure of sets, but use functions (set morphisms)
to define the concept. However, the two definitions when applied to other kinds of
objects (and their morphisms) may well turn out not to be equivalent. We cannot
say that one of them is “right” and the other is “wrong”; they simply incorporate
different aspects of what for sets is the property of “being surjective”. The lesson to
draw from this is that one has to be cautious when generalising a certain property to
a more abstract setting. An attempt to formulate a definition at a more general level
should provide us with a better understanding of the essence of the property being
defined; it may well turn out, however, that there is more than one essence in it,
giving several non-equivalent ways to reformulate the definition in a more abstract
way.

Finding an adequate generalisation is not always easy. Sometimes even very sim-
ple notions we are accustomed to viewing as fundamental are difficult to formulate
in categorical terms, as they depend in an essential way on the internal structure of
the objects under consideration, which is exactly what we want to abstract from.
The usual set-theoretic union operation is an example of such a notion.

Once we succeed in providing a more general version of a certain notion, it may
be instantiated in many different ways. It is interesting to observe how often an
adequate generalisation of an important specific concept leads to interesting instan-
tiations in the context of objects (and morphisms between them) different from the
ones we started with. Indeed, interesting instantiations in other contexts may be
regarded as a test of the adequacy of the generalisation.

A more wide-ranging polemic on the advantages of category theory presented at
a rather intuitive level may be found in [Gog91b].

With these remarks in mind, this chapter introduces the basic concepts and results
of category theory. It is not our intention to provide a full-blown introductory text
on category theory; although a few concepts are introduced which will not be used
elsewhere in this book, we consciously refrain from discussing many important but
more involved concepts and results. Our aim in this chapter is to provide a brief but
comprehensive overview of the basics of category theory, both in order to make this
book self-contained and to provide a handy reference.

3.1 Introducing categories

3.1.1 Categories

Definition 3.1.1 (Category).A categoryK consists of:

• a collection|K | of K -objects;
• for eachA,B∈ |K |, a collectionK(A,B) of K -morphismsfrom A to B; and

Page: 99 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

100 3 Category theory

• for eachA,B,C∈ |K |, acomposition operation1 ; :K(A,B)×K(B,C)→K(A,C)

such that:

1. for all A,B,A′,B′ ∈ |K |, if 〈A,B〉 6= 〈A′,B′〉 thenK(A,B)∩K(A′,B′) = ∅;
2. (existence of identities) for eachA∈ |K |, there is a morphismidA ∈ K(A,A) such

that idA;g = g for all morphismsg ∈ K(A,B) and f ;idA = f for all morphisms
f ∈ K(B,A); and

3. (associativity of composition) for any f ∈K(A,B), g∈K(B,C) andh∈K(C,D),
f ;(g;h) = (f ;g);h. ut

Notation. We refer toobjectsandmorphismsinstead ofK -objects andK -morphisms
when K is clear from the context. We writef :A→ B (in K) for A,B ∈ |K |,
f ∈ K(A,B). For any f :A→ B, we will refer to A as thesourceor domain, and
to B as thetarget or codomainof f . The collection of all morphisms ofK will be
(ambigously) denoted byK as well, i.e.,K =

⋃
A,B∈|K |K(A,B). ut

The above is just one of several possible equivalent definitions of a category.
For example, the identities, the existence of which is required in (2), are sometimes
considered as part of the structure of a category.

Exercise 3.1.2.Prove that in any category, identities are unique. ut

The notion of a category is very general. Accepting the categorical dogma that
objects of any kind come equipped with a notion of morphism between them, it is
difficult to think of a collection of objects and accompanying morphisms that do
not form a category. Almost always there is a natural operation of morphism com-
position, which obeys two of the basic requirements above: it has identities and is
associative. Perhaps requirement (1), which allows us to unambigously identify the
source and target of any morphism, is the most technical and hence least intuitively
appealing. But even in cases where the same entity may be viewed as a morphism
between different objects, this entity can always be equipped with an explicit indi-
cation of the source and target of the morphism (cf. Example 3.1.6), thus satisfying
requirement (1).

In the rest of this subsection we give a number of examples of categories. We
start with some rather trivial examples, mainly of formal interest, and only then de-
fine some more typically considered categories. Further examples, which are often
more complex, may be found in the following sections of this chapter (and in later
chapters, see e.g. Section 10.3 for somewhat more complex examples).

Example 3.1.3 (Preorder categories).A binary relation≤ ⊆ X×X is apreorder
on X if:

• x≤ x for all x∈ X; and
• x≤ y∧y≤ z⇒ x≤ z for all x,y,z∈ X.

1 We will use semicolon ; to denote composition of morphisms in any category, just as we used
it for composition of functions and homomorphisms in the preceding chapters. Composition will
always be written in diagrammatic order:f ;g is to be read as “f followed byg”.

Page: 100 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.1 Introducing categories 101

A preordercategory is a category that has at most one morphism with any given
source and target.

Every preorder≤⊆ X×X gives rise to a preorder categoryK≤ where|K≤|= X
andK≤(x,y) has exactly one element ifx≤ y and is empty otherwise.

This definition does not identify the categoryK≤ unambigously, since different
elements may be used as morphisms inK≤(x,y) for x≤ y. However, we will not
worry here about the exact nature of morphisms (nor objects) in a category, and we
will treat this and similar definitions below as sufficient. More formally, all cate-
gories satisfying the above requirements are isomorphic in the technical sense to be
discussed in Section 3.4 (cf. Definition 3.4.68).

Here are some trivial examples of preorder categories:

0: (the empty category)

1:

.

���
��

A
AAK

id

2:

.

���
��

A
AAK

id

- .

���
��

A
AAK

id

3:
. - . - .� �6 (+ identities)

4: . - . - . - .� �6� �6
� �

?
(+ identities)

...
...

Exercise.How many morphisms doesn have? ut

Example 3.1.4 (Discrete category).A categoryK is discretewhenever for all
A,B∈ |K |, K(A,B) is empty ifA 6= B and contains exactly one element (the identity)
otherwise.

Any collection of objectsX gives rise to a discrete categoryKX where|KX|= X.
ut

Page: 101 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

102 3 Category theory

Example 3.1.5 (Monoid category).A categoryK is amonoidif K has exactly one
object.

A set X together with a function ; :X×X → X and a distinguished element
id ∈ X is amonoid〈X, ;, id〉 if (x;y);z= x;(y;z) andid;x = x;id = x for all x,y,z∈ X.
Every monoid〈X, ;, id〉 gives rise to a monoid (category) having morphismsX and
composition ; . ut

Example 3.1.6 (Set, the category of sets).The categorySetof sets with functions
as morphisms is defined as follows:

Objects ofSet: sets;
Morphisms ofSet: functions; however, to ensure that the requirements stated in

Definition 3.1.1 are satisfied (disregarding the particular mathematical represen-
tation of the concept of a function one uses), we will always consider functions
with explicitly given domain and codomain. Thus, a morphism in the category
Setwith sourceA and targetB is a triple〈A, f ,B〉, where f :A→ B is a function.

ut

Example 3.1.7 (SetS, the category ofS-sorted sets).For any setS, the category
SetS of S-sorted sets is defined as follows:

Objects ofSetS: S-sorted sets;
Morphisms ofSetS: S-sorted functions (with explicitly given domain and codomain).

ut

Example 3.1.8 (Alg(Σ), the category ofΣ -algebras).For any signatureΣ , the cat-
egoryAlg(Σ) of Σ -algebras is defined as follows:

Objects ofAlg(Σ): Σ -algebras;
Morphisms ofAlg(Σ): Σ -homomorphisms (with explicitly given domain and codomain).

ut

Example 3.1.9 (CPO, the category of complete partial orders).The category
CPO of complete partial orders2 and continuous functions between them is defined
as follows:

Objects ofCPO: complete partial orders, i.e., partially ordered sets〈X,≤〉 such
that any countable chainx0≤ x1≤ . . . in 〈X,≤〉 has a least upper bound

⊔
i≥0xi ;

Morphisms ofCPO: continuous functions, i.e., functions that preserve least upper
bounds of countable chains. ut

Exercise 3.1.10.Complete the above examples by formalising composition in the
obvious way. Indicate identities and prove associativity of composition. ut

Example 3.1.11 (AlgSig, the category of algebraic signatures).The category
AlgSig of (algebraic) signatures is defined as follows:

2 Cpos and continuous functions as defined here are often referred to asω-cpos andω-continuous
functions, respectively.

Page: 102 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.1 Introducing categories 103

Objects ofAlgSig: signatures;
Morphisms ofAlgSig: signature morphisms;
Composition inAlgSig: for any σ :Σ → Σ ′ and σ ′:Σ ′ → Σ ′′, their composition

σ ;σ ′:Σ → Σ ′′ is given by(σ ;σ ′)sorts = σsorts;σ ′sorts and(σ ;σ ′)ops = σops;σ ′ops,
cf. Exercise 1.5.3. ut

Exercise 3.1.12 (AlgSigder, the category of signatures with derived morphisms).
Recall the concept of a derived signature morphism from Definition 1.5.14. Define
the categoryAlgSigder of algebraic signatures with derived signature morphisms.
Use Exercise 1.5.18 to define composition of derived signature morphisms.ut

Example 3.1.13 (TΣ , the category of substitutions over a signatureΣ). Recall
(cf. Section 1.4) that for any signatureΣ = 〈S,Ω〉 andS-sorted set of variablesX,
TΣ (X) is the algebra of terms overΣ with variablesX. TΣ (X) is characterised up to
isomorphism by the property that for anyΣ -algebraA, anyS-sorted mapv:X→ |A|
uniquely extends to aΣ -homomorphismv#:TΣ (X)→ A (Facts 1.4.4 and 1.4.10).

For any algebraic signatureΣ , the categoryTΣ of substitutions overΣ is defined
as follows (cf. Exercise 1.4.9):

Objects ofTΣ : S-sorted sets (of variables);
Morphisms ofTΣ : for any setsX andY, a morphismθ from X to Y is a sub-

stitution of terms with variablesY for variablesX, i.e., anS-sorted function
θ :X→ |TΣ (Y)|;

Composition inTΣ : given any setsX, Y and Z, and morphismsθ :X → Y and
θ ′:Y→ Z in TΣ , i.e., functionsθ :X→ |TΣ (Y)| andθ ′:Y→ |TΣ (Z)|, their com-
positionθ ;θ ′:X→ Z is the functionθ ;θ ′:X→ |TΣ (Z)| defined by(θ ;θ ′)s(x) =
(θ ′)#

s(θs(x)) for all s∈ S, x∈ Xs. ut

Exercise 3.1.14 (TΣ /Φ , the category of substitutions overΣ modulo equations
Φ). Generalise the above definition of the category of substitutions by consider-
ing terms up to an equivalence generated by a set of equations. That is, for any
algebraic signatureΣ = 〈S,Ω〉 and setΦ of Σ -equations, for anyS-sorted set of
variablesX define two termst1, t2 ∈ |TΣ (X)|s (for any sorts∈ S) to be equivalent,
written t1 ≡ t2, if Φ `Σ ∀X • t1 = t2 (cf. Section 2.4). Now, by analogy with the
category of substitutions, define the categoryTΣ /Φ to haveS-sorted sets as ob-
jects and substitutions moduloΦ as morphisms. A substitution of terms moduloΦ

with variablesY for variablesX is anS-sorted functionθ :X→ (|TΣ (Y)|/≡). Com-
position in TΣ /Φ is defined analogously as inTΣ , by choosing a representative
of each of the equivalence classes assigned to variables: givenθ :X→ (|TΣ (Y)|/≡)
andθ ′:Y→ (|TΣ (Z)|/≡), θ ;θ ′:X→ (|TΣ (Z)|/≡) maps anyx∈X to (θ ′)#(t), where
θ(x) = [t]≡ (show that the result does not depend on the choice of the representative
t ∈ θ(x)). ut

Exercise 3.1.15 (TΣ ,Φ , the algebraic 〈Σ ,Φ〉-theory). Building on the definition
of the category of substitutions modulo a set of equations sketched above, abstract
away from the actual names of variables used in the objects ofTΣ /Φ by listing them
in some particular order, as in derived signatures (cf. Definition 1.5.13). That is, for

Page: 103 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

104 3 Category theory

any algebraic signatureΣ = 〈S,Ω〉 and setΦ of Σ -equations, define the category
TΣ ,Φ with sequencess1 . . .sn ∈ S∗ of sort names as objects. A morphism inTΣ ,Φ

from s1 . . .sn ∈ S∗ to s′1 . . .s′m∈ S∗ is ann-tuple〈[t1]≡, . . . , [tn]≡〉 of terms moduloΦ ,
where the equivalence≡ is sketched in Exercise 3.1.14 above, and fori = 1, . . . ,n,
ti ∈ |TΣ (Is′1...s′m

)|si , with Is′1...s′m
= { 1 :s′1, . . . , m :s′m}. The composition inTΣ ,Φ is

given by substitution on representatives of equivalence classes (the position of a
term in a tuple identifies the variable it is to be substituted for).TΣ ,Φ is usually
referred to as thealgebraic theoryoverΣ generated byΦ .3 ut

3.1.1.1 Foundations

In the above, and in the definition of a category in particular, we have very cau-
tiously used the non-technical termcollection, and talked ofcollectionsof objects
and morphisms. This allowed us to gloss over the issue of the choice of appropriate
set-theoretical foundations for category theory. Even a brief look at the examples
above indicates that we could not have been talking here just ofsets(in the sense
of Zermelo-Fraenkel set theory): we want to consider categories likeSet, where
the collection of objects consists of all sets, and so cannot be a set itself. Using
classes(collections of sets that are possibly too “large” to be sets themselves, as in
Bernays-G̈odel set theory) might seem more promising, since if we replace the term
“collection” by “class” in Definition 3.1.1 then at least examples of categories like
Set would be covered. However, this is not enough either, since even in this sim-
ple presentation of the basics of category theory we will encounter some categories
(like Cat, the category of “all” categories, and functor categories defined later in
this chapter) where objects themselves are proper classes and the collection of ob-
jects forms a “conglomerate” (a collection of classes that is too “large” to be a class,
cf. [HS73]). We refer to [B́en85] for a careful analysis of the basic requirements
imposed on a set theory underlying category theory.

Perhaps the most traditional solution to the problem of set-theoretic foundations
for category theory is sketched in [Mac71]. The idea is to work within a hierarchy of
set universes〈Un〉n≥0, where each universeUn, n≥ 0, is closed under the standard
set-theoretic operations, and is an element of the next universe in the hierarchy,
Un ∈ Un+1. Then there is a notion of category corresponding to each level of the
hierarchy, and one is required to indicate at which level of the hierarchy one is
working at any given moment.

However, in our view such pedantry would hide the intuitive appeal of “naive”
category theory. We will therefore ignore the issue of set-theoretic foundations for
category theory in the sequel, with just one exception: we define what it means for
a category to be (locally) small and use this to occasionally warn the reader about
potential foundational hazards.

3 In the literature, the algebraic theory overΣ generated byΦ is often defined with substitutions
considered as morphisms in the opposite direction, i.e., as the categoryTop

Σ ,Φ opposite toTΣ ,Φ

(cf. Definition 3.1.21 below).

Page: 104 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.1 Introducing categories 105

Definition 3.1.16 (Small category).A categoryK is locally smallif for any A,B∈
|K |, K(A,B) is a set (an element of the lowest-level universeU0); K is small if in
addition|K | is a set as well. ut

3.1.2 Constructing categories

In the examples of the previous subsection, each category was constructed “from
scratch” by explicitly defining its objects and morphisms and their composition.
Category theory also provides numerous ways of modifying a given category to
yield a different one, and of putting together two or more categories to obtain a
more complicated one. Some of the simplest examples are given in this subsection.

3.1.2.1 Subcategories

Definition 3.1.17 (Subcategory).A categoryK1 is asubcategoryof a categoryK2
if |K1| ⊆ |K2| andK1(A,B) ⊆ K2(A,B) for all objectsA,B ∈ |K1|, with compo-
sition and identities inK1 the same as inK2. K1 is a full subcategory ofK2 if
additionallyK1(A,B) = K2(A,B) for all A,B∈ |K1|. K1 is awidesubcategory of
K2 if |K1|= |K2|. ut

For any categoryK , any collectionX ⊆ |K | of objects ofK determines a full
subcategoryK X of K , defined by|K X|= X. Whenever convenient, ifK is evident
from the context, we will identify collectionsX ⊆ |K | with K X.

Example 3.1.18 (FinSet, the category of finite sets).The categoryFinSetof finite
sets is defined as follows:

Objects ofFinSet: finite sets;
Morphisms and composition inFinSet: as inSet.

FinSet is a full subcategory ofSet. ut

Example 3.1.19.The category of single-sorted signatures is a full subcategory of
the categoryAlgSig of (many-sorted) signatures.

The discrete category of sets is a subcategory of the category of sets with inclu-
sions as morphisms, which is a subcategory of the category of sets with injective
functions as morphisms, which is a subcategory ofSet.

For any signatureΣ and setΦ of Σ -equations, the classModΣ (Φ) of Σ -algebras
that satisfyΦ determines a full subcategory ofAlg(Σ), which we denote by
Mod(Σ ,Φ). ut

Exercise 3.1.20.Give an example of two categoriesK1, K2 such that|K1| ⊆ |K2|,
K1(A,B) ⊆ K2(A,B) for all objectsA,B∈ |K1|, with composition inK1 the same
as inK2, but such thatK1 is not a subcategory ofK2. ut

Page: 105 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

106 3 Category theory

3.1.2.2 Opposite categories and duality

One of the fundamental theorems of lattice theory (cf. e.g. [DP90]) is the so-called
duality principle. Any statement in the language of lattice theory has a dual, obtained
by systematically replacing greatest lower bounds by least upper bounds and vice
versa. The duality principle states that the dual of any theorem of lattice theory is
a theorem as well. In a sense, this allows the number of proofs in lattice theory to
be cut by half: proving a fact gives its dual “for free”. A very similar phenomenon
occurs in category theory; in fact, the duality principle of lattice theory may be
viewed as a consequence of a more general duality principle of category theory.
Replacing greatest lower bounds by least upper bounds and vice versa is generalised
here to the process of “reversing morphisms”.

Definition 3.1.21 (Opposite category).The opposite categoryof a categoryK is
the categoryKop where:

Objects ofKop: |Kop|= |K |;
Morphisms ofKop: Kop(A,B) = K(B,A) for all A,B∈ |Kop|;
Composition inKop: for f ∈ Kop(A,B) (i.e., f ∈ K(B,A)) andg∈ Kop(B,C) (i.e.,

g∈ K(C,B)), f ;g∈ Kop(A,C) is g; f ∈ K(C,A).

Kop: K :

A B C-
“ f ”

-
“g”

� �6
“ f ”;“ g”=“g; f ”

A B C�
f

�
g

�6 �
g; f ut

Exercise 3.1.22.Check that:

1. Kop is a category.
2. (Kop)op = K .
3. Identities inKop are the same as inK . ut

If W is a categorical concept (property, statement, . . .) then itsdual, co-W, is
obtained by reversing all the morphisms inW. This idea may be formalised in two
ways. The first is to introduce a formal language of category theory, and then de-
fine the operation of forming a dual as an operation on formal statements in this
language. The other is to formally interpretco-W in a categoryK asW in the cat-
egoryKop. Since formalising the language of category theory is beyond the scope
of this book (but cf. [Mac71] or [Hat82]), we take the second option here and will
rely on an intuitive understanding of duality in the sequel. For example, consider the
following property of objects in a category:

P(X) : for any objectY there is a morphismf :Y→ X.

Then:

co-P(X) : for any objectY there is a morphismf :X→Y.

Page: 106 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.1 Introducing categories 107

Note that indeedco-P(X) in any categoryK amounts toP(X) in Kop.
Since any category is the opposite of a certain category (namely, of its opposite),

the following fact holds:

Fact 3.1.23 (Duality principle). If W holds for all categories thenco-W holds for
all categories as well. ut

3.1.2.3 Product categories

Definition 3.1.24 (Product category).For any two categoriesK1 andK2, theprod-
uct categoryK1×K2 is defined by:

Objects ofK1×K2: |K1×K2|= |K1|× |K2| (the Cartesian product);
Morphisms ofK1×K2: for all A,A′ ∈ |K1| andB,B′ ∈ |K2|,

K1×K2(〈A,B〉,〈A′,B′〉) = K1(A,A′)×K2(B,B′);
Composition inK1×K2: for f :A→ A′ and f ′:A′ → A′′ in K1, g:B→ B′ and

g′:B′→ B′′ in K2, 〈 f ,g〉;〈 f ′,g′〉= 〈 f ; f ′,g;g′〉. ut

Exercise 3.1.25.Identify the category to which each semicolon in the above defini-
tion of composition inK1×K2 refers. Then show thatK1×K2 is indeed a category.

ut

Exercise 3.1.26.Define Kn, whereK is a category andn ≥ 1. What would you
suggest forn = 0? ut

3.1.2.4 Morphism categories

Definition 3.1.27 (Morphism category).For any categoryK , thecategoryK→ of
K -morphismsis defined by:

Objects ofK→: K -morphisms;
Morphisms ofK→: a morphism inK→ from f :A→A′ (in K) to g:B→B′ (in K) is

a pair〈k,k′〉 of K -morphisms wherek:A→B andk′:A′→B′ such thatk;g= f ;k′;
Composition inK→: 〈k,k′〉;〈l , l ′〉= 〈k;l ,k′;l ′〉. ut

The requirement in the definition of a morphism inK→ may be more illustra-
tively restated as the requirement that the following diagram commutes in the cate-
goryK :

A B

A′ B′

-k

-
k′

?

f

?

g

Page: 107 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

108 3 Category theory

For now, we will rely on an intuitive understanding of the concept of a diagram in
a category; see Section 3.2.5 for a formal definition. We say that a diagram in a
categorycommutes(or, is commutative) if for any two paths with the same source
and target nodes, the composition of morphisms along each of the two paths yields
the same result.

Drawing diagrams andchasinga diagram in order to prove that it is commutative
is one of the standard and intuitively most appealing techniques used in category
theory. For example, to justify Definition 3.1.27 above it is essential to show that
the composition of two morphisms inK→ as defined there yields a morphism in
K→. This may be done bypasting togethertwo diagrams like the one above along
a common edge, obtaining the following diagram:

A B

A′ B′

-k

-
k′

?

f

?

g

C

C′

-l

-
l ′

?

h

A simple argument may now be used to show that if the two simpler diagrams are
commutative then the above diagram obtained by pasting them together along the
edge labelled byg commutes as well:

f ;(k′;l ′) = (f ;k′);l ′ = (k;g);l ′ = k;(g;l ′) = k;(l ;h) = (k;l);h

Definition 3.1.28 (Slice category).Let K be a category withA∈ |K |. Thecategory
K↓A ofK -objects over A(or, theslice ofK over A) is defined by:

Objects ofK↓A: pairs〈X, f 〉 whereX ∈ |K | and f ∈ K(X,A);
Morphisms ofK↓A: a morphism from〈X, f 〉 to 〈Y,g〉 is a K -morphismk:X→ Y

such thatk;g = f :

X Y

A

A
A
A
A
A
AAU

f

�
�

�
�

�
���

g

-k

Composition inK↓A: as inK . ut

Exercise 3.1.29.Show thatK↓A may be constructed as a subcategory ofK→. Is it
full? ut

Exercise 3.1.30.DefineK↑A, the category ofK -objectsunder A. Compare(K↓A)op,
Kop↓A and(Kop↓A)op with K↑A. ut

Page: 108 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.1 Introducing categories 109

3.1.3 Category-theoretic definitions

In this section we will give a few simple examples of how certain special morphisms
may be characterised in a style that is typical for category-theoretic definitions. As
indicated in the introduction to this chapter, the idea is to abstract away from the “in-
ternal” properties of objects and morphisms, characterising them entirely in categor-
ical language by referring only to arbitrary objects and morphisms of the category
under consideration. Such definitions may be formulated for an arbitrary category,
and then instantiated to a particular one when necessary. We will also indicate a few
basic properties of the concepts we introduce that hold in any category.

Throughout this section, letK be an arbitrary but fixed category. Morphisms and
objects we refer to below are those ofK , unless explicitly qualified otherwise.

3.1.3.1 Epimorphisms and monomorphisms

Definition 3.1.31 (Epimorphism).A morphism f :A→ B is anepimorphism(or is
epi) if for all g:B→C andh:B→C, f ;g = f ;h impliesg = h.

A B C-
f -

g

-
h

� �
?

f ;g

� �6
f ;h

ut

Example 3.1.32.In Set, f is epi iff f is surjective. ut

There are “natural” categories in which epimorphisms need not be surjective. For
example:

Exercise 3.1.33.Recall the categoryCPO of complete partial orders and continu-
ous functions introduced in Example 3.1.9. Give an example of a continuous func-
tion that is an epimorphism inCPO even though it is not surjective. Try to charac-
terise epimorphisms in this category. ut

Definition 3.1.34 (Monomorphism).A morphismf :B→A is amonomorphism(or
is mono) if for all g:C→ B andh:C→ B, g; f = h; f impliesg = h.

C B A-
f-

g

-
h

� �
?

g; f

� �6
h; f

ut

Page: 109 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

110 3 Category theory

Example 3.1.35.In Set, f is mono iff f is injective. ut

Note that mono means the same as co-epi, i.e.,f is mono inK iff f is epi inKop.

Fact 3.1.36.

1. If f :A→ B and g:B→C are mono then f;g:A→C is mono.
2. For any f:A→ B and g:B→C, if f ;g:A→C is mono then f is mono.

Proof. The proof is rather straightforward, and significantly more complex proofs
will be omitted in the rest of this chapter. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
exploiting the most basic properties of composition in an arbitrary category.

1. According to Definition 3.1.34, we have to show that for anyh,h′:D → A if
h;(f ;g) = h′;(f ;g) thenh = h′. So, supposeh;(f ;g) = h′;(f ;g). Then, since com-
position is associative,(h; f);g = (h′; f);g. Consequently, sinceg is mono, by
Definition 3.1.34,h; f = h′; f . Thus, using the fact thatf is mono, we can indeed
deriveh = h′.

2. Similarly as in the previous case: suppose that for someh,h′:D→ A, h; f = h′; f .
Then also(h; f);g = (h′; f);g, and soh;(f ;g) = h′;(f ;g). Now, sincef ;g is mono,
it follows directly from the definition that indeedh = h′.

ut

Exercise 3.1.37.Dualise both parts of Fact 3.1.36. Formulate the dual proofs and
check that they are indeed sound. ut

3.1.3.2 Isomorphic objects

Definition 3.1.38 (Isomorphism).A morphism f :A→ B is an isomorphism(or is
iso) if there is a morphismf−1:B→ A such thatf ; f−1 = idA and f−1; f = idB. The
morphism f−1:B→ A is called theinverseof f , and the objectsA andB are called
isomorphic. We write f :A∼= B or justA∼= B.

A B
-

f

�

f−1

�
�

H
HHj

���
idA

�
�

�
���

HHH
idB

ut

Exercise 3.1.39.Show that the inverse of a morphism, if it exists, is unique. ut

Note that iso means the same as co-iso, that is, isomorphism is aself-dualcon-
cept.

Exercise 3.1.40.Check that iff :A→ B andg:B→C are iso thenf ;g:A→C is iso
as well. ut

In Set, a morphism is iso iff it is both epi and mono. However, this property does
not carry over to an arbitrary category:

Page: 110 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.2 Limits and colimits 111

Exercise 3.1.41.Show that if f is iso thenf is both epi and mono. The converse is
not true in general; give a counterexample. ut

Exercise 3.1.42.We say that a morphismf :A→ B is aretraction if there is a mor-
phismg:B→ A such thatg; f = idB. Dually, a morphismf :A→ B is acoretraction
if there is a morphismg:B→ A such thatf ;g = idA. Show that:

1. A morphism is iso iff it is both a retraction and a coretraction.
2. Every retraction is epi.
3. A morphism is iso iff it is an epi coretraction.

Dualise the above facts. ut

It is easy to see that any two isomorphic objects have the same “categorical prop-
erties”. Intuitively, such objects have abstractly the same structure and so are indis-
tinguishable within the given category (which does not mean that isomorphic objects
cannot have different “non-categorical” properties, cf. Example 1.3.12). Indeed, an
isomorphism and its inverse determine one-to-one mappings between morphisms
going into and coming out of isomorphic objects. Hence, categorical definitions of
objects define them only “up to isomorphism”. The following section provides typ-
ical examples of this phenomenon.

3.2 Limits and colimits

In this section we show how certain special objects in an arbitrary category together
with their “characteristic” morphisms may be defined in purely categorical terms by
so-calleduniversal properties; we hope that the reader will recognise the pattern in
the example definitions below. Sections 3.2.1–3.2.4 present some typical instances
of this, introducing the most commonly used cases of the generallimit construction
and its dual, which are then presented in their full generality in Section 3.2.5. In
most of the cases in this section we will explicitly spell out the duals of the con-
cepts introduced, since many of them have interesting instances in some common
categories (and are traditionally given independent names).

Throughout this section, letK be an arbitrary but fixed category. Morphisms and
objects we refer to are those ofK , unless explicitly qualified otherwise.

3.2.1 Initial and terminal objects

Definition 3.2.1 (Initial object). An objectI ∈ |K | is initial in K if for eachA∈ |K |
there is exactly one morphism fromI to A. ut

Example 3.2.2.The empty set∅ is initial in Set. The algebraTΣ of groundΣ -terms
is initial in Alg(Σ), for any signatureΣ ∈ |AlgSig|.

Page: 111 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

112 3 Category theory

Recall the definition of an initial model of an equational specification (Defini-
tion 2.5.13). For any signatureΣ and a setΦ of Σ -equations, the initial model
of 〈Σ ,Φ〉 (which exists by Theorem 2.5.14) is an initial object in the category
Mod(Σ ,Φ) (as defined in Example 3.1.19). ut

Exercise 3.2.3.What is an initial object inAlgSig? Look for initial objects in other
categories. ut

Fact 3.2.4.

1. Any two initial objects inK are isomorphic.
2. If I is initial in K and I′ is isomorphic to I then I′ is initial in K as well.

Proof. The proof is rather straightforward. We present it here explicitly only as a
simple example of the style of argument, very common in category-theoretic proofs,
which exploits universality (a special case of which is the property used in the def-
inition of an initial object). The requirement that thereexistsa morphism satisfying
a certain property is used to construct some diagrams, and then theuniquenessof
this morphism is used to show that the diagrams constructed commute.

1. Suppose thatI , I ′ ∈ |K | are two initial objects inK . Then, by the initiality ofI ,
there exists a morphismf : I → I ′. Similarly, by the initiality ofI ′, there exists a
morphismg: I ′→ I . Thus, we have constructed the following diagram:

I I ′
-

f

�
g

�
�

HHHj

���
idI

�
�

����

HHH
idI ′

Now, by the initiality ofI , there is auniquemorphism fromI to I , and soidI =
f ;g. Similarly, idI ′ = g; f . Thus f is an isomorphism (with inverseg) andI andI ′

are indeed isomorphic.
2. Suppose thatI ∈ |K | is initial in K , and leti: I → I ′ be an isomorphism with

inversei−1: I ′→ I . Consider an arbitrary objectA∈ |K |. By the “existence part”
of the initiality property ofI , we know that there exists a morphismf : I → A.
Hence, there exists a morphism fromI ′ to A as well, namelyi−1; f : I ′→ A. Then,
let f ′: I ′ → A be an arbitrary morphism fromI ′ to A. By the “uniqueness part”
of the initiality property ofI , f = i; f ′, and soi−1; f = i−1;(i; f ′) = (i−1;i); f ′ =
idI ′ ; f ′ = f ′. This shows thati−1; f is the only morphism fromI ′ to A, and so that
I ′ is indeed initial inK .

ut

The last fact indicates that the initiality property identifies an object up to iso-
morphism. As argued in Section 3.1.3.2, in category theory this is the most exact
characterisation of an object we may expect. In the following we will speak of “the”
initial object meaning an initial object identified up to isomorphism. We adopt the
same convention in the many similar cases introduced in the sequel.

Page: 112 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.2 Limits and colimits 113

3.2.1.1 Dually:

Definition 3.2.5 (Terminal object). An object1 ∈ |K | is terminal inK if for each
A∈ |K | there is exactly one morphism fromA to 1. ut

Note that terminal means the same as co-initial.

Exercise 3.2.6.Are there any terminal objects inSet, Alg(Σ) or AlgSig? What
about terminal objects inAlgSigder?

Recall the definition of a terminal (final) model of an equational specification
(Definition 2.7.12). Restate it using the notion of a terminal object as defined above.

ut

Exercise 3.2.7.Dualise Fact 3.2.4. ut

3.2.2 Products and coproducts

Definition 3.2.8 (Product).A productof two objectsA,B∈ |K | is an objectA×B∈
|K | together with a pair of morphismsπA:A×B→ A andπB:A×B→ B such that
for any objectC∈ |K | and pair of morphismsf :C→A andg:C→B there is exactly
one morphism〈 f ,g〉:C→ A×B such that the following diagram commutes:

A

C

A×B B

�
�

�
�

�
�

�	

f

@
@

@
@

@
@
@R

g

�
πA

-
πB

?

〈 f ,g〉

ut

Example 3.2.9.In Set, the Cartesian product ofA andB is a productA×B, where
πA, πB are the projection functions. For any signatureΣ , products inAlg(Σ) are
defined analogously (cf. Definition 1.2.9). ut

Exercise 3.2.10.What is the product of two objects in a preorder category? ut

Exercise 3.2.11.Show that any two products ofA,B∈ |K | are isomorphic. ut

Exercise 3.2.12.Suppose thatA,B∈ |K | have a product. Givenf :C→A andg:C→
B, and hence〈 f ,g〉:C→ A×B, show that for anyh:D→C, h;〈 f ,g〉= 〈h; f ,h;g〉.

ut

Exercise 3.2.13.Prove that:

1. A×B∼= B×A for anyA,B∈ |K |.

Page: 113 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

114 3 Category theory

2. (A×B)×C∼= A× (B×C) for anyA,B,C ∈ |K |. HINT : The following diagram
might be helpful:

A B C

A×B B×C

(A×B)×C A× (B×C)

?

?

?

?

@
@

@
@

@
@

@
@

@
@

@
@

@
@R

@
@

@
@

@
@@R

�
�

�
�

�
�

�
�

�
�

�
�

�
�	

�
�

�
�

�
��	

HH
HH

HH
HH

HH
HH

HH
HHj

��
��

��
��

��
��

��
���

-
�

ut

Exercise 3.2.14.Define the product of an arbitrary family ofK -objects. What is the
product of the empty family? ut

3.2.2.1 Dually:

Definition 3.2.15 (Coproduct).A coproductof two objectsA,B∈ |K | is an object
A+B∈ |K | together with a pair of morphismsιA:A→A+B andιB:B→A+B such
that for any objectC ∈ |K | and pair of morphismsf :A→C andg:B→C there is
exactly one morphism[f ,g]:A+B→C such that the following diagram commutes:

A

C

A+B B
�

�
�

�
�

�
��

f

@
@

@
@

@
@

@I

g

-
ιA

�
ιB

6

[f ,g]

ut

Example 3.2.16.In Set, the disjoint union of setsA andB is their coproductA+B,
whereιA, ιB are the injections. Similarly, inAlgSig, the (componentwise) disjoint
union of algebraic signaturesΣ andΣ ′ is their coproductΣ + Σ ′, whereιA, ιB are
the obvious injections. ut

Note that coproduct means the same as co-product.

Exercise 3.2.17.Dualise the exercises for products. ut

Page: 114 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.2 Limits and colimits 115

Exercise 3.2.18.For any algebraic signatureΣ = 〈S,Ω〉 and twoS-sorted setsX
andY, show that their disjoint unionX]Y is the coproduct ofX andY in the
categoryTΣ of substitutions overΣ (recall Example 3.1.13), where the coproduct
injections are the identity substitutions (of the corresponding variables fromX]Y
for variables inX and inY, respectively). Generalise this to the categoryTΣ /Φ of
substitutions overΣ modulo a setΦ of Σ -equations (cf. Exercise 3.1.14). Finally,
characterise coproducts in the categoryTΣ ,Φ , the algebraic theory overΣ generated
by Φ (Exercise 3.1.15). ut

3.2.3 Equalisers and coequalisers

We have defined above products and coproducts for arbitrary pairs of objects in a
category. In this section we deal with constructions for pairs of morphisms con-
strained to beparallel, i.e., pairs of morphisms that have the same source and the
same target.

Definition 3.2.19 (Equaliser).An equaliserof two parallel morphismsf :A→ B
andg:A→ B is an objectE ∈ |K | together with a morphismh:E→ A such that
h; f = h;g, and such that for any objectE′ ∈ |K | and morphismh′:E′→ A satisfying
h′; f = h′;g there is exactly one morphismk:E′→ E such thatk;h = h′:

A BE

E′

-
f

-
g

-
h

A
A
A
A
A
AAU

h′

��

��

��

�
��

k

ut

Exercise 3.2.20.Show that an equaliser off :A→ B andg:A→ B is unique up to
isomorphism. ut

Exercise 3.2.21.Show that every equaliser (to be more precise: its morphism part)
is mono, and every epi equaliser is iso. ut

Exercise 3.2.22.Construct equalisers of pairs of parallel morphisms inSet. Then,
for any signatureΣ , construct equalisers of pairs of parallel morphisms inAlg(Σ).
HINT : For any two functionsf ,g:A→B consider the set{a∈A | f (a) = g(a)}⊆A.

ut

3.2.3.1 Dually:

Definition 3.2.23 (Coequaliser).The dual notion to equaliser iscoequaliser. The
diagram now looks as follows:

Page: 115 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

116 3 Category theory

A B Q

Q′

-
f

-
g

-
h

�
�
�
�
�
���

h′

AA

AA

AA

A
AK

k

Exercise.Formulate explicitly the definition of a coequaliser. Then dualise the ex-
ercises for equalisers. ut

Exercise 3.2.24.What is the coequaliser of two morphisms inSet? What is the co-
equaliser of two morphisms inAlgSig? What is the coequaliser of two morphisms
in Alg(Σ)? HINT : Given two functionsf ,g:A→B consider the quotient ofB by the
least equivalence relation≡ onB such that for alla∈ A, f (a)≡ g(a). ut

Exercise 3.2.25.What is the coequaliser of two morphisms in the category of sub-
stitutionsTΣ ? ut

3.2.4 Pullbacks and pushouts

Definition 3.2.26 (Pullback).A pullbackof two morphismsf :A→C andg:B→C
having the same codomain is an objectP∈ |K | together with a pair of morphisms
j:P→ A andk:P→ B such thatj; f = k;g, and such that for any objectP′ ∈ |K | and
pair of morphismsj ′:P′ → A andk′:P′ → B satisfying j ′; f = k′;g there is exactly
one morphismh:P′→ P such that the following diagram commutes:

C

A B

P

@
@

@
@R

�
�

�
�	

�
�

�
�	

@
@

@
@R

f g

j k

P′

?

h

'

?

j ′

$

?

k′

ut

Exercise 3.2.27.Show that a pullback off :A→ C andg:B→ C is unique up to
isomorphism. ut

Page: 116 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.2 Limits and colimits 117

Exercise 3.2.28.Show that ifK has products (of all pairs of objects) and equalisers
(of all pairs of parallel morphisms) than it has pullbacks as well (i.e., all pairs of
morphisms with common target have pullbacks inK).

HINT : To construct a pullback off :A→C andg:B→C, first construct the prod-
uct A×B with projectionsπA:A×B→ A andπB:A×B→ B and then the equaliser
h:P→ A×B of πA; f :A×B→C andπB;g:A×B→C. ut

Exercise 3.2.29.Construct the pullback of two morphisms inSet, then inAlg(Σ),
and inAlgSig. ut

Exercise 3.2.30.Prove that ifK has a terminal object and all pullbacks (i.e., any
pair ofK -morphisms with common target has a pullback inK) then:

1. K has all (binary) products.
2. K has all equalisers. HINT : Get the equaliser off ,g:A→ B from the pullback of
〈idA, f 〉,〈idA,g〉:A→ A×B. ut

Exercise 3.2.31.Prove that pullbacks translate monomorphisms to monomorphisms:
if

.

.

.

.

? ?

-
f

-
g

is a pullback square andg is mono, thenf is mono as well. ut

Exercise 3.2.32.Consider the following diagram:

.

.

.

.

.

.

? ? ?

-

-

-

-

Prove that:

1. If the two squares are pullbacks then the outer rectangle is a pullback.
2. If the diagram commutes and the outer rectangle and right-hand square are both

pullbacks then so is the left-hand square. ut

3.2.4.1 Dually:

Definition 3.2.33 (Pushout).The dual notion to pullback ispushout. The diagram
now looks as follows:

Page: 117 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

118 3 Category theory

C

A B

P

@
@

@
@I

�
�

�
��

�
�

�
��

@
@

@
@I

f g

j k

P′

6
h

'-

j ′

$�

k′

Exercise.Spell out the definition of a pushout explicitly. Then dualise the exercises
for pullbacks. ut

Pushouts provide a basic tool for “putting together” structures of different kinds.
Given two objectsA andB, a pair of morphismsf :C→ A andg:C→ B indicates
a common source from which some “parts” ofA andB come. The pushout off
andg puts togetherA andB while identifying the parts coming from the common
source as indicated byf andg, but keeping the new parts disjoint (cf. the dual of
Exercise 3.2.28).

Example 3.2.34.Working inSet, consider:

A = {1,2,3}
B = {3,4,5}
C = {♣}
f = {♣ 7→ 2} :C→ A
g = {♣ 7→ 4} :C→ B

Then the pushout objectP is (up to isomorphism) given as follows:

P = {1′,{2′=4′′},3′,3′′,5′′}
j = {1 7→ 1′,2 7→ {2′=4′′},3 7→ 3′} :A→ P
k = {3 7→ 3′′,4 7→ {2′=4′′},5 7→ 5′′} :B→ P ut

Example 3.2.35.The general comments above about the use of pushouts for putting
together objects in categories apply in particular when one wants to combine alge-
braic signatures, as we will frequently do throughout the rest of the book. As a very
simple example of a pushout in the categoryAlgSig of algebraic signatures, con-
sider the signatureΣNat of natural numbers defined in Exercise 2.5.4. Then, let
ΣNatfib be its extension by a new operation namefib:nat→ nat and ΣNatmult

its extension by another operation namemult:nat×nat→ nat. We then have two
signature inclusions:

Page: 118 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.2 Limits and colimits 119

ΣNatfib←−↩ ΣNat ↪−→ ΣNatmult

Their pushout inAlgSig yields a signatureΣNatfib,mult which (up to isomorphism)
consists of the shared signatureΣNat (once, no repetitions!) together with each of
the operations added by the two extensions.

This is deceptively simple though, involving only single-sorted signature inclu-
sions that introduce different operation names.

Exercise. Give examples of pushouts inAlgSig with signatures involving more
than one sort, operation names that coincide, and signature morphisms that are not
injective on sorts and/or on operation names. ut

3.2.5 The general situation

The definitions introduced in the previous subsections followed a common, more
general pattern. As an example, let’s have another look at the definition of a pullback
(Definition 3.2.26; the notation below refers to the diagram there). Given a diagram
in the category at hand (the two morphismsf and g of which we construct the
pullback), we consider an objectP in this category together with morphisms going
from this object to the nodes of the diagram (j, k and an anonymousc:P→C) such
that all the resulting paths starting fromP commute (j; f = c = k;g — hencec may
remain anonymous). Moreover, from among all such objects we choose the one that
is in a sense “closest” to the diagram: for any objectP′ with morphisms from it to the
diagram nodes (j ′, k′ and an anonymousc′) satisfying the required commutativity
property (j ′; f = c′ = k′;g), P′ may be uniquely projected onto the chosen objectP
(via a morphismh) so that all the resulting paths starting fromP′ commute (h; j = j ′

andh;k= k′, which also impliesh;c= c′). This is usually referred to as theuniversal
propertyof pullbacks and, more generally, of arbitrarylimits as defined below. The
(dual) universal property of pushouts and, more generally, of arbitrarycolimits as
defined below, may be described by looking at objects with morphisms going from
the nodes of a diagram into them. We will formalise this in the rest of this section.

Definition 3.2.36 (Graph).Let ΣG be the following signature:

sorts node, edge
ops source:edge→ node

target:edge→ node

A ΣG-algebra is called agraph. (Note that these graphs may have multiple edges be-
tween any two nodes; such graphs are sometimes calledmultigraphs.) The category
Graph of graphs isAlg(ΣG). Given a graphG, we writee:n→mas an abbreviation
for n,m∈ |G|node, e∈ |G|edge, sourceG(e) = n andtargetG(e) = m. ut

Exercise 3.2.37.Construct an initial object, coproducts, coequalisers and pushouts
in Graph. ut

Page: 119 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

120 3 Category theory

Exercise 3.2.38.Define formally the categoryPath(G) of paths in a graphG,
where:

Objects ofPath(G): |G|node;
Morphisms ofPath(G): paths inG, i.e., finite sequencese1 . . .en of elements of
|G|edge such thatsourceG(ei+1) = targetG(ei) for i < n. Notice that we have to
allow for n = 0. ut

A diagram inK is a graph having nodes labelled withK -objects and edges la-
belled withK -morphisms with the appropriate source and target. Formally:

Definition 3.2.39 (Diagram).A diagram Din K consists of:

• a graphG(D);
• for each noden∈ |G(D)|node, an objectDn ∈ |K |; and
• for each edgee:n→m in G(D), a morphismDe:Dn→ Dm.

A diagramD is connectedif its graphG(D) is connected (that is, any two nodes
in G(D) are linked by a sequence of edges disregarding their direction, or fully
formally: if the total relation on the set of nodes ofG(D) is the only equivalence
between the nodes that links all nodes having an edge between them). ut

Exercise 3.2.40.Show how every small categoryK gives rise to a graphG(K) and
a diagramD(K). ut

Definition 3.2.41 (Cone and cocone).A coneα over a diagram D inK is a K -
objectX together with a family ofK -morphisms〈αn:X→ Dn〉n∈|G(D)|node

such that
for every edgee:n→m in the graphG(D) the following diagram commutes:

Dn Dm

X

�
�

�
�

�
���

αn

A
A
A
A
A
AAU

αm

-
De

Dually: A coconeα over a diagram D inK is a K -object X together with a
family of K -morphisms〈αn:Dn→ X〉n∈|G(D)|node

such that for every edgee:n→m
in the graphG(D) the following diagram commutes:

Dn Dm

X

�
�
�
�
�
���

αn

A
A

A
A

A
AAK

αm

-
De ut

Page: 120 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.2 Limits and colimits 121

In the following we will write cones simply as families〈αn:X→ Dn〉n∈|G(D)|node
,

omitting any explicit mention of the apexX, and similarly for cocones. The notation
is not quite justified only in the case when the diagram (and hence the family) is
empty; this will not lead to any misunderstanding.

Let D be a diagram inK with |G(D)|node= N and|G(D)|edge= E.

Definition 3.2.42 (Limit and colimit). A limit of D in K is a cone〈αn:X→ Dn〉n∈N

such that for any cone〈α ′n:X′→ Dn〉n∈N there is exactly one morphismh:X′→ X
such that for everyn∈ N the following diagram commutes:

X′ X

Dn

A
A
A
A
A
AAU

α ′n

�
�

�
�

�
���

αn

-h

If 〈αn:X→ Dn〉n∈N is a limit of D, we will refer toX as thelimit object of D (or
sometimes just thelimit of D), and to the morphismsαn, n∈ N, as the limitprojec-
tions.

Dually: A colimit of D in K is a cocone〈αn:Dn→ X〉n∈N such that for any
cocone〈α ′n:Dn→ X′〉n∈N there is exactly one morphismh:X → X′ such that for
everyn∈ N the following diagram commutes:

X′ X

Dn

A
A

A
A

A
AAK

α ′n

�
�
�
�
�
���

αn

� h

If 〈αn:Dn→ X〉n∈N is a colimit ofD, we will refer toX as thecolimit objectof D
(or sometimes just thecolimit of D), and to the morphismsαn, n∈N, as the colimit
injections. ut

Definition 3.2.43 (Completeness and cocompleteness).A categoryK is (finitely)
completeif every (finite) diagram inK has a limit. Dually,K is (finitely) cocomplete
if every (finite) diagram inK has a colimit. ut

Exercise 3.2.44.Define formally the categoryCone(D) of cones over a diagramD,
where:

Objects ofCone(D): cones overD;
Morphisms ofCone(D): a morphism fromα = 〈αn:X→ Dn〉n∈N to α ′= 〈α ′n:X′→ Dn〉n∈N

is aK -morphismh:X→ X′ such thatαn = h;α ′n for n∈ N.

Page: 121 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

122 3 Category theory

Prove that the limit ofD is a terminal object inCone(D). Note that this implies that
a limit of any diagram is unique up to isomorphism.

Present the category of objects over an object (cf. Definition 3.1.28) as the cate-
gory of cones over a certain diagram. ut

Exercise 3.2.45.Show that products, terminal objects, equalisers and pullbacks in
K are limits of simple diagrams inK . ut

Exercise 3.2.46.Construct inSeta limit of the diagram

A0 A1 A2 A3 · · ·�
f0 �

f1 �
f2 �

f3
ut

Exercise 3.2.47.Show that limiting cones arejointly mono: if 〈αn:X→ Dn〉n∈|G(D)|node

is a limit of D, then f = g whenever for alln∈ |G(D)|node, f ;αn = g;αn. ut

Exercise 3.2.48.Show that if K has a terminal object, binary products and all
equalisers then it is finitely complete. HINT : Given a finite diagram inK , first build
the product of all its objects, and then gradually turn it into a limit by “equalising”
the triangles formed by product projections and morphisms in the diagram.

Use Exercise 3.2.30 to conclude that ifK has a terminal object and all pullbacks
then it is finitely complete. ut

Exercise 3.2.49.Show that ifK has products of arbitrary families of objects and
all equalisers then it is complete. HINT : Proceed as in Exercise 3.2.48, but no-
tice that all the triangles involved may be “equalised” simultaneously in one step,
cf. [Mac71], Theorem V.2.1. ut

Exercise 3.2.50.A wide pullbackis the limit of a non-empty family of morphisms
with a common target. Show that if a category has a terminal object and all wide
pullbacks then it has products of arbitrary families of objects, and then conclude
that it is complete. HINT : Generalise Exercise 3.2.30 and use Exercise 3.2.49.ut

Exercise 3.2.51.Recall that for any categoryK and objectA∈ |K |, K↓A is the slice
category of objects overA (Definition 3.1.28).

Notice thatK↓Ahas a terminal object. Then show that binary products inK↓Aare
essentially given by the pullbacks inK (of morphisms toA) and similarly, arbitrary
non-empty products inK↓A are essentially given by wide pullbacks inK . Check
also that any (wide) pullback inK↓A is given by the corresponding (wide) pullback
in K (no morphisms toA added).

Conclude thatK↓A is finitely complete ifK has all pullbacks, andK↓A is com-
plete ifK has all wide pullbacks. ut

Exercise 3.2.52.Dualise the above exercises. ut

Exercise 3.2.53.Show that:

1. Set is complete and cocomplete.

Page: 122 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.3 Factorisation systems 123

2. FinSet is finitely complete and finitely cocomplete, but is neither complete nor
cocomplete.

3. Alg(Σ) is complete for any signatureΣ . (It is also cocomplete, but the proof is
harder — give it a try!)

4. AlgSig is cocomplete. (Is it complete?)

HINT : Use Exercise 3.2.49 and its dual, and the standard constructions of (co)products
and (co)equalisers in these categories hinted at in Examples 3.2.9, 3.2.16 and Ex-
ercises 3.2.22, 3.2.24. Check that, given a diagramD with nodesN and edgesE in
Set, its limit is (up to isomorphism) the set of families〈dn〉n∈N that are compati-
ble with D in the sense thatdn ∈ Dn for eachn∈ N anddm = De(dn) for each edge
e:n→m, with the obvious projections. Check that its colimit is (up to isomorphism)
the quotient of the disjoint union

⊎
n∈N Dn by the least equivalence relation that is

generated by all pairs〈dn,De(dn)〉 for e:n→m in E anddn ∈ Dn. ut

Exercise 3.2.54.Show thatAlgSigder is not finitely cocomplete. (HINT : Consider
a morphism mapping a binary operation to the projection on the first argument and
another morphism mapping the same operation to the projection on the second ar-
gument. Can such a pair of morphisms have a coequaliser?) ut

Exercise 3.2.55.When is a preorder category (finitely) complete and cocomplete?
ut

3.3 Factorisation systems

In this section we will interrupt our presentation of the basic concepts of category
theory and try to illustrate how they can be used to formulate some well-known
ideas at a level of generality and abstraction that ensures their applicability in many
specific contexts.

The concept on which we concentrate here is that ofreachability(cf. Section 1.2).
Recall that the original definition of a reachable algebra used the notion of a subalge-
bra (cf. Definition 1.2.7). Keeping in mind that in the categorical framework we deal
with objects identified up to isomorphism, we slightly generalise the standard for-
mulation and, for any signatureΣ ∈ |AlgSig|, say that aΣ -algebraB is a subalgebra
of A if there exists aninjectiveΣ -homomorphism fromB to A. A dual notion is that
of aquotient: aΣ -algebraB is a quotient of aΣ -algebraA if there exists asurjective
Σ -homomorphism fromA to B. Now, aΣ -algebraA is reachableif it has no proper
subalgebra (i.e., every subalgebra ofA is isomorphic toA), or equivalently, if it is
a quotient of the algebraTΣ of groundΣ -terms (cf. Exercise 1.4.14). In this formu-
lation, the above definitions may be used to introduce a notion of reachability in an
arbitrary category. However, we need an appropriate generalisation of the concept
of injective and surjective homomorphisms. A first attempt might be to use arbitrary
epimorphisms and monomorphisms for this purpose, but it soon turns out that these
concepts are not “fine enough” to ensure the properties we are after. An appropriate
refinement of these is given if the category is equipped with afactorisation system.

Page: 123 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

124 3 Category theory

Definition 3.3.1 (Factorisation system).Let K be an arbitrary category. Afactori-
sation systemfor K is a pair〈E,M〉, where:

• E is a collection of epimorphisms inK andM is a collection of monomorphisms
in K ;

• each ofE andM is closed under composition and contains all isomorphisms in
K ;

• every morphism inK has an〈E,M〉-factorisation: for eachf ∈ K , f = ef ;mf for
someef ∈ E andmf ∈ K ;

·

·

·
?

f

��

��

��	

ef

@@

@@

@@R

mf

• 〈E,M〉-factorisations are unique up to isomorphism: for anye,e′ ∈E andm,m′ ∈
M , if e;m= e′;m′ then there exists an isomorphismi such thate;i = e′ andi;m′ =
m.

·

·

·

·

?

f

�
�

�
��	

e

@
@

@
@@R

m

@
@

@
@@R

e′

�
�

�
��	

m′

� �

6

i

�-

� �

�

i−1 ut

Example 3.3.2. Sethas a factorisation system〈E,M〉, whereE is the collection of
all surjective functions andM is the collection of all injective functions. ut

Example 3.3.3.For any signatureΣ , Alg(Σ) has a factorisation system4 〈TEΣ ,TM Σ 〉,
whereTEΣ is the collection of all surjectiveΣ -homomorphisms andTM Σ is the col-
lection of all injectiveΣ -homomorphisms; see Exercise 1.3.23. ut

Consider an arbitrary categoryK equipped with a factorisation system〈E,M〉.

4 “T” in TEΣ andTM Σ indicates that we are dealing with ordinarytotal algebras here, as opposed
to partial and continuous algebras with the factorisation systems discussed below.

Page: 124 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.3 Factorisation systems 125

Lemma 3.3.4 (Diagonal fill-in lemma).For any morphisms f1, f2,e,m inK , where
e∈ E and m∈ M , if f1;m= e; f2 then there exists a unique morphism g such that
e;g = f1 and g;m= f2.

Proof sketch.The required “diagonal” is given byg= ef2;i;mf 1, as illustrated by the
diagram below; its uniqueness follows easily sincee is an epimorphism.

·

·

·

·

· ·

-e

-
m

?

f1

?

f2

AA

AA

AAU

ef1

��

��

���

mf1

AA

AA

AAU

mf2

��

��

���

ef2

� i

ut

Exercise 3.3.5.Show that ife∈ E ande; f ∈M for some morphismf ∈ K , thene
is an isomorphism. Dually, ifm∈M and f ;m∈ E for some morphismf ∈ K , then
m is an isomorphism. ut

Definition 3.3.6 (Subobject and quotient).Let A ∈ |K |. A subobjectof A is an
objectB∈ |K | together with a morphismm:B→ A such thatm∈M . A quotientof
A is an objectB∈ |K | together with a morphisme:A→ B such thate∈ E. ut

Definition 3.3.7 (Reachable object).An objectA ∈ |K | is reachableif it has no
proper subobject, i.e., if every morphismm∈M with targetA is an isomorphism.

ut

The categoryAlg(Σ) of Σ -algebras and the notion of a reachable algebra provide
an instance of the general concept of reachability introduced in the above definition.
The following theorem gives more general versions of well-known facts often labo-
riously proved in the standard algebraic framework.

Theorem 3.3.8.Assume thatK has an initial objectΛ . Then:

1. An object A∈ |K | is reachable iff it is a quotient of the initial objectΛ .
2. Every object in|K | has a reachable subobject which is unique up to isomorphism.
3. If A∈ |K | is reachable then for every B∈ |K | there exists at most one morphism

from A to B.
4. If A∈ |K | is reachable and f∈ K is a morphism with target A then f∈ E. ut

Exercise 3.3.9.Prove the theorem and identify the familiar facts about reachable
algebras generalised here. ut

One of the main results of Chapter 2, Theorem 2.5.14, states that any equational
specification has an initial model. This is just a special case of a more general result
which we formulate and prove for an arbitrary category with “reachability structure”
satisfying an additional, technical property that any object has up to isomorphism
only asetof quotients.

Page: 125 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

126 3 Category theory

Definition 3.3.10 (Co-well-powered category). Kis E-co-well-poweredif for any
A∈ |K | there exists asetof morphismsE ⊆ E such that for every morphisme∈ E
with sourceA there exist a morphisme′ ∈E and an isomorphismi such thate= e′;i.

ut

Definition 3.3.11 (Quasi-variety). A collection of objectsQ ⊆ |K | is a quasi-
variety if it is closed under subobjects and products of non-empty sets of objects
in Q. ut

Lemma 3.3.12 (Initiality lemma). Assume thatK has an initial object, isE-co-
well-powered, and any set of objects inK has a product. Then any non-empty quasi-
variety inK (considered as the corresponding full subcategory ofK) has an initial
object which is reachable inK .

Proof. Let Q⊆ |K | be a non-empty collection of objects closed under subobjects
and products of non-empty sets. LetQr be asetof reachable objects inQ such that
every reachable object inQ is isomorphic to an element ofQr (such a set exists since
K is E-co-well-powered). The reachable subobject of the product ofQr (which is
unique up to isomorphism) is a reachable initial object inQ. ut

It is now easy to check that in the context of Example 3.3.3 every class ofΣ -
algebras definable by a set ofΣ -equations is a non-empty quasi-variety, and hence
Lemma 3.3.12 indeed directly implies Theorem 2.5.14.

We conclude this section with two examples of categories naturally equipped
with a notion of reachability which is an instance of the general concept introduced
above.

Example 3.3.13.Recall Definitions 2.7.30 and 2.7.31 of partialΣ -algebras andΣ -
homomorphisms between them. For any signatureΣ , define the category of partial
Σ -algebras,PAlg(Σ), as follows:

Objects ofPAlg(Σ): partialΣ -algebras;
Morphisms ofPAlg(Σ): weakΣ -homomorphisms.

Define also the subcategoryPAlgstr(Σ) of partialΣ -algebras withstronghomo-
morphisms between them, as follows:

Objects ofPAlgstr(Σ): partialΣ -algebras;
Morphisms ofPAlgstr(Σ): strongΣ -homomorphisms.

The categoryPAlg(Σ) of partialΣ -algebras has a factorisation system〈PEΣ ,PMΣ 〉,
wherePEΣ is the collection of all epimorphisms inPAlg(Σ) andPMΣ is the collec-
tion of all monomorphisms inPAlg(Σ) that are strongΣ -homomorphisms.

Exercise. Characterise epimorphisms inPAlg(Σ) (they are not surjective in gen-
eral) and prove that〈PEΣ ,PMΣ 〉 is indeed a factorisation system forPAlg(Σ).
Check then that factorisation of a strongΣ -homomorphism in〈PEΣ ,PMΣ 〉 con-
sists of strongΣ -homomorphisms. Conclude that strong homomorphisms inPEΣ

andPMΣ , respectively, form a factorization system forPAlgstr(Σ). ut

Page: 126 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.4 Functors and natural transformations 127

Example 3.3.14.For any signatureΣ , define the category of continuousΣ -algebras,
CAlg(Σ), as follows:

Objects ofCAlg(Σ): continuousΣ -algebras, which are just like ordinary (total)
Σ -algebras, except that their carriers are required to be complete partial orders
and their operations are continuous functions (cf. Exercise 3.1.9);

Morphisms ofCAlg(Σ): continuousΣ -homomorphisms: a continuousΣ -homomorphism
from a continuousΣ -algebraA to a continuousΣ -algebraB is aΣ -homomorphism
h:A→ B which is continuous as a function between complete partial orders. We
say thath is full if it reflects the ordering, i.e., for alla,a′ ∈ |A|s, h(a) ≤B h(a′)
impliesa≤A a′.

The categoryCAlg(Σ) of continuousΣ -algebras has a factorisation system
〈CEΣ ,CMΣ 〉, whereCMΣ is the collection of all full monomorphisms inCAlg(Σ)
andCEΣ is the collection of allstrongly denseepimorphisms inCAlg(Σ). A con-
tinuousΣ -homomorphismh:A→ B is strongly dense ifB has no proper continuous
subalgebra which contains the set-theoretic image of|A| underh. (Note that the
expected notion of a continuous subalgebra is determined by the chosen collection
of factorisation monomorphismsCMΣ .) This is equivalent to the requirement that
every element of|B| is the least upper bound of a countable chain of least upper
bounds of countable chains of . . . of elements in the set-theoretic image of|A| un-
der h. Consequently, given a strongly dense continuous homomorphismh:A→ B,
every element of|B| is the least upper bound of a subset (not necessarily a chain
though) of the set-theoretic image of|A| underh, which yields the key argument to
show thatCAlg(Σ) is CEΣ -co-well-powered.

Exercise. Prove that〈CEΣ ,CMΣ 〉 is indeed a factorisation system forCAlg(Σ).
Also, try to construct an example of an epimorphism inCAlg(Σ) which is not
strongly dense. ut

Exercise 3.3.15.Characterise reachable algebras inPAlg(Σ) and inCAlg(Σ). In-
stantiate the facts listed in Theorem 3.3.8 to these categories. ut

3.4 Functors and natural transformations

As explained in the introduction to this chapter, for category theorists it is tanta-
mount to heresy to consider objects in the absence of morphisms between them. Up
to now we have departed from this dogma in our study of categories themselves;
in the previous sections of this chapter we have worked with categories without in-
troducing any notion of a morphism between them. We hasten here to correct this
lapse: morphisms between categories arefunctors, to be introduced in this section.
And by way of atonement we will also introducenatural transformations, which are
morphisms between functors.

Page: 127 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

128 3 Category theory

3.4.1 Functors

A category consists of a collection of objects and a collection of morphisms with
structure given by the choice of sources and targets of morphism, by the definition
of composition and by the identities that are assumed to exist. As in other standard
cases of collections with additional structure, morphisms between categories are
maps between the collections of objects and morphisms, respectively, that preserve
this structure.

Definition 3.4.1 (Functor). A functor F:K1 → K2 from a categoryK1 to a cate-
goryK2 consists of:

• a functionFOb j: |K1| → |K2|; and
• for eachA,B∈ |K1|, a functionFA,B:K1(A,B)→ K2(FOb j(A),FOb j(B))

such that:

• F preserves identities:FA,A(idA) = idFOb j(A) for all objectsA∈ |K |; and
• F preserves composition: for all morphismsf : A→ B and g : B→ C in K1,

FA,C(f ;g) = FA,B(f) ;FB,C(g). ut

Notation. We useF to refer to bothFOb j andFA,B for all A,B∈ |K1|. ut

In the literature, functors as defined above are sometimes referred to ascovariant
functors. Acontravariantfunctor is then defined in the same way except that it “re-
verses the direction of morphisms”, i.e., a contravariant functorF:K1→ K2 maps
a K1-morphism f :A→ B to aK2-morphismF(f):F(B)→ F(A). Even though we
will use this terminology sometimes, no new formal definition is required: a con-
travariant functor fromK1 to K2 is a (covariant) functor fromK1op to K2 (cf. e.g.
Examples 3.4.7 and 3.4.29 below).

Example 3.4.2 (Identity functor). A functor IdK :K → K is defined in the obvious
way. ut

Example 3.4.3 (Inclusion functor).If K1 is a subcategory ofK2 then the inclusion
I :K1 ↪→ K2 is a functor. ut

Example 3.4.4 (Constant functor).For anyA∈ |K2|, CA:K1 → K2 is a functor,
whereCA(B) = A for anyB∈ |K1| andCA(f) = idA for anyK1-morphismf . ut

Example 3.4.5 (Opposite functor).For any functorF:K1→ K2, there is a functor
Fop:K1op→ K2op which is the “same” asF, but is considered between the opposite
categories. ut

Example 3.4.6 (Powerset functor).P:Set→ Set is a functor, whereP(X) = {Y |
Y ⊆ X} for any setX, and for any functionf :X → X′, P(f):P(X) → P(X′) is
defined byP(f)(Y) = { f (y) | y∈Y}. ut

Page: 128 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.4 Functors and natural transformations 129

Example 3.4.7 (Contravariant powerset functor).P−1:Setop→ Set is a functor,
whereP−1(X) = {Y | Y ⊆ X} for any setX, and for any morphismf :X → X′

in Setop (i.e., any functionf :X′ → X), P−1(f):P−1(X)→ P−1(X′) is defined by
P−1(f)(Y) = {x′ ∈ X′ | f (x′) ∈Y}. ut

Example 3.4.8 (Sequence functor). Seq:Set→ Mon is a functor, whereMon is
the category of monoids with monoid homomorphisms as morphisms. For any set
X ∈ |Set|, Seq(X) = 〈X∗,ˆ,ε〉, whereX∗ is the set of all finite sequences of elements
from X, ˆ is sequence concatenation, andε is the empty sequence. Then, for any
function f :X → Y, Seq(f):Seq(X)→ Seq(Y) is the homomorphism defined by
Seq(f)(x1 . . .xn) = f (x1) . . . f (xn). ut

Example 3.4.9 (Reduct functor).For any signature morphismσ :Σ→Σ ′, σ :Alg(Σ ′)→
Alg(Σ) is a functor that takes eachΣ ′-algebraA′ to itsσ -reductA′ σ ∈ |Alg(Σ)| and
eachΣ ′-homomorphismsh′ to itsσ -reducth′ σ (cf. Definitions 1.5.4 and 1.5.8).ut

Example 3.4.10 (Forgetful functor).Let Σ = 〈S,Ω〉 be a signature. Then| |:Alg(Σ)→
SetS is the functor that takes eachΣ -algebraA∈ |Alg(Σ)| to its S-sorted carrier set
|A| ∈ |SetS| and eachΣ -homomorphism to its underlyingS-sorted function. (The
functor | | should really be decorated with a subscript identifying the signatureΣ

— we hope that leaving it out will not confuse the reader.) These special reduct
functors| | will be referred to asforgetful functors.

More generally, the term “forgetful functor” is used to refer to any functor that,
intuitively, forgets the structure of objects in a category, mapping any structured
object to its underlying unstructured set of elements. Thus, in addition to examples
that exactly fit the above definition (like the functor mapping any monoid to the set
of its elements) this also covers examples like the functor that maps any topological
space to the set of its points and the functor that forgets the metric of a metric space.

ut

Example 3.4.11 (Term algebra).For any signatureΣ = 〈S,Ω〉, there is a functor
TΣ :SetS→ Alg(Σ) that maps anyS-sorted setX to the term algebraTΣ (X), and any
S-sorted functionf :X→Y to the uniqueΣ -homomorphismf #:TΣ (X)→ TΣ (Y) that
extendsf . ut

Exercise 3.4.12.For any signatureΣ and setΦ of Σ -equations, define thequotient
functor /Φ :Alg(Σ)→ Alg(Σ) such that for anyΣ -algebraA, A/Φ is the quotient
of A by the least congruence' onA generated byΦ , that is, such thattA(v)' t ′A(v)
for eachΣ -equation∀X • t = t ′ in Φ and valuationv:X→ |A|. Make sure that what
you define is a functor! ut

Exercise 3.4.13.For any signatureΣ , define therestriction functorRΣ :Alg(Σ)→
Alg(Σ) such that for anyΣ -algebraA, RΣ (A) is the reachable subalgebra ofA.

More generally: letK be an arbitrary category with an initial object and a factori-
sation system, and letKR be the full subcategory ofK determined by the collection
of all reachable objects inK (cf. Section 3.3). Define a functorRK :K → KR that
maps anyA∈ |K | to the (unique up to isomorphism) reachable subobject ofA. ut

Page: 129 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

130 3 Category theory

Example 3.4.14 (Projection functor).For any two categoriesK1 andK2, the pro-
jection functorsΠK1 :K1 × K2 → K1 and ΠK2 :K1 × K2 → K2 are defined by
ΠK1(〈A,B〉) = A andΠK1(〈 f ,g〉) = f , andΠK2(〈A,B〉) = B andΠK2(〈 f ,g〉) = g.

ut

Example 3.4.15 (Hom-functor).Let K be a locally small category.Hom:Kop×
K → Set is a functor, whereHom(〈A,B〉) = K(A,B) and

Hom(〈 f :A′→ A,g:B→ B′〉︸ ︷︷ ︸
∈Kop×K(〈A,B〉,〈A′,B′〉)

)(h:A→ B︸ ︷︷ ︸
∈Hom(〈A,B〉)

) = f ;h;g︸ ︷︷ ︸
∈Hom(〈A′,B′〉)

.

B

A A′

B′-
g

� f

?

h

?

ut

Exercise 3.4.16 (Exponent functor).For any setX define a functor[→X]:Setop→
Set mapping any set to the set of all functions from it toX. That is, for any set
Y ∈ |Set|, [Y→X] is the set of all functions fromY to X and then for any morphism
f :Y→Y′ in Setop, which is a functionf :Y′→Y in Set, [f→X]: [Y→X]→ [Y′→X]
is defined by pre-composition withf as follows:[f→X](g) = f ;g. ut

Example 3.4.17 (Converting partial functions to total functions).Let Pfn be the
category of sets with partial functions and letSet⊥ be the subcategory ofSethaving
sets containing a distinguished element⊥ as objects and⊥-preserving functions as
morphisms. ThenTot:Pfn→ Set⊥ converts partial functions to total functions by
using⊥ to represent “undefined” as follows:

• Tot(X) = X]{⊥}

• Tot(f)(x) =
{

f (x) if f (x) is defined
⊥ otherwise

Exercise.Notice that strictly speaking the above definition is not well-formed: ac-
cording to the definition of disjoint union, ifX is non-empty thenX 6⊆X]{⊥}; thus,
given a partial functionf :X→ Y, Tot(f) as defined above need not be a function
from Tot(X) to Tot(Y). Restate this definition formally, using explicit injections
ι1:X→ X]{⊥} andι2:{⊥}→ X]{⊥} for each setX. ut

Example 3.4.18 (Converting partial algebras to total algebras).The same “to-
talisation” idea as used in the above Example 3.4.17 yields a totalisation functor
TotΣ :PAlgstr(Σ)→ Alg(Σ), for each signatureΣ , mapping partialΣ -algebras and
their strong homomorphisms to totalΣ -algebras and their homomorphisms (cf. Def-
initions 2.7.30 and 2.7.31, and Example 3.3.13).

Let Σ = 〈S,Ω〉 ∈ |AlgSig|. TotΣ :PAlgstr(Σ)→ Alg(Σ) is defined as follows:

Page: 130 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.4 Functors and natural transformations 131

• For any partialΣ -algebraA∈ |PAlgstr(Σ)|, TotΣ (A) ∈ |Alg(Σ)| is theΣ -algebra
whose carriers are obtained from the corresponding carriers ofA by adding a
distinguished element⊥, and whose operations are obtained from the operations
of A by making the result⊥ for arguments on which the latter are undefined, that
is:

– for each sort names∈ S, |TotΣ (A)|s = |A|s]{⊥}; and
– for each operation namef :s1× . . .×sn→ s in Σ , fTotΣ (A) is the function which

yields⊥ if any of its arguments is⊥, and fora1 ∈ |A|s1, . . . ,an ∈ |A|sn,

fTotΣ (A)(a1, . . . ,an) =
{

fA(a1, . . . ,an) if fA(a1, . . . ,an) is defined
⊥ otherwise.

• For any strongΣ -homomorphismh:A→ B (which is a family oftotal functions
between the corresponding carriers ofA andB), TotΣ (h):TotΣ (A)→ TotΣ (B) is
(the family of functions in)h extended to map⊥ to⊥.

Exercise.Check that for any strongΣ -homomorphismh:A→B, TotΣ (h):TotΣ (A)→
TotΣ (B) is indeed aΣ -homomorphism. Can you extendTotΣ toweakΣ -homomorphisms
between partial algebras? ut

Exercise 3.4.19.Do the above functors map monomorphisms to monomorphisms?
Do they map epimorphisms to epimorphisms? What about isomorphisms? (Co)limits?
(Co)cones? Anything else you can think of? ut

Definition 3.4.20 (Diagram translation).Given a functorF:K1 → K2 and a dia-
gramD in K1, thetranslation of D byF is defined as the diagramF(D) in K2 with
the same underlying graph asD and with the labels ofD translated byF:

• G(F(D)) = G(D);
• for eachn∈ |G(D)|node, F(D)n = F(Dn); and
• for eache∈ |G(D)|edge, F(D)e = F(De). ut

Exercise 3.4.21 (Diagrams as functors).A diagramD in K corresponds to a func-
tor from the categoryPath(G(D)) of paths in the underlying graph ofD to K . For-
malise this. HINT : Given a diagramD, define a functor that maps each pathe1 . . .en

in G(D) to De1; . . . ;Den. Do not forget the case wheren = 0.
Then, anticipating Definition 3.4.27, define the translation of a diagram by a

functor in terms of functor composition. ut

Definition 3.4.22 (Functor continuity and cocontinuity). A functor F:K1 → K2
is (finitely) continuousif it preserves the existing limits of all (finite) diagrams in
K1, that is, if for any (finite) diagramD in K1, F maps any limiting cone overD to
a limiting cone overF(D).

A functor F:K1→ K2 is (finitely) cocontinuousif it preserves the existing col-
imits of all (finite) diagrams inK1, that is, if for any (finite) diagramD in K1, F
maps any colimiting cocone overD to a colimiting cocone overF(D). ut

Page: 131 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

132 3 Category theory

Exercise 3.4.23.Assuming thatK1 is (finitely) complete, use Exercise 3.2.49 to
show that a functorF:K1 → K2 is (finitely) continuous if and only if it preserves
(finite) products and equalisers.

Similarly, show thatF:K1→ K2 is finitely continuous if and only if it preserves
terminal objects and all pullbacks, and it is continuous if and only if it preserves
terminal objects and all wide pullbacks. HINT : Exercises 3.2.48 and 3.2.50).

Dually, give similar characterisation of (finitely) cocontinuous functors, for in-
stance as those that preserve (finite) coproducts and coequalisers. ut

Exercise 3.4.24.Given a setX, show that the functor[→X]:Setop→ Setfrom Ex-
ercise 3.4.16 is continuous. HINT : Use Exercise 3.4.23: relying on the explicit con-
structions of (co)products and (co)equalisers inSet, show that the functor maps
any coproduct (disjoint union) of sets〈Xn〉n∈N to a product of sets of functions
[Xn→X], n∈N, and a coequaliser of functionsf ,g:X1→ X2 to an equaliser of (pre-
composition) functions(f ;),(g;): [X2→X]→ [X1→X].

You may also want to similarly check which of the examples of functors given
above are (finitely) (co)continuous. ut

Exercise 3.4.25.Consider a categoryK with a terminal object1 ∈ |K |. Given any
functorF:K → K ′, check thatF determines a functorF↓1:K → K ′↓F(1) from K to
the slice category ofK ′-objects overF(1) (Definition 3.1.28), where for any object
A∈ |K |, F↓1(A) = F(!A), with !A:A→ 1 being the unique morphism fromA to 1,
andF↓1 coincides withF on morphisms.

Suppose now thatK has all pullbacks (so that it is finitely complete) andF pre-
serves them (but we do not requireF to preserve the terminal object, so it does not
have to be finitely continuous). Show thatF↓1:K → K ′↓F(1) is finitely continuous.
HINT : Recall Exercise 3.2.51. By the discussion there, sinceF preserves pullbacks,
F maps products inK , which are pullback of morphisms to1, to pullbacks inK ′ of
morphisms toF(1) — and these are essentially products inK ′↓F(1). Moreover, by
the construction,F↓1 preserves the terminal object, and the conclusion follows by
Exercise 3.4.23.

Similarly, show that ifK has all wide pullbacks (so that it is complete) andF
preserves them thenF↓1:K → K ′↓F(1) is continuous. ut

Exercise 3.4.26.Recall the definition of the categoryTΣ ,Φ , the algebraic theory
generated by a setΦ of equations over a signatureΣ (cf. Exercise 3.1.15). Show
that those functors fromTop

Σ ,∅ to Set that preserve finite products (where products
in Top

Σ ,Φ , that is coproducts inTΣ ,Φ , are given by concatenation of sequences of sort
names, cf. Exercise 3.2.18, and products inSetare given by the Cartesian product)
are in a bijective correspondence withΣ -algebras in|Alg(Σ)|. Generalise this corre-
spondence further to product-preserving functors fromTop

Σ ,Φ to SetandΣ -algebras
in ModΣ (Φ). ut

Definition 3.4.27 (Functor composition).The categoryCat (the category of all
categories) is defined as follows:

Page: 132 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.4 Functors and natural transformations 133

Objects ofCat: categories5;
Morphisms ofCat: functors;
Composition inCat: If F:K1→K2 andG:K2→K3 are functors, thenF;G:K1→

K3 is a functor defined as follows:(F;G)Ob j = FOb j;GOb j and (F;G)A,B =
FA,B;GF(A),F(B) for all A,B∈ K1. ut

Example 3.4.28.In the following we will often use the functor| |:Cat → Set6

which for any categoryK ∈ |Cat| yields the collection|K | of the objects of this cat-
egory and for each functorF:K → K ′ yields its object part|F|= FOb j: |K | → |K ′|.

ut

Example 3.4.29. Alg:AlgSigop→ Cat is a functor, where:

• for anyΣ ∈ |AlgSig|, Alg(Σ) is the category ofΣ -algebras; and
• for any morphismσ :Σ→Σ ′ in AlgSig, Alg(σ) is the reduct functor σ :Alg(Σ ′)→

Alg(Σ). ut

Exercise 3.4.30.Define a functorAlgder:(AlgSigder)op→ Cat so thatAlgder(Σ) =
Alg(Σ) for any signatureΣ ∈ |AlgSigder|, and for any derived signature morphism
δ , Algder(δ) is theδ -reduct as sketched in Definition 1.5.16 and Exercise 1.5.17.

ut

Exercise 3.4.31.Define the categoryPoset (objects: partially-ordered sets; mor-
phisms: order-preserving functions). Define the functor fromPosetto Cat that maps
a partially-ordered set to the corresponding (preorder) category (cf. Example 3.1.3)
and an order-preserving function to the corresponding functor. ut

Exercise 3.4.32.Characterise isomorphisms inCat. Show that product categories
are products inCat. What are terminal objects, pullbacks and equalisers inCat?
Conclude thatCat is complete. HINT : Use constructions analogous to those inSet,
as summarised in Exercise 3.2.53. ut

Exercise 3.4.33.Prove thatAlg:AlgSigop→ Cat (cf. Example 3.4.29) is continu-
ous, that is, that it maps colimits in the categoryAlgSig of signatures to limits in the
categoryCat of all categories.

HINT : By Exercise 3.4.23 it is enough to show thatAlg maps coproducts of
signatures to products of the corresponding categories of algebras and coequalisers
of signature morphisms to equalisers of the corresponding reduct functors.

(Coproducts): Recall that by Exercise 3.2.16, a coproduct of signatures is in fact
their disjoint union. Now, it is easy to see that an algebra over a disjoint union
of a family of signatures may be identified with a tuple of algebras over the
signatures in the family. Since a similar fact holds for homomorphisms, the rest
of the proof in this case is straightforward (cf. Exercise 3.4.32). Notice that this
argument covers the coproduct of the empty family of signatures as well.

5 To be cautious about the set-theoretic foundations here, we should rather say:smallcategories.
6 Again, we should restrict attention to small categories here. Alternatively, in place ofSet we
could use the category of all discrete categories, inheriting all of the foundational problems ofCat.

Page: 133 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

134 3 Category theory

(Coequalisers): Recall (cf. Exercise 3.2.24) that a coequaliser of two signature
morphismsσ ,σ ′:Σ → Σ ′ is the natural projectionp:Σ ′ → (Σ ′/≡), where ≡
is the least equivalence relation onΣ ′ such thatσ(x) ≡ σ ′(x) for all sort and
operation namesx in Σ (this is just a sketch of the construction). Notice now
that (Σ ′/≡)-algebras correspond exactly to thoseΣ ′-algebras that have iden-
tical componentsσ(x) and σ ′(x) for all sort and operation namesx in Σ , or
equivalently, to those algebrasA′ ∈ |Alg(Σ ′)| for which A′ σ = A′ σ ′ . Moreover,
the correspondence is given by the functorp:Alg(Σ ′/≡)→ Alg(Σ ′). Since a
similar fact holds for homomorphisms, it is straightforward now to prove that

p = Alg(p) is an equaliser of σ = Alg(σ) and σ ′ = Alg(σ ′) (cf. Exer-
cises 3.4.32 and 3.2.22). ut

Exercise 3.4.34 (Amalgamation Lemma for algebras).Consider a pushout in the
categoryAlgSig of signatures:

Σ

Σ1 Σ2

Σ ′

@
@

@I

�
�

��

�
�

��

@
@

@I

σ1 σ2

σ ′1 σ ′2

Conclude from Exercise 3.4.33 above that for anyΣ1-algebraA1 andΣ2-algebraA2

such thatA1 σ1 = A2 σ2, there exists a uniqueΣ ′-algebraA′ such thatA′ σ ′1
= A1 and

A′ σ ′2
= A2.

Similarly, for any two homomorphismsh1:A11→ A12 in Alg(Σ1) andh2:A21→
A22 in Alg(Σ2) such thath1 σ1 = h2 σ2, there exists a uniqueΣ ′-homomorphism
h′:A′1→ A′2 such thath′ σ ′1

= h1 andh′ σ ′2
= h2. ut

Example 3.4.35.Recall Example 3.2.35 of a simple pushout of algebraic signa-
tures. LetN ∈ |Alg(ΣNat)| be the standard model of natural numbers. Build
N1 ∈ |Alg(ΣNatfib)| by adding toN the interpretation of the operationfib as
the standard Fibonacci function, andN2 ∈ |Alg(ΣNatmult)| by adding toN the
interpretation of the operationmult as multiplication. By construction we have
N1 ΣNat = N = N2 ΣNat and soN1 andN2 amalgamate to a unique algebraN′ ∈
|Alg(ΣNatfib,mult)| such thatN′ ΣNatfib = N1 andN′ ΣNatmult = N2. Clearly,N′ is
the only expansion ofN that definesfib as the Fibonacci function (asN1 does) and
mult as multiplication (asN2 does). ut

Exercise 3.4.36.Define initial objects and coproducts inCat. (HINT : This is easy.)
Try to define coequalisers and then pushouts inCat. (HINT : This is difficult.) ut

¡¡¡¡¡¡¡ c342.tex ======= ¿¿¿¿¿¿¿ 1.15

Page: 134 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.4 Functors and natural transformations 135

3.4.2 Natural transformations

Let F:K1→ K2 andG:K1→ K2 be two functors with common source and target
categories.

A transformation fromF to G should map the results ofF to the results ofG. This
means, that it should consists of a family of morphisms inK2, oneK2-morphism
from F(A) to G(A) for eachK1-objectA. An extra requirement to impose is that
this family should be compatible with the application ofF andG to K1-morphisms,
as formalised by the following definition:

Definition 3.4.37 (Natural transformation). A natural transformationfrom F to
G, τ:F→G7, is a family〈τA:F(A)→G(A)〉A∈|K1| of K2-morphisms such that for
anyA,B∈ |K1| andK1-morphismf :A→ B the following diagram commutes:

K1: K2:

A

B
?

f

F(A)

F(B)

G(A)

G(B)

-τA

-
τB

?

F(f)

?

G(f)

(this property is often referred to as thenaturalityof the familyτ).
Furthermore,τ is anatural isomorphismif for all A∈ |K1|, τA is iso (inK2). ut

Example 3.4.38.The identity transformationidF:F→ F, where(idF)A = idF(A), is
a natural isomorphism.

For any morphismf :A→ B in a categoryK2 and for any categoryK1, there
is a constant natural transformationcf :CA → CB between the constant functors
CA,CB:K1→ K2 (cf. Example 3.4.4) defined by(cf)o = f for all objectso∈ |K1|.

ut

Example 3.4.39.The family of singleton functionssing set: IdSet→ P, where for
any setX, sing setX:X→ P(X) is defined bysing setX(a) = {a}, is a natural trans-
formation.

Let ()∗= Seq;| |:Set→Setbe the functor given as the composition ofSeq:Set→
Mon (Example 3.4.8) with the forgetful functor| |:Mon → Set mapping any
monoid to its underlying carrier set. The family of singleton functionssing seq: IdSet→
()∗, where for any setX, sing seqX:X → X∗ is defined bysing seqX(a) = a
(sing seqmaps any element to the singleton sequence consisting of this element
only) is a natural transformation. ut
7 Some authors would use a dotted or double arrow here, writingτ:F →̇ G or τ:F⇒ G, respec-
tively. We prefer to use the same symbol for all morphisms, and also for natural transformations,
since they are morphisms in certain categories, see Definition 3.4.60 below.

Page: 135 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

136 3 Category theory

Exercise 3.4.40.Consider the functor()∗:Set→ Set mapping any setX to the
setX∗ of sequences overX (cf. Example 3.4.39 above). Show that the following
families of functions (indexed by setsX ∈ |Set|) yield natural transformations from
()∗ to ()∗:

• for eachk≥ 0, for n≥ 0 andx1, . . . ,xn ∈ X,
stutterkX(x1 . . .xn) = x1 . . .x1︸ ︷︷ ︸

k times

. . . xn . . .xn︸ ︷︷ ︸
k times

;

• for eachk≥ 0, for n≥ 0 andx1, . . . ,xn ∈ X,
repeatkX(x1 . . .xn) = x1 . . .xn︸ ︷︷ ︸ . . . x1 . . .xn︸ ︷︷ ︸︸ ︷︷ ︸

k times

;

• for n≥ 0 andx1, . . . ,xn ∈ X,
reverseX(x1 . . .xn) = xn . . .x1;

• for n≥ 0 andx1, . . . ,x2n+1 ∈ X,
oddsX(x1x2x3 . . .x2n) = x1x3 . . .x2n−1 and
oddsX(x1x2x3 . . .x2n+1) = x1x3 . . .x2n+1.

Check which of these functions also yield natural transformations fromSeqto Seq
(whereSeq:Set→Mon, cf. Example 3.4.8).

The above examples indicate a close link between polymorphic functions as en-
countered in functional programming languages (like Standard ML [MTHM97] or
Haskell [Pey03]) and natural transformations between functors representing poly-
morphic types. This property, often referred to as “parametric polymorphism” (as
opposed to “ad hoc polymorphism”) can be explored to derive some propeties of
polymorphic functions directly from their types [Wad89]. ut
Exercise 3.4.41.Recall (Exercise 3.4.26) the correspondence between product-
preserving functors fromTop

Σ ,Φ to Set andΣ -algebras in|Mod(Σ ,Φ)|. Show that
this correspondence extends to morphisms: eachΣ -homomorphism between alge-
bras gives rise to a natural transformation between the corresponding functors, and
vice versa, each natural transformation between such functors determines a homo-
morphism between the corresponding algebras. HINT : To prove that this yields a
bijective correspondence, first use the naturality condition for product projections
to show that for any natural transformationτ:F→ G between product-preserving
functorsF,G:Top

Σ ,Φ → Set, any sequences1 . . .sn of sort names (an object inTΣ ,Φ)
and any〈a1, . . . ,an〉 ∈ F(s1 . . .sn), τs1...sn(〈a1, . . . ,an〉) = 〈τs1(a1), . . . ,τsn(an)〉. ut

Natural transformations have been introduced as morphisms between functors.
The obvious thing to do next is to define composition of natural tranformations. Tra-
ditionally, two different composition operations for natural transformations are in-
troduced:verticalandhorizontalcomposition. The former is a straightforward com-
position of natural transformations between parallel functors. The latter is somewhat
more involved; in a sense, it shows how natural transformations “accumulate” when
functors are composed.

Definition 3.4.42 (Vertical composition).Let F1,F2,F3:K1→ K2 be three func-
tors with common source and target categories. Letτ:F1→ F2 andσ :F2→ F3 be
natural transformations:

Page: 136 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.4 Functors and natural transformations 137�

�

�

�

K1

�

�

�

�

K2

F1 -

F2 -

F3 -

?

τ

?

σ

Then thevertical compositionof τ andσ , τ;σ :F1→ F3, is defined by(τ;σ)A =
τA;σA (in K2) for all A∈ |K1|. ut

Exercise 3.4.43.Prove thatτ;σ is indeed a natural transformation. ut

Definition 3.4.44 (Horizontal composition).LetF1,F2:K1→K2 andG1,G2:K2→
K3 be two pairs of parallel functors. Letτ:F1→ F2 andσ :G1→ G2 be natural
transformations:�

�

�

�
K1

�

�

�

�
K2

�

�

�

�
K3

F1 -

F2 -

G1 -

G2 -
?

τ

?

σ

Then thehorizontal compositionof τ andσ , τ·σ :F1;G1→ F2;G2, is defined by
(τ·σ)A = G1(τA);σF2(A) = σF1(A);G2(τA) (in K3) for all A∈ |K1|:

F1(A)

F2(A)
?

τA

G1(F1(A))

G1(F2(A))
?

G1(τA)

G2(F1(A))

G2(F2(A))
?

G2(τA)

-
σF1(A)

-
σF2(A)

HH
HH

HH
HH

HH
HH

HH
HH

HH
HHj

(τ·σ)A

ut

Exercise 3.4.45.Prove that the above diagram commutes, and so(τ·σ)A is well-
defined. Then prove thatτ·σ is indeed a natural transformation. HINT :

Page: 137 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

138 3 Category theory

A

B G1(F1(B))

G1(F1(A)) G2(F2(A))

G2(F2(B))

G1(F2(A))

G1(F2(B))

?

f

?

G1(F1(f))

?

G2(F2(f))

?

G1(F2(f))

H
HHH

HHHHj
G1(τA)

HHH
HHH

HHj
G1(τB)

�
�

�
��σF2(A)

�
�

�
��

σF2(B)

-
(τ·σ)A

-
(τ·σ)B

ut

Definition 3.4.46 (Multiplication by a functor). A special case of the horizontal
composition of natural transformations is themultiplicationof a natural transforma-
tion by a functor. Under the assumptions of Definition 3.4.44, we define:

• τ·G1 = τ·idG1:F1;G1→ F2;G1, or more explicitly:(τ·G1)A = G1(τA) for A∈
|K1|;

• F1·σ = idF1·σ :F1;G1→ F1;G2, or more explicitly:(F1·σ)A = σF1(A) for A∈
|K1|. ut

Exercise 3.4.47.Show thatτ·σ = (τ·G1);(F2·σ) = (F1·σ);(τ·G2). ut

Exercise 3.4.48 (Interchange law).Consider any categoriesK1, K2, K3, func-
tors F1,F2,F3:K1 → K2 andG1,G2,G3:K2 → K3, and natural transformations
τ:F1→ F2, τ ′:F2→ F3, σ :G1→G2, andσ ′:G2→G3:�

�

�

�

K1

�

�

�

�

K2

�

�

�

�

K3

F1 -

F2 -

F3 -

G1 -

G2 -

G3 -

?

τ

?

τ ′

?

σ

?

σ ′

Show that(τ;τ ′)·(σ ;σ ′) = (τ·σ);(τ ′·σ ′). ut

Page: 138 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.4 Functors and natural transformations 139

3.4.3 Constructing categories, revisited

3.4.3.1 Comma categories

Definition 3.4.49 (Comma category).Let F:K1→K andG:K2→K be two func-
tors with a common target category. Thecomma category(F,G) is defined by:

Objects of(F,G): triples〈A1, f ,A2〉, whereA1∈ |K1|, A2∈ |K2| and f :F(A1)→
G(A2) is a morphism inK ;

Morphisms of(F,G): a morphism from〈A1, f ,A2〉 to 〈B1,g,B2〉 is a pair〈h1,h2〉
of morphisms whereh1:A1→B1 (in K1) andh2:A2→B2 (in K2) such that (the
middle part of) the following diagram commutes:

A1

B1
?

h1

F(A1)

F(B1)

G(A2)

G(B2)

-
f

-
g

?

F(h1)

?

G(h2)

A2

B2
?

h2

Composition in(F,G): 〈h1,h2〉;〈h1′,h2′〉= 〈h1;h1′,h2;h2′〉. ut

Exercise 3.4.50.Construct the categoryK→ of K -morphisms and the categoryK↓A
of K -objects overA∈ |K | as comma categories (cf. Definitions 3.1.27 and 3.1.28).
HINT : Consider categories(IdK , IdK) and (IdK ,C1

A), where IdK is the identity
functor onK andC1

A:1→ K is a constant functor from the terminal category1. ut

Example 3.4.51.Another way of presenting the categoryGraph is as the comma
category(IdSet,CP), whereCP:Set→ Set is the Cartesian product functor defined
by CP(X) = X×X andCP(f :X→Y)〈x1,x2〉= 〈 f (x1), f (x2)〉.

To see this, write an object in|(IdSet,CP)| as〈E,〈source:E→ N, target:E→ N〉,N〉.
ut

Exercise 3.4.52.Another way to present the category of signaturesAlgSig is as the
comma category(IdSet,()+), where()+:Set→ Set is the functor which for any
setX ∈ |Set| yields the setX+ of all finite non-empty sequences of elements from
X.

First, complete the definition of the functor()+. Then, notice thatX+ = X∗×X
and hence an object in|(IdSet,()+)|may be written as〈Ω ,〈arity:Ω → S∗,sort:Ω → S〉,S〉.
Indicate now why the category defined is almost, but not quite, the same as the cat-
egoryAlgSig of signatures (cf. Exercise 3.4.75 below). ut

Exercise 3.4.53.Prove that ifK1 andK2 are (finitely) complete categories,F:K1→
K is a functor, andG:K2→K is a (finitely) continuous functor, then the comma cat-
egory(F,G) is (finitely) complete. Moreover, the obvious projections from(F,G)
to K1 andK2, respectively, are (finitely) continuous. HINT : To construct a limit

Page: 139 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

140 3 Category theory

of a diagram in(F,G), start by building limits of the projections of the diagram to
K1 andK2, respectively, and then use the continuity property ofG to complete the
construction of the limit object in(F,G). If the notation in the proof gets too heavy,
use Exercise 3.2.49 and spell the details out for the construction of products and
equalisers.

Check that this construction of limits in(F,G) works for diagrams of any given
shape: ifK1 and K2 have limits of diagrams of a given shape, andG preserves
them, then(F,G) has limits of diagrams of this shape, and the projection functors
preserve them.

State and prove the analogous facts about cocompleteness of(F,G). HINT :
Clearly, appropriate colimits must exist inK1 and K2, but unlike with limits, it
is F that must preserve them. ut

Exercise 3.4.54.Use Exercises 3.4.50 and 3.4.53 to show that ifK is a (finitely)
complete category then so is the categoryK→ of morphisms inK .

Then, without looking at Exercise 3.2.51, use Exercises 3.4.50 and 3.4.53 to
prove that if a categoryK has limits of all (finite) non-empty connected diagrams
then so does the slice categoryK↓A of its objects overA∈ |K |, and that the obvious
forgetful functor fromK↓A to K preserves these limits. Notice though that this does
not generalise to arbitrary (finite) limits that exist inK↓A if K is (finitely) complete
by Exercise 3.2.51.

Check that your proof shows a stronger fact: without assuming the existence of
any limits inK , the forgetful functor fromK↓A to K createslimits of all non-empty
connected diagrams, that is: for any such diagramD↓A in K↓A, if its projectionD to
K has a limit inK then there is a unique cocone onD↓A in K↓A that projects to this
limit, and this cocone is a limit ofD↓A in K↓A. ut

Exercise 3.4.55.Show that ifK has all pullbacks and a terminal object (so, it is
finitely complete) and a functorF:K → K ′ preserves pullbacks, thenF also pre-
serves the limits of all finite non-empty connected diagrams. HINT : Put together
Exercises 3.4.25 and 3.4.54.

Similarly, show that ifK has all wide pullbacks and a terminal object (so, it is
complete) and a functorF:K → K ′ preserves wide pullbacks, thenF also preserves
the limits of all non-empty connected diagrams. ut

3.4.3.2 Indexed categories

We frequently need to deal not just with a single category, but rather with a family
of categories, “parameterised” by a certain collection of indices. The categories of
S-sorted sets (one for each setS) and the categories ofΣ -algebras (one for each
signatureΣ) are typical examples. A crucial property here is that all the categories in
such a family are defined in a uniform way, and consequently any change of an index
induces a smooth translation between the corresponding component categories. In
typical examples, the translation goes in the opposite direction than the change of
index, which leads to the following definition:

Page: 140 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.4 Functors and natural transformations 141

Definition 3.4.56 (Indexed category).An indexed category(over anindex category
Ind) is a functorC: Indop→ Cat. ut

Example 3.4.57. Alg:AlgSigop→Cat is an indexed category (cf. Example 3.4.29).
ut

Definition 3.4.58 (Grothendieck construction).Every indexed categoryC: Indop→
Cat gives rise to aflattenedcategoryFlat(C) defined as follows:

Objects ofFlat(C): pairs〈i,A〉 for all i ∈ |Ind | andA∈ |C(i)|;
Morphisms ofFlat(C): a morphism from〈i,A〉 to 〈 j,B〉 is a pair〈σ , f 〉:〈i,A〉 →
〈 j,B〉, where σ : i → j is an Ind -morphism andf :A→ C(σ)(B) is a C(i)-
morphism;

Composition inFlat(C): 〈σ , f 〉;〈σ ′, f ′〉= 〈σ ;σ ′, f ;C(σ)(f ′)〉. ut

Exercise 3.4.59.Show that ifInd is complete,C(i) are complete for alli ∈ |Ind |,
andC(σ) are continuous for allσ ∈ Ind , thenFlat(C) is complete.

HINT : Given a diagram in the flattened categoryFlat(C), first consider its ob-
vious projection on the index categoryInd . SinceInd is complete, this has a limit
l ∈ |Ind |. Using the functors assigned byC to the projection morphism of the limit,
“translate” all the nodes and edges of the diagram to the categoryC(l), thus ob-
taining a diagram inC(l). SinceC(l) is complete, it has a limit. Check that the
projection morphisms of the limit of the diagram constructed inInd when paired
with the corresponding projection morphisms of the limit of the diagram inC(l)
form the limit of the original diagram inFlat(C).

To make the construction manageable, consider only products and equalisers:
this is sufficient by Exercise 3.2.49. ut

3.4.3.3 Functor categories

Definition 3.4.60 (Functor category).Let K1 andK2 be categories8. The functor
category[K1→K2] is defined by:

Objects of[K1→K2]: functors fromK1 to K2;
Morphisms of[K1→K2]: natural transformations;
Composition in[K1→K2]: vertical composition. ut

Exercise 3.4.61.Define the categorySetS of S-sorted sets as a functor category.ut

Exercise 3.4.62.For any categoryK , define its morphism categoryK→ as the cate-
gory of functors[2→K]. ut

Exercise 3.4.63.Let K1 andK2 be categories. Show that ifK2 is (finitely) com-
plete then so is the functor category[K1→K2]. State and show the dual fact as well.
HINT : The limit of any diagram in[K1→K2] may be constructed “pointwise”, for

8 To be cautious about set-theoretic foundations, one may want to assume thatK1 is small.

Page: 141 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

142 3 Category theory

each object in|K1| separately. More precisely, using Exercise 3.2.49 to simplify
the notational burden: consider any family of functors〈Fn:K1→ K2〉n∈N. For each
X ∈ |K1|, let Q(X) ∈ |K2| with projections(πn)X:Q(X) → Fn(X), n ∈ N, be a
product of〈Fn(X)〉n∈N in K2. Check that there is a unique way to extendQ to a
functor Q:K1 → K2 so that allπn:Q→ Fn, n ∈ N, become natural transforma-
tions. Show thatQ with projections〈πn〉n∈N is a product of〈Fn:K1→ K2〉n∈N in
[K1→K2]. Then proceed similarly for equalisers: consider functorsF,F′:K1→ K2
and natural transformationsτ1,τ2:F→ F′. For eachX ∈ |K1|, let τX:Q(X)→ F(X)
be an equaliser of(τ1)X,(τ2)X:F(X)→ F′(X) in K2. This yields a unique functor
Q:K1 → K2 such thatτ:Q→ F is a natural transformation, which is an equaliser
of τ1,τ2 in [K1→K2]. ut

Exercise 3.4.64.Let K1, K1′ andK2 be categories. Show how any functorF:K1→
K1′ induces a functor(F;): [K1′→K2]→ [K1→K2]. Relying on the construction
outlined in Exercise 3.4.63 and assuming thatK2 is (finitely) complete, show that
this functor is (finitely) continuous.

Prove also that this yields a functor[→K2]:Catop→Cat9 (cf. Exercise 3.4.16).
ut

Exercise 3.4.65.For any categoryK , define a categoryFunct(K) of functors into
K as follows:

Objects ofFunct(K): functorsF:K ′→ K into K ;
Morphisms ofFunct(K): a morphism fromF:K1 → K to G:K2 → K is a pair
〈ΦΦ ,ρ〉, whereΦΦ :K1→ K2 is a functor andρ:F→ΦΦ ;G is a natural transforma-
tion (between functors fromK1 to K);

Composition inFunct(K): 〈ΦΦ ,ρ〉;〈ΦΦ ′,ρ ′〉= 〈ΦΦ ;ΦΦ ′,ρ;(ΦΦ ·ρ ′)〉.

Show how the categoryFunct(K) arises by the flattening construction of Defini-
tion 3.4.58 for the functor[→K] as defined in the previous exercise.10 ut

Exercise 3.4.66.Show that ifK is a (finitely) complete category then the category
Funct(K) of functors intoK is (finitely) complete as well. HINT : You may con-
struct the limits inFunct(K) directly, perhaps using Exercise 3.2.49. Alternatively,
rely on the construction ofFunct(K) by flattening (Definition 3.4.58) for the functor
[→K]:Catop→ Cat and on Exercise 3.4.59; recall thatCat is complete by Exer-
cise 3.4.32, for any categoryK1, [K1→K] is (finitely) complete by Exercise 3.4.63,
and for every functorF:K1→ K2, (F;): [K2→K]→ [K1→K] is (finitely) contin-
uous by Exercise 3.4.64. ut

Exercise 3.4.67.Show that if a categoryK1 has a factorisation system (cf. Sec-
tion 3.3) than for any categoryK2, the functor category[K2→K1] has a factorisa-
tion system as well.

HINT : Let 〈E1,M1〉 be a factorisation system forK1. DefineE = {ε ∈ [K2→K1] |
εA ∈ E1 for a ∈ |K2|} and M = {η ∈ [K2→K1] | ηA ∈ M1 for a ∈ |K2|}. Now,

9 Assuming thatK2 is small would help to resolve potential foundational problems here.
10 So, for foundational reasons, one may prefer to keep all categories small around here as well.

Page: 142 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.4 Functors and natural transformations 143

to construct an〈E,M〉-factorisation of a natural transformationτ:F → G be-
tween functorsF,G:K2 → K1, first for each objecta∈ |K2| obtain an〈E1,M1〉-
factorisation ofτA, sayτA = εA;ηA with εA∈E1andηA∈M1, andεA:F(A)→H(A),
ηA:H(A) → G(A) for someH(A) ∈ |K1|. Then use the diagonal fill-in lemma
(Lemma 3.3.4) to extend the mappingH: |K2| → |K1| to a functorH:K2 → K1
such thatε:F→ H andη :H→G are natural transformations. ut

3.4.3.4 Equivalence of categories

Definition 3.4.68 (Isomorphic categories).Two categoriesK1 andK2 areisomor-
phic if there are functorsF:K1→ K2 andF−1:K2→ K1 such thatF;F−1 = IdK1
andF−1;F = IdK2 . ut

In other words, we say that two categories are isomorphic if they are isomorphic
as objects ofCat. As with isomorphic objects of other kinds, we will view isomor-
phic categories as abstractly the same. It turns out, however, that in this case there
is a coarser relation which allows us to identify categories which have all the same
categorical properties, even though they may not be isomorphic.

Definition 3.4.69 (Equivalent categories). K1andK2 areequivalentif there are
functorsF:K1 → K2 andG:K2 → K1 and natural isomorphismsτ: IdK1 → F;G
andσ :G;F→ IdK2 . ut

To characterise equivalent categories, we need one more concept:

Definition 3.4.70 (Skeletal category).A categoryK is skeletaliff any two isomor-
phic K -objects are identical. Askeleton ofK is any maximal skeletal subcategory
of K . ut

Exercise 3.4.71.Prove that two categories are equivalent iff they have isomorphic
skeletons. ut

Thus, intuitively, two categories are equivalent if and only if they differ only in
the number of isomorphic copies of corresponding objects.

Example 3.4.72.The categoryFinSet of all finite sets is equivalent to its full sub-
category of all natural numbers, where any natural numbern is defined as the set
{0, . . . ,n−1} of all natural numbers smaller thann. In fact, the latter is a skeleton
of FinSet. Similarly, the categorySetof all sets is equivalent to its full subcategory
of all ordinals. ut

Exercise 3.4.73.Show that for any signatureΣ and setΦ of Σ -equations, the full
subcategory ofTΣ /Φ given by the finite sets of variables is equivalent to the cate-
goryTΣ ,Φ (cf. Exercises 3.1.14 and 3.1.15). ut

Exercise 3.4.74.Let K1 and K2 be equivalent categories. Show that ifK1 is
(finitely) (co)complete then so isK2. ut

Page: 143 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

144 3 Category theory

Exercise 3.4.75.Recall Exercise 3.4.52. As indicated there, categoriesAlgSig and
(IdSet,()+) are not isomorphic. Show that they are equivalent. Then, using Exer-
cises 3.4.74 and 3.4.53, conclude from this thatAlgSig is complete and cocomplete.

ut

3.5 Adjoints

Recall Facts 1.4.4 and 1.4.10:

Fact 1.4.4.For any Σ -algebra A and S-sorted function v:X→ |A| there is exactly
oneΣ -homomorphism v#:TΣ (X)→ A which extends v, i.e. such that v#

s(ιX(x)) =
vs(x) for all s∈ S, x∈ Xs, whereιX:X→ |TΣ (X)| is the embedding that maps each
variable in X to the corresponding term. ut

Fact 1.4.10.This property defines TΣ (X) up to isomorphism: if B is aΣ -algebra
andη :X→ |B| is an S-sorted function such that for anyΣ -algebra A and S-sorted
function v:X→ |A| there is a uniqueΣ -homomorphism v$:B→A such thatη ;|v$|=
v then B is isomorphic to TΣ (X). ut

The construction of the algebra ofΣ -terms is one example of anadjoint functor
(it is left adjoint to the functor| |:Alg(Σ)→ Setsorts(Σ)). The general concept of an
adjoint functor, to which this section is devoted, has many other important instances.
In fact, [Gog91b] goes so far as to say:

Any canonical construction from widgets to whatsits is an adjoint of another
functor, from whatsits to widgets.

3.5.1 Free objects

Let K1 andK2 be categories,G:K2→ K1 be a functor, andA1 be an object ofK1.

Definition 3.5.1 (Free object).A free object over A1 w.r.t. G is a K2-object A2
together with aK1-morphismηA1:A1→G(A2) such that for anyK2-objectB2 and
K1-morphism f :A1→ G(B2) there is a uniqueK2-morphism f #:A2→ B2 such
thatηA1;G(f #) = f .

Page: 144 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.5 Adjoints 145

K1 K2� G

A1 G(A2)

G(B2)

-ηA1

?

G(f #)

@
@

@
@

@
@@R

f

A2

B2
?

f #

ηA1 is called theunit morphism. ut

Example 3.5.2.Let Σ = 〈S,Ω〉 be an arbitrary signature. Consider the forgetful
functor | |:Alg(Σ)→ SetS. Fact 1.4.4 asserts that for anyS-sorted setX, the term
algebraTΣ (X) with the inclusionηX:X ↪→ |TΣ (X)| is a free object overX w.r.t. | |.

ut

Exercise 3.5.3.Define free monoids and the path categoriesPath(G) as free objects
w.r.t. some obvious functors. Then, look around at the areas of mathematics with
which you are familiar for more examples. For instance, check that free groups and
discrete topologies, (ideal) completion of partial orders, of ordered algebras, etc.
may be defined as free objects w.r.t. some straightforward functors. ut

Exercise 3.5.4.Prove that any free object overA1 w.r.t.G is an initial object in the
comma category(CA1,G), whereCA1:1→ K1 is the constant functor. Conclude
that a free object overA1 w.r.t.G is unique up to isomorphism. ut

Exercise 3.5.5.Prove that ifA2∈ |K2| is a free object overA1∈ |K1|w.r.t.G:K2→
K1, then for anyB2∈ |K2|, #:K1(A1,G(B2))→ K2(A2,B2) is a bijection.

Check that one consequence of this is that two morphismsg,h:A2→B2 coincide
(in K2) wheneverηA1;G(g) = ηA1;G(h) in K1. ut

3.5.2 Left adjoints

Let K1 andK2 be categories andG:K2 → K1 be a functor. So far we have con-
sidered free objects w.r.t.G one by one, without relating them with each other. One
crucial property is that the construction of free objects, if they exist, is functorial.

Proposition 3.5.6.If for any A1∈ |K1| there is a free object over A1 w.r.t. G, say
F(A1) ∈ |K2| with unit morphismηA1:A1→G(F(A1)) (in K1), then A1 7→ F(A1)
and f∈K1(A1,B1) 7→ (f ;ηB1)#∈K2(F(A1),F(B1)) determine a functorF:K1→
K2.

Page: 145 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

146 3 Category theory

K1 K2� G

A1 G(F(A1))

B1 G(F(B1))

-ηA1

-
ηB1

?

f

?

G(F(f))

F(A1)

F(B1)
?

F(f) = (f ;ηB1)#

Proof. F preserves identities: F(idA1) = (idA1;ηA1)# = idF(A1) follows from the fact
that the following diagram commutes:

A1

A1

G(F(A1))

G(F(A1))

?

idA1

?

idG(F(A1)) = G(idF(A1))

-ηA1

-
ηA1

F preserves composition: Since the following diagram commutes:

A1

B1

G(F(A1))

G(F(B1))
?

f

?

G(F(f))

-ηA1

-ηB1

C1 G(F(C1))
?

g

?

G(F(g))

-ηC1

�

��

G(F(f));G(F(g)) = G(F(f);F(g))

it follows thatF(f ;g) = (f ;g;ηC1)# = F(f);F(g). ut

Exercise 3.5.7.Prove thatη : IdK1 → F;G in Proposition 3.5.6 is a natural transfor-
mation. ut

Page: 146 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.5 Adjoints 147

Definition 3.5.8 (Left adjoint). Let F:K1→ K2 andG:K2→ K1 be functors and
η : IdK1 → F;G be a natural transformation.F is left adjoint toG with unit η if for
anyA1∈ |K1|, F(A1) with unit morphismηA1:A1→G(F(A1)) is a free object over
A1 w.r.t.G. ut

Before we give any examples, let us prove a very important property of left ad-
joints.

Proposition 3.5.9.A left adjoint toG is unique up to (natural) isomorphism: ifF
andF′ are left adjoints ofG with unitsη andη ′ respectively, then there is a natural
isomorphismτ:F→ F′ such thatη ;(τ·G) = η ′.

A1

G(F(A1))

G(F′(A1))

�
���

��*ηA1

HH
HHHHjη ′A1 ?

G(τA1) = (τ·G)A1

F(A1)

F′(A1)
?

τA1

Proof. First notice that for anyf ∈ K1(A1,B1), F(f) = (f ;ηB1)# and F′(f) =
(f ;η ′B1)

#′ .
Then, forA1 ∈ |K1|, defineτA1 = (η ′A1)

andτ
−1
A1 = (ηA1)#′ . ThenτA1;τ−1

A1 =
idF(A1) since the following diagrams commute:

A1

G(F(A1))

G(F′(A1))

G(F(A1))

�
�

�
�

�
�

��

ηA1

-
η ′A1

@
@

@
@

@
@

@R

ηA1

?

G(τA1)

?

G(τ−1
A1)

�

��

G(τA1;τ−1
A1)

A1

G(F(A1))

G(F(A1))

��
����*ηA1

H
HHH

HHj
ηA1 ?

G(idF(A1))

andτ
−1
A1 ;τA1 = idF′(A1) by a similar argument.

Finally, for f :A1→ B1 (in K1), the following diagrams commute:

Page: 147 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

148 3 Category theory

A1 G(F(A1))

G(F′(A1))

-ηA1

HH
HHH

HHHHj

η ′A1

?

G(τA1)

B1 G(F′(B1))

G(F(B1))

-
η ′B1

HHH
HHH

HHHj

ηB1

?

G(τ−1
B1)

?

f

?

G(F′(f))

A1 G(F(A1))-ηA1

?

G(F(f))

B1

G(F(B1))

HHH
HHH

HHHj

ηB1

?

f

Thus,F(f) = (f ;ηB1)# = τA1;F′(f);τ−1
B1 . This proves thatF(f);τB1 = τA1;F′(f), and

hence thatτ:F→ F′ is natural. ut

Example 3.5.10.For any signatureΣ = 〈S,Ω〉, the functorTΣ :SetS→ Alg(Σ)
is left adjoint to the forgetful functor| |:Alg(Σ) → SetS (cf. Examples 3.4.11
and 3.4.9).

The functorSeq:Set→ Mon is left adjoint to the forgetful functor| |:Mon →
Setwhich takes a monoid to its underlying set of elements. The unit issing seq: IdSet→
Seq;| | (cf. Examples 3.4.8 and 3.4.39).

The “free group” functorF:Set→ Grp is left adjoint to the forgetful functor
| |:Grp → Set. Also, the functor taking a setX to the discrete topology onX is left
adjoint to the forgetful functor| |:Top→ Set(cf. Exercise 3.5.3). ut

Exercise 3.5.11.Consider any algebraic signature morphismσ :Σ → Σ ′. Prove that
the reduct functor σ :Alg(Σ ′)→ Alg(Σ) has a left adjoint.

HINT : Formalise and complete the following construction. For anyΣ -algebraA,
let Σ(A) be an algebraic signature which extendsΣ by a constanta:s for each ele-
menta∈ |A|s, s∈ sorts(Σ), and letΣ ′(A) be a similar extension ofΣ ′ by a constant
a:σ(s) for eacha∈ |A|s, s∈ sorts(Σ). Consider the congruence≡A onTΣ(A) gener-
ated by the identities that hold inA. The congruence≡A may be translated byσ to
Σ ′(A)-terms, generating there a congruenceσ(≡A), and the algebraTΣ ′(A)/σ(≡A)
is (almost) the freeΣ ′-algebra overA.

Consider then a setΦ ′ of Σ ′-equations. Recall thatMod(Σ ′,Φ ′) is the full
subcategory ofAlg(Σ ′) with all Σ ′-algebras that satisfyΦ ′ as objects (cf. Exam-
ple 3.1.19). Prove that the reduct functorσ :Mod(Σ ′,Φ ′) → Alg(Σ) has a left
adjoint.

HINT : In the construction above, close the congruenceσ(≡A) so that for each
equation∀X′ • t = t ′ in Φ ′ and substitutionθ :X′ → |TΣ ′(A)|, it identifies the terms
t[θ] andt ′[θ] (cf. Exercise 1.4.9 for the notation used here).

Page: 148 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.5 Adjoints 149

Finally, for any setΦ of Σ -equations such thatΦ ′ |=Σ ′ σ(Φ), prove that the
reduct functor σ :Mod(Σ ′,Φ ′)→Mod(Σ ,Φ) has a left adjoint.

HINT : This is easy now (Proposition 2.3.13 ensures that the functor is well de-
fined). ut

Exercise 3.5.12.Generalise Exercise 3.5.11 to derived signature morphisms, with
reduct functors as introduced in Exercise 3.4.30. ut

Example 3.5.13.Let K be a category, and recall that1 is a category containing a
single object, saya. Let F:1→ K be left adjoint toCa:K → 1 (note that such a
functorF may not exist). ThenF(a) is an initial object inK . ut

Exercise 3.5.14.Let ∆ :K → K ×K be the “diagonal” functor such that∆(A) =
〈A,A〉 and∆(f :A→ B) = 〈 f , f 〉:∆(A)→ ∆(B). Prove thatK has all coproducts iff
∆ has a left adjoint. What is the unit? ut

Exercise 3.5.15.Formulate analogous theorems for coequalisers and pushouts and
prove them. Show how this may be done for any colimit. ut

Exercise 3.5.16.LetK be a category with an initial object and a factorisation system
and letKR be its full subcategory of reachable objects. Recall thatRK :K → KR is a
functor that maps any object to its reachable subobject (cf. Exercise 3.4.13). Show
that the inclusion functorI :KR→ K is left adjoint toRK . ut

Exercise 3.5.17.Show that left adjoints preserve colimits of diagrams. Do they pre-
serve limits as well? ut

Exercise 3.5.18.LetF:K2→K1 be left adjoint toG:K1→K2 with unit η : IdK1→
F;G. Consider two objectsA,B ∈ |K1| and suppose that for some epimorphism
e:A→ B there exists a morphismh:B→ G(F(A)) such thate;h = ηA. Prove that
F(e):F(A)→ F(B) is an isomorphism.

HINT :

A G(F(A))-
ηA

B G(F(B))-
ηB

�
�

�
�

�
���

e

?

h

G(C)

@
@

@
@

@
@@R

f

?

G(fA)

�
�

�
�

�
�

�
�

�
�

�
�

�
��

G(fB)
F(A)

C

F(B)

?

fA

�
�

�
�

�
���

F(e)

�
�

�
�

�
�

�
�

�
�

�
�

�
��

fB

Page: 149 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

150 3 Category theory

First show thatF(B) with e;ηB:A→G(F(B)) as the unit morphism is a free object
overA w.r.t.G. For this, use the following construction: for anyC∈ |K2| and f :A→
G(C), let fB:F(B)→ C be the unique morphism such thatηB;G(fB) = h;G(fA),
where in turnfA:F(A)→C is the unique morphism such thatηA;G(fA) = f . Now,
fB satisfies(e;ηB);G(fB) = f and moreover, it is the only morphism fromF(B) toC
with this property (use the fact thate is an epimorphism and the freeness ofF(B) to
prove the latter). Then, show the conclusion following the proof of the uniqueness
of left adjoints, cf. Proposition 3.5.9. ut

3.5.3 Adjunctions

Consider two categoriesK1 andK2 and functorsF:K1 → K2 andG:K2 → K1
such thatF is left adjoint toG with unit η : IdK1 → F;G.

Proposition 3.5.19.There is a natural transformationε:G;F→ IdK2 such that

(∗) : (G·η);(ε·G) = idG
(∗∗) : (η ·F);(F·ε) = idF

K1: K2:

G(A2) G(F(G(A2))) F(G(A2))

G(A2) A2

A1 F(A1)

G(F(A1)) F(G(F(A1))) F(A1)

-
ηG(A2)

HH
HHH

HHH
HHHj

idG(A2)

?

G(εA2)
(∗)

?

εA2

?

ηA1

-
εF(A1)

H
HHH

HHH
HHHHj

idF(A1)

?

F(ηA1)
(∗∗)

Proof idea.

• (∗) definesεA2:F(G(A2))→ A2 asεA2 = (idG(A2))#.
• Check naturality: To show that for allg:A2→ B2 in K2, εA2;g = F(G(g));εB2, it

is enough to prove that (inK1) ηG(A2);G(εA2;g) = ηG(A2);G(F(G(g));εB2).
• Check(∗∗): To prove thatF(ηA1);εF(A1) = idF(A1), it is enough to show that (in

K1) ηA1;G(F(ηA1);εF(A1)) = ηA1;G(idF(A1)). ut

Page: 150 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.5 Adjoints 151

Proposition 3.5.20.Consider functorsF:K1→ K2 andG:K2→ K1, and natural
transformationsη : IdK1 → F;G andε:G;F→ IdK2 such that

(∗) : (G·η);(ε·G) = idG
(∗∗) : (η ·F);(F·ε) = idF

ThenF is left adjoint toG with unit η .

Proof. For A1∈ |K1|, B2∈ |K2|, f :A1→G(B2), let f # = F(f);εB2:F(A1)→ B2.

• ηA1;G(f #) = ηA1;G(F(f));G(εB2) = f ;ηG(B2);G(εB2) = f ;idG(B2) = f .
• Suppose that for someg:F(A1)→ B2, ηA1;G(g) = f . Then: f # = F(f);εB2 =

F(ηA1;G(g));εB2 = F(ηA1);F(G(g));εB2 = F(ηA1);εF(A1);g = g. ut

Definition 3.5.21 (Adjunction). Let K1 andK2 be categories. Anadjunction from
K1 to K2 is a quadruple〈F,G,η ,ε〉 whereF:K1→ K2 andG:K2→ K1 are func-
tors andη : IdK1 → F;G andε:G;F→ IdK2 are natural transformations such that

(∗) : (G·η);(ε·G) = idG
(∗∗) : (η ·F);(F·ε) = idF ut

Fact 3.5.22.Equivalently, an adjunction may be given as either of the following:

• A functorG:K2→ K1 and for each A1∈ |K1|, a free object over A1 w.r.t. G;
• A functorG:K2→ K1 and its left adjoint. ut

Exercise 3.5.23 (Galois connection).Recall that any partial order gives rise to a
corresponding preorder category (cf. Example 3.1.3). Galois connections (Defini-
tion 2.3.3) arise as adjunctions between preorder categories:

Consider two partially ordered sets〈A,≤A〉 and〈B,≤B〉 and two order-preserving
functions f :A→ B andg:B→ A (i.e., for a,a′ ∈ A, if a≤A a′ then f (a) ≤B f (a′)
and forb,b′ ∈ B, if b≤B b′ theng(b)≤A g(b′)).

Show thatf andg (viewed as functors) form an adjunction between〈A,≤A〉 and
〈B,≤B〉 (viewed as categories) if and only if for alla∈ A andb∈ B:

a≤A g(b) iff f (a)≤B b

Then show that this is further equivalent to the requirement that:

• a≤A g(f (a)) for all a∈ A; and
• f (g(b))≤B b for all b∈ B.

View the Galois connection between sets of equations and classes of algebras on
a given signature defined in Section 2.3 (cf. Proposition 2.3.2) as a special case of
the above definition. That is, check that for any signatureΣ , the function mapping
any set ofΣ -equations to the class of allΣ -algebras that satisfy this set of equations
and the function mapping any class ofΣ -algebras to the set of allΣ -equations that
hold in this class form an adjunction between the powerset of the set ofΣ -equations
(ordered by inclusion) and the powerclass of the class ofΣ -algebras (ordered by
containment).

Page: 151 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

152 3 Category theory

Then check that the above definition of Galois connection coincides with the
more explicit Definition 2.3.3 of a Galois connection between〈A,≤A〉 and〈B,≥B〉
(note the opposite order forB). ut

Exercise 3.5.24.Dualise the development in this section. Begin with the following
definition, dual to Definition 3.5.1:

Definition. Let F:K1 → K2 be a functor and letA2 ∈ |K2|. A cofree object over
A2 w.r.t. F is aK1-objectA1 together with aK2-morphismεA2:F(A1)→ A2 such
that for anyK1-objectB1 andK2-morphism f :F(B1)→ A2 there is a uniqueK1-
morphismf #:B1→ A1 such thatF(f #);εA2 = f .

Then dually to Section 3.5.2 show how cofree objects induceright adjoints. Finally,
prove facts dual to Propositions 3.5.19 and 3.5.20, thus proving that right adjoints
and cofree objects give another equivalent definition of adjunction. ut

Exercise 3.5.25.Develop yet another equivalent definition (at least for small cate-
gories) of an adjunction, centering around the bijection #:K1(A1,G(A2))→K2(F(A1),A2)
using a generalised version of Hom-functors (cf. Example 3.4.15).

Proof sketch.

• For any small categoryK and two functorsF1:K1→K andF2:K2→K , define a
functorHomF1,F2:K1op×K2→SetbyHomF1,F2(〈A1,A2〉)= K(F1(A1),F2(A2))
andHomF1,F2(〈 f 1, f 2〉)(h) = F1(f 1);h;F2(f 2).

• Show that ifF:K1 → K2 is left adjoint toG:K2 → K1 then #:HomIdK1 ,G →
HomF,IdK2 is a natural isomorphism.

• Finally, prove that for any functorsF:K1→ K2 andG:K2→ K1, a natural iso-
morphism #:HomIdK1 ,G→ HomF,IdK2 shows thatF is left adjoint toG. ut

Exercise 3.5.26.Show that adjunctions compose: given any categoriesK1, K2 and
K3, and adjunctions〈F,G,η ,ε〉 from K1 to K2 and〈F′,G′,η ′,ε ′〉 from K2 to K3,
we have an adjunction of the form〈F;F′,G′;G, , 〉 from K1 to K3. Fill in the
holes! ut

3.6 Bibliographical remarks

Category theory has found very many applications in computer science, and the ma-
terial presented here covers just those fragments that we will require in later chap-
ters. Books on category theory for mathematicians include the classic [Mac71] as
well as the encyclopedic [HS73], with [AHS90] as a more recent favourite, the three-
volume handbook [Bor94], the modestly-sized textbook [Awo06], and many more.
An early book on category theory directed towards computer scientists is [AM75],
followed by [Pie91], [Poi92] and [BW95]. An interesting angle is in [RB88], where
categorical concepts are presented by coding them in ML.

Page: 152 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

3.6 Bibliographical remarks 153

Our terminology is mainly based on [Mac71], although we prefer to write com-
position in diagrammatic order, denoted by semicolon. The reader should be warned
that the terminology and notation in category theory is not completely standardized,
and differ from one author to another.

We have decided to keep to the basics, and have not ventured into many more
advanced topics, some of which are quite important for computer-science appli-
cations. In particular, Cartesian closed categories [BW95], [Mit96] and the Curry-
Howard isomorphism [SU06], categorical logic [LS86], monads [Man76], [Mog91],
[Pho92], fibrations [Jac99], and topoi [Joh02], [Gol06] all deserve attention.

We have presented somewhat more material than usual on certain topics that will
find application in some of the subsequent chapters. For example, in the material
on factorisation systems (with Section 3.3 taken from [Tar85]) and on indexed cat-
egories (with Section 3.4.3.2 based on [TBG91]), we include some exercises which
formulate facts that we will rely on later. We will work with indexed categories
throughout the book, sometimes implicitly, since we find them more natural for
these applications than equivalent formulations in terms of fibrations [Jac99].

We have deliberately chosen to use a notion of factorisation system based on
[HS73]. The later book [AHS90] uses a somewhat more general concept, where
factorisation morphisms are not required to be epi and mono, respectively, and there-
fore the uniqueness of the isomorphism between different factorisations of the same
morphisms — or equivalently, of the diagonal in Lemma 3.3.4 — must be required
explicitly. Although much of the material carries over, some results are simpler un-
der our assumptions: for instance, we rely on Exercise 3.3.5 which does not hold in
this form in the framework of [AHS90].

Our presentation of signatures, terms and algebras in Chapter 1 was elementary
and set-theoretic, and we retain this style throughout the book. But category the-
ory offers a whole spectrum of possibilities of doing universal algebra fruitfully
in a different style. Exercises 3.4.26 and 3.4.41 relate to a categorical “Lawvere-
style” presentation of some of the same concepts, see [Law63], [Man76], [BW85].
This was used in some early papers on algebraic specification, e.g. [GTWW75], but
as it abstracts away from the choice of operation names in the signature, it seems
less useful for applications to program specification. (This argument was put for-
ward already in [BG80], with the notion of “signed theory” from [GB78] called
to the rescue.) An alternative approach to specifications in this framework is given
by sketches, see [BW95], which present specifications as graphs with indicated dia-
grams, cones and cocones that in a functorial model of the graph are mapped to com-
mutative diagrams, limits and colimits, respectively. Commutative diagrams capture
equational requirements here, with (co)limiting (co)cones offering additional speci-
fication power. Another related approach takes the general notion of aT-algebra for
a functorT:K → K as its starting point, where aT-algebra on an objectA∈ |K | is a
morphism fromT(A) to A; this works smoothly ifT is a monad, see [Man76]. Such
abstract approaches offer natural generalisations based on semantic interpretation in
categories other thanSet, but again, in our view, abstraction from familiar concepts
and syntactic presentations makes them less convenient for practical use.

Page: 153 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

Page: 532 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

References

AC89. Egidio Astesiano and Maura Cerioli. On the existence of initial models for partial
(higher-order) conditional specifications. In Josep Dı́az and Fernando Orejas, editors,
Proceedings of the International Joint Conference on Theory and Practice of Software
Development, TAPSOFT’89, Barcelona,Lecture Notes in Computer Science, volume
351, pages 74–88. Springer, 1989.

AC01. David Aspinall and Adriana B. Compagnoni. Subtyping dependent types.Theoretical
Computer Science, 266(1–2):273–309, 2001.

ACEGG91. Jaume Agustı́-Cullell, Francesc Esteva, Pere Garcia, and Lluis Godo. Formalizing
multiple-valued logics as institutions. In Bernadette Bouchon-Meunier, Ronald R.
Yager, and Lotfi A. Zadeh, editors,Proceedings of the 3rd International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems, IPMU’90, Paris,Lecture Notes in Computer Science, volume 521, pages 269–
278. Springer, 1991.

AF96. Mário Arrais and Jośe Luiz Fiadeiro. Unifying theories in different institutions. In
Magne Haveraaen, Olaf Owe, and Ole-Johan Dahl, editors,Recent Trends in Data
Type Specification. Selected Papers from the 11th Workshop on Specification of Ab-
stract Data Types, Oslo, Lecture Notes in Computer Science, volume 1130, pages
81–101. Springer, 1996.

AG97. Robert Allen and David Garlan. A formal basis for architectural connection.ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

AH05. David Aspinall and Martin Hofmann. Dependent types. In Benjamin Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 2, pages 45–86. MIT
Press, 2005.

AHS90. Jǐri Adámek, Horst Herrlich, and George Strecker.Abstract and Concrete Categories:
The Joy of Cats. Wiley, 1990.

Ala02. Suad Alagic. Institutions: Integrating objects, XML and databases.Information and
Software Technology, 44(4):207–216, 2002.

AM75. Michael A. Arbib and Ernest G. Manes.Arrows, Structures and Functors: The Cate-
gorical Imperative. Academic Press, 1975.

Asp95. David Aspinall. Subtyping with singleton types. In Leszek Pacholski and Jerzy
Tiuryn, editors,Proceedings of the 8th International Workshop on Computer Science
Logic, CSL’94, Kazimierz,Lecture Notes in Computer Science, volume 933, pages
1–15. Springer, 1995.

Asp97. David Aspinall. Type Systems for Modular Programming and Specification. PhD
thesis, University of Edinburgh, Department of Computer Science, 1997.

Asp00. David Aspinall. Subtyping with power types. In Peter Clote and Helmut Schwichten-
berg, editors,Proceedings of the 14th International Workshop on Computer Science

533

534 References

Logic, Fischbachau,Lecture Notes in Computer Science, volume 1862, pages 156–
171. Springer, 2000.

Avr91. Arnon Avron. Simple consequence relations.Information and Computation, 92:105–
139, 1991.

Awo06. Steve Awodey.Category Theory. Oxford University Press, 2006.
Bar74. Jon Barwise. Axioms for abstract model theory.Annals of Mathematical Logic,

7:221–265, 1974.
BBB+85. Friedrich L. Bauer, Rudolf Berghammer, Manfred Broy, Walter Dosch, Franz Geisel-

brechtinger, Rupert Gnatz, E. Hangel, Wolfgang Hesse, Bernd Krieg-Brückner, Al-
fred Laut, Thomas Matzner, Bernd M̈oller, Friederike Nickl, Helmut Partsch, Peter
Pepper, Klaus Samelson, Martin Wirsing, and Hans Wössner. The Munich Project
CIP: Volume 1: The Wide Spectrum Language CIP-L, Lecture Notes in Computer
Science, volume 183. Springer, 1985.

BBC86. Gilles Bernot, Michel Bidoit, and Christine Choppy. Abstract data types with ex-
ception handling: An initial approach based on a distinction between exceptions and
errors.Theoretical Computer Science, 46(1):13–45, 1986.

BC88. Val Breazu-Tannen and Thierry Coquand. Extensional models for polymorphism.
Theoretical Computer Science, 59(1–2):85–114, 1988.

BCH99. Michel Bidoit, Maŕıa Victoria Cengarle, and Rolf Hennicker. Proof systems for struc-
tured specifications and their refinements. In Egidio Astesiano, Hans-Jörg Kreowski,
and Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification,
chapter 11, pages 385–433. Springer, 1999.

BD77. R.M. Burstall and J. Darlington. A transformational system for developing recursive
programs.Journal of the Association for Computing Machinery, 24(1):44–67, 1977.

BDP+79. Manfred Broy, Walter Dosch, Helmut Partsch, Peter Pepper, and Martin Wirsing. Ex-
istential quantifiers in abstract data types. In Hermann A. Maurer, editor,Proceed-
ings of the 6th International Colloquium on Automata, Languages and Programming,
Graz,Lecture Notes in Computer Science, volume 71, pages 73–87. Springer, 1979.

Bén85. Jean B́enabou. Fibred categories and the foundations of naı̈ve category theory.Jour-
nal of Symbolic Logic, 50:10–37, 1985.

Ber87. Gilles Bernot. Good functors . . . are those preserving philosophy! In David H.
Pitt, Axel Poigńe, and David E. Rydeheard, editors,Proceedings of the 2nd Summer
Conference on Category Theory and Computer Science, Edinburgh,Lecture Notes in
Computer Science, volume 283, pages 182–195. Springer, 1987.

BF85. Jon Barwise and Solomon Feferman, editors.Model-Theoretic Logics. Springer,
1985.

BG77. R.M. Burstall and J.A. Goguen. Putting theories together to make specifications.
In Fifth International Joint Conference on Artificial Intelligence, pages 1045–1058,
Boston, 1977.

BG80. R.M. Burstall and J.A. Goguen. The semantics of Clear, a specification language.
In Dines Bjørner, editor,Proceedings of the 1979 Copenhagen Winter School on Ab-
stract Software Specification, Lecture Notes in Computer Science, volume 86, pages
292–332. Springer, 1980.

BG81. R.M. Burstall and J.A. Goguen. An informal introduction to specifications using
Clear. In R.S. Boyer and J.S. Moore, editors,The Correctness Problem in Computer
Science, pages 185–213. Academic Press, 1981. Also in:Software Specification Tech-
niques(eds. N. Gehani and A.D. McGettrick), Addison-Wesley, 1986.

BG01. Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan
Robinson and Andrei Voronkov, editors,Handbook of Automated Reasoning, pages
19–99. Elsevier and MIT Press, 2001.

BH96. Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural
properties.Theoretical Computer Science, 165(1):3–55, 1996.

BH98. Michel Bidoit and Rolf Hennicker. Modular correctness proofs of behavioural imple-
mentations.Acta Informatica, 35(11):951–1005, 1998.

Page: 534 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

References 535

BH06a. Michel Bidoit and Rolf Hennicker. Constructor-based observational logic.Journal of
Logic and Algebraic Programming, 67(1–2):3–51, 2006.

BH06b. Michel Bidoit and Rolf Hennicker. Proving behavioral refinements of COL-
specifications. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, edi-
tors,Algebra, Meaning and Computation: Essays Dedicated to Joseph A. Goguen on
the Occasion of His 65th Birthday, Lecture Notes in Computer Science, volume 4060,
pages 333–354. Springer, 2006.

BHK90. Jan Bergstra, Jan Heering, and Paul Klint. Module algebra.Journal of the Association
for Computing Machinery, 37(2):335–372, 1990.

BHW94. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Characterizing behavioural se-
mantics and abstractor semantics. In Donald Sannella, editor,Proceedings of the
5th European Symposium on Programming, Edinburgh,Lecture Notes in Computer
Science, volume 788, pages 105–119. Springer, 1994.

BHW95. Michel Bidoit, Rolf Hennicker, and Martin Wirsing. Behavioural and abstractor spec-
ifications.Science of Computer Programming, 25(2-3):149–186, 1995.

Bir35. Garrett Birkhoff. On the structure of abstract algebras.Proceedings of the Cambridge
Philosophical Society, 31:433–454, 1935.

BL69. R.M. Burstall and P.J. Landin. Programs and their proofs: an algebraic approach. In
B. Meltzer and D. Michie, editors,Machine Intelligence 4, pages 17–43. Edinburgh
University Press, 1969.

BM04. Michel Bidoit and Peter D. Mosses, editors. CASL User Manual. Number 2900 in
Lecture Notes in Computer Science. Springer, 2004.

BN98. Franz Baader and Tobias Nipkow.Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

Bor94. Francis Borceaux.Handbook of Categorical Algebra. Cambridge University Press,
1994.

Bor00. Tomasz Borzyszkowski. Higher-order logic and theorem proving for structured spec-
ifications. In Didier Bert, Christine Choppy, and Peter D. Mosses, editors,Recent
Trends in Algebraic Development Techniques. Selected Papers from the 14th Interna-
tional Workshop on Algebraic Development Techniques, Cĥateau de Bonas,Lecture
Notes in Computer Science, volume 1827, pages 401–418. Springer, 2000.

Bor02. Tomasz Borzyszkowski. Logical systems for structured specifications.Theoretical
Computer Science, 286(2):197–245, 2002.

Bor05. Tomasz Borzyszkowski. Generalized interpolation in first order logic.Fundamenta
Informaticae, 66(3):199–219, 2005.

BPP85. Edward K. Blum and Francesco Parisi-Presicce. The semantics of shared submod-
ules specifications. In Hartmut Ehrig, Christiane Floyd, Maurice Nivat, and James W.
Thatcher, editors,Mathematical Foundations of Software Development. Proceedings
of the International Joint Conference on Theory and Practice of Software Develop-
ment. Volume 1: Colloquium on Trees in Algebra and Programming, Lecture Notes in
Computer Science, volume 185, pages 359–373. Springer, 1985.

BRJ98. Grady Booch, James Rumbaugh, and Ivar Jacobson.The Unified Modeling Language
User Guide. Addison-Wesley, 1998.

BS93. Rudolf Berghammer and Gunther Schmidt. Relational specifications. In C. Rauszer,
editor,Proc. XXXVIII Banach Center Semester on Algebraic Methods in Logic and
their Computer Science Applications, Banach Center Publications, volume 28, pages
167–190, Warszawa, 1993. Institute of Mathematics, Polish Academy of Sciences.

BST02. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifications
in CASL. Formal Aspects of Computing, 13:252–273, 2002.

BST08. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpretation
of CASL specifications.Mathematical Structures in Computer Science, 18:325–371,
2008.

BT87. Jan Bergstra and John Tucker. Algebraic specifications of computable and semicom-
putable data types.Theoretical Computer Science, 50(2):137–181, 1987.

Page: 535 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

536 References

BT96. Michel Bidoit and Andrzej Tarlecki. Behavioural satisfaction and equivalence in con-
crete model categories. In Hélène Kirchner, editor,Proceedings of the 21st Interna-
tional Colloquium on Trees in Algebra and Programming, Linköping,Lecture Notes
in Computer Science, volume 1059, pages 241–256. Springer, 1996.

Bur86. Peter Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, 1986.

BW82a. Friedrich L. Bauer and Hans Wössner.Algorithmic Language and Program Develop-
ment. Springer, 1982.

BW82b. Manfred Broy and Martin Wirsing. Partial abstract data types.Acta Informatica,
18(1):47–64, 1982.

BW85. Michael Barr and Charles Wells.Toposes, Triples and Theories. Number 278 in
Grundlehren der mathematischen Wissenschaften. Springer, 1985.

BW95. Michael Barr and Charles Wells.Category Theory for Computing Science. Prentice
Hall, second edition, 1995.

BWP84. Manfred Broy, Martin Wirsing, and Claude Pair. A systematic study of models of
abstract data types.Theoretical Computer Science, 33(2–3):139–174, 1984.

Car88. Luca Cardelli. Structural subtyping and the notion of power type. InProceedings
of the 15th ACM Symposium on Principles of Programming Languages, San Diego,
pages 70–79, 1988.

CDE+02. Manuel Clavela, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martı́-Oliet,
Jośe Meseguer, and José F. Quesada. Maude: Specification and programming in
rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002. See also
http://maude.cs.uiuc.edu/ .

Cen94. Maŕıa Victoria Cengarle.Formal Specifications with Higher-Order Parameterization.
PhD thesis, Ludwig-Maximilians-Universität München, Institut f̈ur Informatik, 1994.

CF92. Robin Cockett and Tom Fukushima. About Charity. Technical Report No. 92/480/18,
Department of Computer Science, University of Calgary, 1992.

CGR03. Carlos Caleiro, Paula Gouveia, and Jaime Ramos. Completeness results for fibred
parchments: Beyond the propositional base. In Martin Wirsing, Dirk Pattinson, and
Rolf Hennicker, editors,Recent Trends in Algebraic Development Techniques. Se-
lected Papers from the 16th International Workshop on Algebraic Development Tech-
niques, Frauenchiemsee,Lecture Notes in Computer Science, volume 2755, pages
185–200. Springer, 2003.

Chu56. Alonzo Church.Introduction to Mathematical Logic, Volume 1. Princeton University
Press, 1956.

Cı̂r02. Corina Ĉırstea. On specification logics for algebra-coalgebra structures: Reconciling
reachability and observability. InProceedings of the 5th International Conference on
Foundations of Software Science and Computation Structures. European Joint Con-
ferences on Theory and Practice of Software (ETAPS 2002), Grenoble,Lecture Notes
in Computer Science, volume 2303, pages 82–97. Springer, 2002.

CJ95. Aurelio Carboni and Peter Johnstone. Connected limits, familial representability and
Artin glueing. Mathematical Structures in Computer Science, 5(4):441–459, 1995.

CK90. Chen-Chung Chang and H. Jerome Keisler.Model Theory. North-Holland, third
edition, 1990.

CK08a. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for OCL 2.0. Techni-
cal Report I0801, Institut f̈ur Informatik, Ludwig-Maximilians-Universiẗat München,
2008.

CK08b. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 in-
teractions. Technical Report I0808, Institut für Informatik, Ludwig-Maximilians-
Universiẗat München, 2008.

CK08c. Maŕıa Victoria Cengarle and Alexander Knapp. An institution for UML 2.0 static
structures. Technical Report I0807, Institut für Informatik, Ludwig-Maximilians-
Universiẗat München, 2008.

Page: 536 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

http://maude.cs.uiuc.edu/

References 537

CKTW08. Maria-Victoria Cengarle, Alexander Knapp, Andrzej Tarlecki, and Martin Wirsing. A
heterogeneous approach to UML semantics. In Pierpaolo Degano, Rocco de Nicola,
and Jośe Meseguer, editors,Concurrency, Graphs and Models, Essays Dedicated to
Ugo Montanari on the Occasion of His 65th Birthday, Lecture Notes in Computer
Science, volume 5065, pages 383–402. Springer, 2008.

CM97. Maura Cerioli and José Meseguer. May I borrow your logic? (Transporting logical
structures along maps).Theoretical Computer Science, 173(2):311–347, 1997.

CMRM10. Mihai Codescu, Till Mossakowski, Adrı́an Riesco, and Christian Maeder. Integrat-
ing Maude into Hets. In Mike Johnson and Dusko Pavlovic, editors,AMAST 2010,
Lecture Notes in Computer Science. Springer, 2010.

CMRS01. Carlos Caleiro, Paulo Mateus, Jaime Ramos, and Amı́lcar Sernadas. Combining log-
ics: Parchments revisited. In Maura Cerioli and Gianna Reggio, editors,Recent Trends
in Algebraic Development Techniques. Selected Papers from the 15th Workshop on Al-
gebraic Development Techniques joint with the CoFI WG Meeting, Genova,Lecture
Notes in Computer Science, volume 2267, pages 48–70. Springer, 2001.

Coh65. Paul M. Cohn.Universal Algebra. Harper and Row, 1965.
CS92. Robin Cockett and Dwight Spencer. Strong categorical datatypes I. In R.A.G. Seely,

editor,International Meeting on Category Theory 1991, Canadian Mathematical So-
ciety Proceedings. American Mathematical Society, 1992.

CSS05. Carlos Caleiro, Aḿılcar Sernadas, and Cristina Sernadas. Fibring logics: Past, present
and future. In Sergei N. Artemov, Howard Barringer, Artur S. d’Avila Garcez, Luı́s C.
Lamb, and John Woods, editors,We Will Show Them! Essays in Honour of Dov Gab-
bay, Volume One, pages 363–388. College Publications, 2005.

DF98. R̆azvan Diaconescu and Kokichi Futatsugi.CafeOBJ Report: The Language, Proof
Techniques, and Methodologies for Object-Oriented Algebraic Specification, AMAST
Series in Computing, volume 6. World Scientific, 1998.

DF02. R̆azvan Diaconescu and Kokichi Futatsugi. Logical foundations ofCafeOBJ. Theo-
retical Computer Science, 285:289–318, 2002.

DGS93. Řazvan Diaconescu, Joseph Goguen, and Petros Stefaneas. Logical support for mod-
ularisation. In Ǵerard Huet and Gordon Plotkin, editors,Logical Environments, pages
83–130. Cambridge University Press, 1993.

Dia00. R̆azvan Diaconescu. Category-based constraint logic.Mathematical Structures in
Computer Science, 10(3):373–407, 2000.

Dia02. R̆azvan Diaconescu. Grothendieck institutions.Applied Categorical Structures,
10(4):383–402, 2002.

Dia08. Řazvan Diaconescu.Institution-independent Model Theory. Birkhäuser, 2008.
DJ90. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van

Leeuwen, editor,Handbook of Theoretical Computer Science. Volume B (Formal
Models and Semantics), pages 244–320. North-Holland and MIT Press, 1990.

DLL62. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem-proving.Communications of the ACM, 5(7):394–397, 1962.

DM00. Theodosis Dimitrakos and Tom Maibaum. On a generalised modularisation theorem.
Information Processing Letters, 74(1–2):65–71, 2000.

DMR76. Martin Davis, Yuri Matiyasevich, and Julia Robinson. Hilbert’s tenth problem. Dio-
phantine equations: Positive aspects of a negative solution. InMathematical Develop-
ments Arising from Hilbert Problems, Proceedings of Symposia in Pure Mathematics,
volume 28, pages 323–378, Providence, Rhode Island, 1976. American Mathematical
Society.

DP90. B.A. Davey and H.A. Priestley.Introduction to Lattices and Order. Cambridge Uni-
versity Press, 1990.

Ehr78. Hans-Dieter Ehrich. Extensions and implementations of abstract data type specifica-
tions. In J́ozef Winkowski, editor,Proceedings of the 7th Symposium on Mathemati-
cal Foundations of Computer Science, Zakopane,Lecture Notes in Computer Science,
volume 64, pages 155–164. Springer, 1978.

Page: 537 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

538 References

Ehr81. Hans-Dieter Ehrich. On realization and implementation. In Jozef Gruska and Michal
Chytil, editors,Proceedings of the 10th Symposium on Mathematical Foundations of
Computer Science, Štrbsḱe Pleso,Lecture Notes in Computer Science, volume 118,
pages 271–280. Springer, 1981.

Ehr82. Hans-Dieter Ehrich. On the theory of specification, implementation and parametriza-
tion of abstract data types.Journal of the Association for Computing Machinery,
29(1):206–227, 1982.

EKMP82. Hartmut Ehrig, Hans-Jörg Kreowski, Bernd Mahr, and Peter Padawitz. Algebraic
implementation of abstract data types.Theoretical Computer Science, 20:209–263,
1982.

EKT+80. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages. Technical report, Technische
Universiẗat Berlin, 1980.

EKT+83. Hartmut Ehrig, Hans-Jörg Kreowski, James Thatcher, Eric Wagner, and Jesse Wright.
Parameter passing in algebraic specification languages.Theoretical Computer Sci-
ence, 28(1–2):45–81, 1983.

EM85. Hartmut Ehrig and Bernd Mahr.Fundamentals of Algebraic Specification 1, EATCS
Monographs on Theoretical Computer Science, volume 6. Springer, 1985.

Eme90. E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science. Volume B (Formal Models and Semantics), pages
995–1072. North-Holland and MIT Press, 1990.

End72. Herbert B. Enderton.A Mathematical Introduction to Logic. Academic Press, 1972.
EPO89. Hartmut Ehrig, Peter Pepper, and Fernando Orejas. On recent trends in algebraic

specification. In Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca, editors,Proceeding of the 16th International Colloquium on
Automata, Languages and Programming, Stresa,Lecture Notes in Computer Science,
volume 372, pages 263–288. Springer, 1989.

EWT83. Hartmut Ehrig, Eric G. Wagner, and James W. Thatcher. Algebraic specifications
with generating constraints. InProceeding of the 10th International Colloquium on
Automata, Languages and Programming, Barcelona,Lecture Notes in Computer Sci-
ence, volume 154, pages 188–202. Springer, 1983.

Far89. Jordi Farŕes-Casals. Proving correctness of constructor implementations. In Antoni
Kreczmar and Grazyna Mirkowska, editors,Proceedings of the 14th Symposium on
Mathematical Foundations of Computer Science, Porabka-Kozubnik,Lecture Notes
in Computer Science, volume 379, pages 225–235. Springer, 1989.

Far90. Jordi Farŕes-Casals. Proving correctness wrt specifications with hidden parts. In
Hélène Kirchner and Wolfgang Wechler, editors,Proceedings of the 2nd International
Conference on Algebraic and Logic Programming, Nancy,Lecture Notes in Computer
Science, volume 463, pages 25–39. Springer, 1990.

Far92. Jordi Farŕes-Casals.Verification in ASL and Related Specification Languages. PhD
thesis, University of Edinburgh, Department of Computer Science, 1992.

FC96. Jośe Luiz Fiadeiro and José F́elix Costa. Mirror, mirror in my hand: A duality be-
tween specifications and models of process behaviour.Mathematical Structures in
Computer Science, 6(4):353–373, 1996.

Fei89. Loe M. G. Feijs. The calculusλπ. In Martin Wirsing and Jan A. Bergstra, editors,
Proceedings of the Workshop on Algebraic Methods: Theory, Tools and Applications,
Lecture Notes in Computer Science, volume 394, pages 307–328. Springer, 1989.

FGT92. William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Little theories. In
Deepak Kapur, editor,Proceedings of the 11th International Conference on Auto-
mated Deduction, Lecture Notes in Artificial Intelligence, volume 607, pages 567–
581, Saratoga Springs, 1992. Springer.

Fia05. Jośe Luiz Fiadeiro.Categories for Software Engineering. Springer, 2005.
Fit08. John S. Fitzgerald. The typed logic of partial functions and the Vienna Develop-

ment Method. In Dines Bjørner and Martin Henson, editors,Logics of Specification
Languages, pages 453–487. Springer, 2008.

Page: 538 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

References 539

FJ90. J. Fitzgerald and C.B. Jones. Modularizing the formal description of a database sys-
tem. InProceedings of the 3rd International Symposium of VDM Europe: VDM and
Z, Formal Methods in Software Development, Kiel, Lecture Notes in Computer Sci-
ence, volume 428, pages 189–210. Springer, 1990.

FS88. Jośe Luiz Fiadeiro and Aḿılcar Sernadas. Structuring theories on consequence. In
Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types,
Gullane,Lecture Notes in Computer Science, volume 332, pages 44–72. Springer,
1988.

Gab98. Dov M. Gabbay.Fibring Logics, Oxford Logic Guides, volume 38. Oxford University
Press, 1998.

Gan83. Harald Ganzinger. Parameterized specifications: Parameter passing and implemen-
tation with respect to observability.ACM Transactions on Programming Languages
and Systems, 5(3):318–354, 1983.

GB78. J.A. Goguen and R.M. Burstall. Some fundamental properties of algebraic theories:
a tool for semantics of computation. Technical Report 53, Department of Artificial
Intelligence, University of Edinburgh, 1978. Revised version appeared as [GB84b]
and [GB84c].

GB80. J.A. Goguen and R.M. Burstall. CAT, a system for the structured elaboration of cor-
rect programs from structured specifications. Technical Report CSL-118, Computer
Science Laboratory, SRI International, 1980.

GB84a. J.A. Goguen and R.M. Burstall. Introducing institutions. In Edmund Clarke and Dex-
ter Kozen, editors,Proceedings of the Workshop on Logics of Programs, Pittsburgh,
Lecture Notes in Computer Science, volume 164, pages 221–256. Springer, 1984.

GB84b. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 1: Comma categories, colimits, signatures and theories.Theo-
retical Computer Science, 31:175–209, 1984.

GB84c. J.A. Goguen and R.M. Burstall. Some fundamental algebraic tools for the semantics
of computation. Part 2: Signed and abstract theories.Theoretical Computer Science,
31:263–295, 1984.

GB86. Joseph A. Goguen and Rod M. Burstall. A study in the functions of programming
methodology: Specifications, institutions, charters and parchments. In David H. Pitt,
Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors,Proceedings of the
Tutorial and Workshop on Category Theory and Computer Programming, Guildford,
Lecture Notes in Computer Science, volume 240, pages 313–333. Springer, 1986.

GB92. J.A. Goguen and R.M. Burstall. Institutions: Abstract model theory for specification
and programming.Journal of the Association for Computing Machinery, 39(1):95–
146, 1992.

GD94a. Joseph Goguen and Răzvan Diaconescu. An Oxford survey of order sorted algebra.
Mathematical Structures in Computer Science, 4(3):363–392, 1994.

GD94b. Joseph A. Goguen and Rǎzvan Diaconescu. Towards an algebraic semantics for the
object paradigm. In Hartmut Ehrig and Fernando Orejas, editors,Recent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4thCOMPASS Workshop, Caldes de Malavella,
Lecture Notes in Computer Science, volume 785, pages 1–29. Springer, 1994.

GDLE84. Martin Gogolla, Klaus Drosten, Udo Lipeck, and Hans-Dieter Ehrich. Algebraic and
operational semantics of specifications allowing exceptions and errors.Theoretical
Computer Science, 34(3):289–313, 1984.

GG89. Stephen J. Garland and John V. Guttag. An overview of LP, the Larch Prover. InThird
International Conference on Rewriting Techniques and Applications, Chapel Hill,
Lecture Notes in Computer Science, volume 355, pages 137–151. Springer, 1989.
See alsohttp://nms.lcs.mit.edu/larch/LP/all.html .

GGM76. V. Giarratana, F. Gimona, and Ugo Montanari. Observability concepts in abstract data
type specifications. In Antoni Mazurkiewicz, editor,Proceedings of the 5th Sympo-

Page: 539 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

http://nms.lcs.mit.edu/larch/LP/all.html

540 References

sium on Mathematical Foundations of Computer Science, Gdánsk,Lecture Notes in
Computer Science, volume 45, pages 567–578. Springer, 1976.

GH78. John Guttag and James Horning. The algebraic specification of abstract data types.
Acta Informatica, 10:27–52, 1978.

GH93. John V. Guttag and James J. Horning.Larch: Languages and Tools for Formal Spec-
ification. Springer, 1993.

Gin68. Abraham Ginzburg.Algebraic Theory of Automata. Academic Press, 1968.
Gir87. Jean-Yves Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.
Gir89. Jean-Yves Girard.Proofs and Types, Cambridge Tracts in Theoretical Computer Sci-

ence, volume 7. Cambridge University Press, 1989. Translated and with appendices
by Paul Taylor and Yves Lafont.

GLR00. Joseph Goguen, Kai Lin, and Grigore Roşu. Circular coinductive rewriting. InPro-
ceedings of the 15th International Conference on Automated Software Engineering,
Grenoble. IEEE Computer Society, 2000.

GM82. Joseph A. Goguen and José Meseguer. Universal realization, persistent interconnec-
tion and implementation of abstract modules. In Mogens Nielsen and Erik Meineche
Schmidt, editors,Proceeding of the 9th International Colloquium on Automata, Lan-
guages and Programming, Aarhus,Lecture Notes in Computer Science, volume 140,
pages 265–281. Springer, 1982.

GM85. Joseph Goguen and José Meseguer. Completeness of many sorted equational deduc-
tion. Houston Journal of Mathematics, 11(3):307–334, 1985.

GM92. Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations.Theoretical
Computer Science, 105(2):217–273, 1992.

GM00. Joseph A. Goguen and Grant Malcolm. A hidden agenda.Theoretical Computer
Science, 245(1):55–101, 2000.

Gog73. Joseph Goguen. Categorical foundations for general systems theory. In F. Pichler and
R. Trappl, editors,Advances in Cybernetics and Systems Research, London, pages
121–130. Transcripta Books, 1973.

Gog74. J.A. Goguen. Semantics of computation. In Ernest G. Manes, editor,Proceedings
of the 1st International Symposium on Category Theory Applied to Computation and
Control, San Francisco,Lecture Notes in Computer Science, volume 25, pages 151–
163. Springer, 1974.

Gog78. Joseph Goguen. Abstract errors for abstract data types. In Erich Neuhold, editor,
Formal Description of Programming Concepts, pages 491–526. North-Holland, 1978.

Gog84. Martin Gogolla. Partially ordered sorts in algebraic specifications. InProceedings
of the 9th Colloquium on Trees in Algebra and Programming, pages 139–153. Cam-
bridge University Press, 1984.

Gog85. Martin Gogolla. A final algebra semantics for errors and exceptions. In Hans-
Jörg Kreowski, editor,Recent Trends in Data Type Specification. Selected Papers
from the 3rd Workshop on Theory and Applications of Abstract Data Types, Bremen,
Informatik-Fachberichte, volume 116, pages 89–103. Springer, 1985.

Gog91a. Joseph Goguen. Types as theories. In G.M. Reed, A.W. Roscoe, and R.F. Wachter,
editors,Topology and Category Theory in Computer Science, Oxford, pages 357–390.
Oxford University Press, 1991.

Gog91b. Joseph A. Goguen. A categorical manifesto.Mathematical Structures in Computer
Science, 1(1):49–67, 1991.

Gog96. Joseph A. Goguen. Parameterized programming and software architecture. In Murali
Sitaraman, editor,Proceedings of the Fourth International Conference on Software
Reuse, pages 2–11. IEEE Computer Society Press, 1996.

Gog10. Joseph Goguen. Information integration in institutions. In Larry Moss, editor,Think-
ing Logically: a Volume in Memory of Jon Barwise. CSLI, Stanford University, 2010.
To appear.

Gol06. Robert Goldblatt.Topoi: The Categorial Analysis of Logic. Dover, revised edition,
2006.

Page: 540 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

References 541

Gor95. Andrew D. Gordon. Bisimilarity as a theory of functional programming. InProceed-
ings of the 11th Annual Conference on Mathematical Foundations of Programming
Semantics. Electronic Notes in Theoretical Computer Science, 1:232–252, 1995.

GR02. Joseph A. Goguen and Grigore Roşu. Institution morphisms.Formal Aspects of
Computing, 13(3-5):274–307, 2002.

GR04. Joseph A. Goguen and Grigore Roşu. Composing hidden information modules over
inclusive institutions. InFrom Object-Orientation to Formal Methods. Essays in
Memory of Ole-Johan Dahl, Lecture Notes in Computer Science, volume 2635, pages
96–123. Springer, 2004.

Grä79. George A. Grätzer.Universal Algebra. Springer, second edition, 1979.
GS90. Carl Gunter and Dana Scott. Semantic domains. In Jan van Leeuwen, editor,Hand-

book of Theoretical Computer Science. Volume B (Formal Models and Semantics),
pages 633–674. North-Holland and MIT Press, 1990.

GTW76. Joseph Goguen, James Thatcher, and Eric Wagner. An initial algebra approach to
the specification, correctness and implementation of abstract data types. Technical
Report RC 6487, IBM Watson Research Center, Yorktown Heights NY, 1976. Also
in: Current Trends in Programming Methodology. Volume IV (Data Structuring)(ed.
R.T. Yeh), Prentice-Hall, 80–149, 1978.

GTWW73. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. A junction between
computer science and category theory, I: Basic concepts and examples (part 1). Tech-
nical Report RC 4526, IBM Watson Research Center, Yorktown Heights NY, 1973.

GTWW75. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. An introduction to
categories, algebraic theories and algebras. Technical Report RC 5369, IBM Watson
Research Center, Yorktown Heights NY, 1975.

GTWW77. Joseph Goguen, James Thatcher, Eric Wagner, and Jesse Wright. Initial algebra se-
mantics and continuous algebras.Journal of the Association for Computing Machin-
ery, 24(1):68–95, 1977.

Gut75. John Guttag.The Specification and Application to Programming of Abstract Data
Types. PhD thesis, University of Toronto, Department of Computer Science, 1975.

Hag87. Tatsuya Hagino.A Categorical Programming Language. PhD thesis, University of
Edinburgh, Department of Computer Science, 1987.

Häh01. Reiner Ḧahnle. Tableaux and related methods. In John Alan Robinson and Andrei
Voronkov, editors,Handbook of Automated Reasoning, pages 100–178. Elsevier and
MIT Press, 2001.

Hal70. Paul R. Halmos.Naive Set Theory. Undergraduate Texts in Mathematics. Springer,
1970.

Hat82. William Hatcher.The Logical Foundations of Mathematics. Foundations and Philos-
ophy of Science and Technology. Pergamon Press, 1982.

Hay94. Susumu Hayashi. Singleton, union and intersection types for program extraction.
Information and Computation, 109(1/2):174–210, 1994.

Hee86. Jan Heering. Partial evaluation andω-completeness of algebraic specifications.The-
oretical Computer Science, 43:149–167, 1986.

Hen91. Rolf Hennicker. Context induction: A proof principle for behavioural abstractions
and algebraic implementations.Formal Aspects of Computing, 3(4):326–345, 1991.

HHP93. Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, January 1993.

HHWT97. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HYTECH: A model
checker for hybrid systems.Software Tools for Technology Transfer, 1(1–2):110–
122, 1997.

Hig63. Phillip J. Higgins. Algebras with a scheme of operators.Mathematische Nachrichten,
27:115–132, 1963.

HLST00. Furio Honsell, John Longley, Donald Sannella, and Andrzej Tarlecki. Constructive
data refinement in typed lambda calculus. InProceedings of the 3rd International
Conference on Foundations of Software Science and Computation Structures. Euro-
pean Joint Conferences on Theory and Practice of Software (ETAPS 2000), Berlin,
Lecture Notes in Computer Science, volume 1784, pages 161–176. Springer, 2000.

Page: 541 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

542 References

Hoa72. C. A. R. Hoare. Proof of correctness of data representations.Acta Informatica,
1:271–281, 1972.

HS73. Horst Herrlich and George E. Strecker.Category Theory: An Introduction. Allyn and
Bacon, 1973.

HS96. Martin Hofmann and Donald Sannella. On behavioural abstraction and behavioural
satisfaction in higher-order logic.Theoretical Computer Science, 167:3–45, 1996.

HS02. Furio Honsell and Donald Sannella. Prelogical relations.Information and Computa-
tion, 178:23–43, 2002.

HST94. Robert Harper, Donald Sannella, and Andrzej Tarlecki. Structured presentations and
logic representations.Annals of Pure and Applied Logic, 67:113–160, 1994.

Hus92. Heinrich Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting. Journal of Logic Programming, 12(1–4):237–255, 1992.

HWB97. Rolf Hennicker, Martin Wirsing, and Michel Bidoit. Proof systems for struc-
tured specifications with observability operators.Theoretical Computer Science,
173(2):393–443, 1997.

Jac99. Bart Jacobs.Categorical Logic and Type Theory. Number 141 in Studies in Logic
and the Foundations of Mathematics. Elsevier Science, 1999.

JL87. Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InProceedings of
the 14th ACM Symposium on Principles of Programming Languages, Munich, pages
111–119, 1987.

JNW96. Andŕe Joyal, Mogens Nielsen, and Glynn Winskel. Bisimulation from open maps.
Information and Computation, 127(2):164–185, 1996.

JOE95. Rosa M. Jiḿenez, Fernando Orejas, and Hartmut Ehrig. Compositionality and com-
patibility of parameterization and parameter passing in specification languages.Math-
ematical Structures in Computer Science, 5(2):283–314, 1995.

Joh02. Peter T. Johnstone.Sketches of an Elephant: A Topos Theory Compendium. Oxford
Logic Guides Series. Clarendon Press, 2002.

Jon80. Cliff B. Jones.Software Development: A Rigorous Approach. Prentice-Hall, 1980.
Jon89. Hans B.M. Jonkers. An introduction to COLD-K. In Martin Wirsing and Jan A.

Bergstra, editors,Proceedings of the Workshop on Algebraic Methods: Theory, Tools
and Applications, Lecture Notes in Computer Science, volume 394, pages 139–205.
Springer, 1989.

JR97. Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction.Bulletin of
the European Association for Theoretical Computer Science, 62:222–259, 1997.

KB70. Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras.
In J. Leech, editor,Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, 1970.

Kir99. Hélène Kirchner. Term rewriting. In Egidio Astesiano, Hans-Jörg Kreowski, and
Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification, chap-
ter 9, pages 273–320. Springer, 1999.

KKM88. Claude Kirchner, H́elène Kirchner, and José Meseguer. Operational semantics of
OBJ-3. In Timo Lepisẗo and Arto Salomaa, editors,Proceedings of the 15th Inter-
national Colloquium on Automata, Languages and Programming, Tampere,Lecture
Notes in Computer Science, volume 317, pages 287–301. Springer, 1988.

Klo92. Jan Klop. Term rewriting systems. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editors,Handbook of Logic in Computer Science. Volume 2 (Background:
Computational Structures), pages 1–116. Oxford University Press, 1992.

KM87. Deepak Kapur and David R. Musser. Proof by consistency.Artificial Intelligence,
31(2):125–157, 1987.

KR71. Heinz Kaphengst and Horst Reichel. Algebraische Algorithmentheorie. Technical
Report WIB 1, VEB Robotron, Zentrum für Forschung und Technik, Dresden, 1971.

Kre87. Hans-J̈org Kreowski. Partial algebras flow from algebraic specifications. In
T. Ottmann, editor,Proceedings of the 14th International Colloquium on Automata,
Languages and Programming, Karlsruhe,Lecture Notes in Computer Science, vol-
ume 267, pages 521–530. Springer, 1987.

Page: 542 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

References 543

KST97. Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of Extended
ML: A gentle introduction.Theoretical Computer Science, 173:445–484, 1997.

KTB91. Beata Konikowska, Andrzej Tarlecki, and Andrzej Blikle. A three-valued logic for
software specification and validation.Fundamenta Informaticae, 14(4):411–453,
1991.

Las98. Sławomir Lasota. Open maps as a bridge between algebraic observational equivalence
and bisimilarity. In Francesco Parisi-Presicce, editor,Recent Trends in Data Type
Specification. Selected Papers from the 12th International Workshop on Specification
of Abstract Data Types, Tarquinia,Lecture Notes in Computer Science, volume 1376,
pages 285–299. Springer, 1998.

Law63. F. William Lawvere. Functorial Semantics of Algebraic Theories. PhD thesis,
Columbia University, 1963.

LB88. Butler Lampson and Rod Burstall. Pebble, a kernel language for modules and abstract
data types.Information and Computation, 76(2/3):278–346, 1988.

LEW96. Jacques Loeckx, Hans-Dieter Ehrich, and Markus Wolf.Specification of Abstract
Data Types. John Wiley and Sons, 1996.

Lin03. Kai Lin. Machine Support for Behavioral Algebraic Specification and Verification.
PhD thesis, University of California, San Diego, 2003.

Lip83. Udo Lipeck. Ein algebraischer Kalk̈ul für einen strukturierten Entwurf von Daten-
abstraktionen. PhD thesis, Universität Dortmund, 1983.

LLD06. Dorel Lucanu, Yuan-Fang Li, and Jin Song Dong. Semantic Web languages—towards
an institutional perspective. In Kokichi Futatsugi, Jean-Pierre Jouannaud, and José
Meseguer, editors,Algebra, Meaning and Computation: Essays Dedicated to Joseph
A. Goguen on the Occasion of His 65th Birthday, Lecture Notes in Computer Science,
volume 4060, pages 99–123. Springer, 2006.

LS86. Joachim Lambek and Philip J. Scott.Introduction to Higher-Order Categorical Logic.
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1986.

LS00. Hugo Lourenço and Aḿılcar Sernadas. An institution of hybrid systems. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editors,Recent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniques, Château de Bonas,Lecture Notes in Computer
Science, volume 1827, pages 219–236. Springer, 2000.

Luo93. Zhaohui Luo. Program specification and data refinement in type theory.Mathematical
Structures in Computer Science, 3(3):333–363, 1993.

Mac71. Saunders Mac Lane.Categories for the Working Mathematician. Springer, 1971.
Mac84. David B. MacQueen. Modules for Standard ML. InProceedings of the 1984 ACM

Conference on LISP and Functional Programming, pages 198–207, 1984.
MAH06. Till Mossakowski, Serge Autexier, and Dieter Hutter. Development graphs — proof

management for structured specifications.Journal of Logic and Algebraic Program-
ming, 67(1–2):114–145, 2006.

Mai72. Tom Maibaum. The characterization of the derivation trees of context free sets of
terms as regular sets. InProceedings of the 13th Annual IEEE Symposium on Switch-
ing and Automata Theory, pages 224–230, 1972.

Maj77. Mila E. Majster. Limits of the “algebraic” specification of abstract data types.ACM
SIGPLAN Notices, 12(10):37–42, 1977.

Mal71. Anatoly Malcev. Quasiprimitive classes of abstract algebras in the metamathematics
of algebraic systems. InMathematics of Algebraic Systems: Collected Papers, 1936-
67, number 66 in Studies in Logic and Mathematics, pages 27–31. North-Holland,
1971.

Man76. Ernest G. Manes.Algebraic Theories. Springer, 1976.
May85. Brian Mayoh. Galleries and institutions. Technical Report DAIMI PB-191, Aarhus

University, 1985.
Mei92. Karl Meinke. Universal algebra in higher types.Theoretical Computer Science,

100:385–417, 1992.

Page: 543 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

544 References

Mes89. Jośe Meseguer. General logics. In H.-D. Ebbinghaus, editor,Logic Colloquium ’87,
Granada, pages 275–329. North-Holland, 1989.

Mes92. Jośe Meseguer. Conditional rewriting logic as a unified model of concurrency.Theo-
retical Computer Science, 96(1):73–155, 1992.

Mes98. Jośe Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Francesco Parisi-Presicce, editor,Recent Trends in Data Type Specification.
Selected Papers from the 12th International Workshop on Specification of Abstract
Data Types, Tarquinia,Lecture Notes in Computer Science, volume 1376, pages 18–
61. Springer, 1998.

Mes09. Jośe Meseguer. Order-sorted parameterization and induction. In Jens Palsberg, editor,
Semantics and Algebraic Specification: Essays Dedicated to Peter D. Mosses on the
Occasion of His 60th Birthday, Lecture Notes in Computer Science, volume 5700,
pages 43–80. Springer, 2009.

MG85. Jośe Meseguer and Joseph Goguen. Initiality, induction and computability. In Mau-
rice Nivat and John C. Reynolds, editors,Algebraic Methods in Semantics, pages
459–541. Cambridge, 1985.

MGDT07. Till Mossakowski, Joseph Goguen, Rǎzvan Diaconescu, and Andrzej Tarlecki. What
is a logic? In Jean-Yves Beziau, editor,Logica Universalis: Towards a General The-
ory of Logic, pages 111–135. Birkhäuser, 2007.

MHST08. Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki. CASL
— the common algebraic specification language. In Dines Bjørner and Martin Hen-
son, editors,Logics of Specification Languages, pages 241–298. Springer, 2008.

Mid93. Aart Middeldorp. Modular properties of conditional term rewriting systems.Infor-
mation and Computation, 104(1):110–158, 1993.

Mil71. Robin Milner. An algebraic definition of simulation between programs. InPro-
ceedings of the 2nd International Joint Conference on Artificial Intelligence, pages
481–489, 1971.

Mil77. Robin Milner. Fully abstract models of typedλ -calculi. Theoretical Computer Sci-
ence, 4(1):1–22, 1977.

Mil89. Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
Mit96. John C. Mitchell.Foundations of Programming Languages. MIT Press, 1996.
MM84. Bernd Mahr and Johann Makowsky. Characterizing specification languages which

admit initial semantics.Theoretical Computer Science, 31:49–60, 1984.
MML07. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The heterogeneous tool set,

HETS. In Orna Grumberg and Michael Huth, editors,Proceedings of the 13th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems. European Joint Conferences on Theory and Practice of Software (ETAPS 2007),
Braga,Lecture Notes in Computer Science, volume 4424, pages 519–522. Springer,
2007. See alsohttp://www.informatik.uni-bremen.de/cofi/hets/ .

Mog91. Eugenio Moggi. Notions of computation and monads.Information and Computation,
93:55–92, 1991.

Moo56. Edward F. Moore. Gedanken-experiments on sequential machines. In Claude E.
Shannon and John McCarthy, editors,Annals of Mathematics Studies 34, Automata
Studies, pages 129–153. Princeton University Press, 1956.

Mos89. Peter D. Mosses. Unified algebras and modules. InProceedings of the 16th ACM
Symposium on Principles of Programming Languages, Austin, pages 329–343, 1989.

Mos93. Peter Mosses. The use of sorts in algebraic specifications. In Michel Bidoit and Chris-
tine Choppy, editors,Recent Trends in Data Type Specification. Selected Papers from
the 8th Workshop on Specification of Abstract Data Types joint with the 3rdCOM-
PASS Workshop, Dourdan,Lecture Notes in Computer Science, volume 655, pages
66–91. Springer, 1993.

Mos96a. Till Mossakowski. Different types of arrow between logical frameworks. In Fried-
helm Meyer auf der Heide and Burkhard Monien, editors,Proceedings of the 23rd
International Colloquium Automata, Languages and Programming, Paderborn,Lec-
ture Notes in Computer Science, volume 1099, pages 158–169. Springer, 1996.

Page: 544 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

http://www.informatik.uni-bremen.de/cofi/hets/

References 545

Mos96b. Till Mossakowski.Representations, Hierarchies and Graphs of Institutions. PhD
thesis, Universiẗat Bremen, 1996.

Mos00. Till Mossakowski. Specification in an arbitrary institution with symbols. In Didier
Bert, Christine Choppy, and Peter D. Mosses, editors,Recent Trends in Algebraic
Development Techniques. Selected Papers from the 14th International Workshop on
Algebraic Development Techniques, Château de Bonas,Lecture Notes in Computer
Science, volume 1827, pages 252–270. Springer, 2000.

Mos02. Till Mossakowski. Comorphism-based Grothendieck logics. In Krzysztof Diks and
Wojciech Rytter, editors,Proceedings of the 27th Symposium on Mathematical Foun-
dations of Computer Science, Warsaw,Lecture Notes in Computer Science, volume
2420, pages 593–604. Springer, 2002.

Mos03. Till Mossakowski. Foundations of heterogeneous specification. In Martin Wirsing,
Dirk Pattinson, and Rolf Hennicker, editors,Recent Trends in Algebraic Development
Techniques.. Selected Papers from the 16th International Workshop on Algebraic De-
velopment Techniques, Frauenchiemsee,Lecture Notes in Computer Science, volume
2755, pages 359–375. Springer, 2003.

Mos04. Peter D. Mosses, editor. CASL Reference Manual. Number 2960 in Lecture Notes in
Computer Science. Springer, 2004.

Mos05. Till Mossakowski. Heterogeneous Specification and the Heterogeneous Tool Set.
Habilitation thesis, Universität Bremen, 2005.

MS85. David MacQueen and Donald Sannella. Completeness of proof systems for equa-
tional specifications.IEEE Transactions on Software Engineering, SE-11(5):454–
461, 1985.

MSRR06. Till Mossakowski, Lutz Schröder, Markus Roggenbach, and Horst Reichel.
Algebraic-coalgebraic specification in COCASL. Journal of Logic and Algebraic Pro-
gramming, 67(1–2):146–197, 2006.

MSS90. Vincenzo Manca, Antonino Salibra, and Giuseppe Scollo. Equational type logic.
Theoretical Computer Science, 77(1–2):131–159, 1990.

MST04. Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. A simple refinement lan-
guage for CASL. In Jośe Fiadeiro, editor,Recent Trends in Algebraic Development
Techniques.. Selected Papers from the 17th International Workshop on Algebraic De-
velopment Techniques, Barcelona,Lecture Notes in Computer Science, volume 3423,
pages 162–185. Springer, 2004.

MT92. Karl Meinke and John Tucker. Universal algebra. In Samson Abramsky, Dov Gab-
bay, and Tom Maibaum, editors,Handbook of Logic in Computer Science. Volume
1 (Background: Mathematical Structures), pages 189–409. Oxford University Press,
1992.

MT93. V. Wiktor Marek and Mirosław Truszczyński. Nonmonotonic Logics: Context-
Dependent Reasoning. Springer, 1993.

MT94. David B. MacQueen and Mads Tofte. A semantics for higher-order functors. In
Donald Sannella, editor,Proceedings of the 5th European Symposium on Program-
ming, Edinburgh,Lecture Notes in Computer Science, volume 788, pages 409–423.
Springer, 1994.

MT09. Till Mossakowski and Andrzej Tarlecki. Heterogeneous logical environments for
distributed specifications. In Andrea Corradini and Ugo Montanari, editors,Recent
Trends in Algebraic Development Techniques.. Selected Papers from the 19th Interna-
tional Workshop on Algebraic Development Techniques, Pisa,Lecture Notes in Com-
puter Science, volume 5486, pages 266–289. Springer, 2009.

MTD09. Till Mossakowski, Andrzej Tarlecki, and Răzvan Diaconescu. What is a logic trans-
lation?Logica Universalis, 3(1):95–124, 2009.

MTHM97. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.The Definition of
Standard ML (Revised). MIT Press, 1997.

MTP97. Till Mossakowski, Andrzej Tarlecki, and Wiesław Pawłowski. Combining and repre-
senting logical systems. In Eugenio Moggi and Giuseppe Rosolini, editors,Proceed-
ings of the 7th International Conference on Category Theory and Computer Science,

Page: 545 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

546 References

Santa Margherita Ligure,Lecture Notes in Computer Science, volume 1290, pages
177–196. Springer, 1997.

MTP98. Till Mossakowski, Andrzej Tarlecki, and Wiesław Pawłowski. Combining and rep-
resenting logical systems using model-theoretic parchments. In Francesco Parisi-
Presicce, editor,Recent Trends in Data Type Specification. Selected Papers from the
12th International Workshop on Specification of Abstract Data Types, Tarquinia,Lec-
ture Notes in Computer Science, volume 1376, pages 349–364. Springer, 1998.

MTW88. Bernhard M̈oller, Andrzej Tarlecki, and Martin Wirsing. Algebraic specifications of
reachable higher-order algebras. In Donald Sannella and Andrzej Tarlecki, editors,
Recent Trends in Data Type Specification. Selected Papers from the 5th Workshop on
Specification of Abstract Data Types, Gullane,Lecture Notes in Computer Science,
volume 332, pages 154–169. Springer, 1988.

Mus80. David Musser. On proving inductive properties of abstract data types. InProceedings
of the 7th ACM Symposium on Principles of Programming Languages, Las Vegas,
pages 154–162, 1980.

MW98. Alfio Martini and Uwe Wolter. A single perspective on arrows between institutions.
In Armando Haeberer, editor,Proceedings of the 7th International Conference on Al-
gebraic Methodology and Software Technology, Manaus,Lecture Notes in Computer
Science, volume 1548, pages 486–501. Springer, 1998.

Nel91. Greg Nelson, editor.Systems Programming in Modula-3. Prentice-Hall, 1991.
Nip86. Tobias Nipkow. Non-deterministic data types: Models and implementations.Acta

Informatica, 22(6):629–661, 1986.
NO88. Pilar Nivela and Fernando Orejas. Initial behaviour semantics for algebraic speci-

fications. In Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data
Type Specification. Selected Papers from the 5th Workshop on Specification of Ab-
stract Data Types, Gullane,Lecture Notes in Computer Science, volume 332, pages
184–207. Springer, 1988.

Nou81. Farshid Nourani. On induction for programming logic: Syntax, semantics, and induc-
tive closure.Bulletin of the European Association for Theoretical Computer Science,
13:51–64, 1981.

Oka98. Chris Okasaki.Purely Functional Data Structures. Cambridge University Press,
1998.

ONS93. Fernando Orejas, Marisa Navarro, and Ana Sánchez. Implementation and behavioural
equivalence: A survey. In Michel Bidoit and Christine Choppy, editors,Recent Trends
in Data Type Specification. Selected Papers from the 8th Workshop on Specification of
Abstract Data Types joint with the 3rdCOMPASSWorkshop, Dourdan,Lecture Notes
in Computer Science, volume 655, pages 93–125. Springer, 1993.

Ore83. Fernando Orejas. Characterizing composability of abstract implementations. In
Marek Karpinski, editor,Proceedings of the 1983 International Conference on Foun-
dations of Computation Theory, Borgholm,Lecture Notes in Computer Science, vol-
ume 158, pages 335–346. Springer, 1983.

Pad85. Peter Padawitz. Parameter preserving data type specifications. In Hartmut Ehrig,
Christiane Floyd, Maurice Nivat, and James Thatcher, editors,TAPSOFT’85: Pro-
ceedings of the International Joint Conference on Theory and Practice of Software
Development. Volume 2: Colloquium on Software Engineering, Berlin,Lecture Notes
in Computer Science, volume 186, pages 323–341. Springer, 1985.

Pad99. Peter Padawitz. Proof in flat specifications. In Egidio Astesiano, Hans-Jörg Kreowski,
and Bernd Krieg-Br̈uckner, editors,Algebraic Foundations of Systems Specification,
chapter 10, pages 321–384. Springer, 1999.

Pau87. Laurence Paulson.Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, 1987.

Pau96. Laurence Paulson.ML for the Working Programmer. Cambridge University Press,
second edition, 1996.

Paw96. Wiesław Pawłowski. Context institutions. In Magne Haveraaen, Olaf Owe, and Ole-
Johan Dahl, editors,Recent Trends in Data Type Specification. Selected Papers from

Page: 546 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

References 547

the 11th Workshop on Specification of Abstract Data Types, Oslo,Lecture Notes in
Computer Science, volume 1130, pages 436–457. Springer, 1996.

Pet10. Marius Petria.Generic Refinements for Behavioural Specifications. PhD thesis, Uni-
versity of Edinburgh, School of Informatics, 2010.

Pey03. Simon Peyton Jones, editor.Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, 2003.

Pho92. Wesley Phoa. An introduction to fibrations, topos theory, the effective topos and
modest sets. Technical Report ECS-LFCS-92-208, LFCS, Department of Computer
Science, University of Edinburgh, 1992.

Pie91. Benjamin C. Pierce.Basic Category Theory for Computer Scientists. MIT Press,
1991.

Plo77. Gordon D. Plotkin. LCF considered as a programming language.Theoretical Com-
puter Science, 5(3):223–255, 1977.

Poi86. Axel Poigńe. On specifications, theories, and models with higher types.Information
and Control, 68(1–3):1–46, 1986.

Poi88. Axel Poigńe. Foundations are rich institutions, but institutions are poor foundations.
In Hartmut Ehrig, Horst Herrlich, Hans-Jörg Kreowski, and Gerhard Preuß, editors,
Proceedings of the International Workshop on Categorical Methods in Computer Sci-
ence with Aspects from Topology, Berlin,Lecture Notes in Computer Science, volume
393, pages 82–101. Springer, 1988.

Poi90. Axel Poigńe. Parametrization for order-sorted algebraic specification.Journal of
Computer and System Sciences, 40:229–268, 1990.

Poi92. Axel Poigńe. Basic category theory. In Samson Abramsky, Dov Gabbay, and Tom
Maibaum, editors,Handbook of Logic in Computer Science. Volume 1 (Background:
Mathematical Structures), pages 413–640. Oxford University Press, 1992.

Pos47. Emil Post. Recursive unsolvability of a problem of Thue.Journal of Symbolic Logic,
12:1–11, 1947.

PS83. Helmuth Partsch and Ralf Steinbrüggen. Program transformation systems.ACM
Computing Surveys, 15(3):199–236, 1983.

PŞR09. Andrei Popescu, Traian Florin Şerbănuţ̆a, and Grigore Roşu. A semantic approach to
interpolation.Theoretical Computer Science, 410(12–13):1109–1128, 2009.

QG93. Xiaolei Qian and Allen Goldberg. Referential opacity in nondeterministic data re-
finement. ACM Letters on Programming Languages and Systems, 2(1–4):233–241,
1993.

Qia93. Zhenyu Qian. An algebraic semantics of higher-order types with subtypes.Acta
Informatica, 30(6):569–607, 1993.

RAC99. Gianna Reggio, Egidio Astesiano, and Christine Choppy. CASL-LTL: a CASL ex-
tension for dynamic systems — summary. Technical Report DISI-TR-99-34, DISI,
Universit̀a di Genova, 1999.

RB88. David Rydeheard and Rod Burstall.Computational Category Theory. Prentice Hall
International Series in Computer Science. Prentice Hall, 1988.

Rei80. Horst Reichel. Initially-restricting algebraic theories. In Piotr Dembiński, editor,
Proceedings of the 9th Symposium on Mathematical Foundations of Computer Sci-
ence, Lecture Notes in Computer Science, volume 88, pages 504–514, Rydzyna, 1980.
Springer.

Rei81. Horst Reichel. Behavioural equivalence — a unifying concept for initial and final
specification methods. InProceedings of the 3rd Hungarian Computer Science Con-
ference, pages 27–39, 1981.

Rei85. Horst Reichel. Behavioural validity of equations in abstract data types. InProceed-
ings of the Vienna Conference on Contributions to General Algebra, pages 301–324.
Teubner-Verlag, 1985.

Rei87. Horst Reichel.Initial Computability, Algebraic Specifications, and Partial Algebras.
Oxford University Press, 1987.

Page: 547 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

548 References

RG98. Grigore Roşu and Joseph A. Goguen. Hidden congruent deduction. In Ricardo Ca-
ferra and Gernot Salzer, editors,Proceedings of the 1998 Workshop on First-Order
Theorem Proving, Vienna, Lecture Notes in Artificial Intelligence, volume 1761,
pages 251–266. Springer, 1998.

RG00. Grigore Roşu and Joseph A. Goguen. On equational Craig interpolation.Journal of
Universal Computer Science, 6(1):194–200, 2000.

Rod91. Pieter Hendrik Rodenburg. A simple algebraic proof of the equational interpolation
theorem.Algebra Universalis, 28:48–51, 1991.

Rog06. Markus Roggenbach. CSP-CASL — a new integration of process algebra and alge-
braic specification.Theoretical Computer Science, 354(1):42–71, 2006.

Roş94. Grigore Roşu. The institution of order-sorted equational logic.Bulletin of the Euro-
pean Association for Theoretical Computer Science, 53:250–255, 1994.

Roş00. Grigore Roşu.Hidden Logic. PhD thesis, University of California at San Diego,
2000.

RRS00. Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML owner’s manual.
Technical report, Royal Veterinary and Agricultural University, Copenhagen, 2000.
Available fromhttp://www.itu.dk/people/sestoft/mosml/manual.
pdf .

RS63. Helena Rasiowa and Roman Sikorski.The Mathematics of Metamathematics. Num-
ber 41 in Monografie Matematyczne. Polish Scientific Publishers, 1963.

Rus98. Claudio Russo.Types for Modules. PhD thesis, University of Edinburgh, Depart-
ment of Computer Science, 1998. Also in:Electronic Notes in Theoretical Computer
Science, 60, 2003.

Rut00. Jan J.M.M. Rutten. Universal coalgebra: A theory of systems.Theoretical Computer
Science, 249(1):3–80, 2000.

San82. Donald Sannella.Semantics, Implementation and Pragmatics of Clear, a Program
Specification Language. PhD thesis, University of Edinburgh, Department of Com-
puter Science, 1982.

SB83. Donald Sannella and Rod Burstall. Structured theories in LCF. In Giorgio Ausiello
and Marco Protasi, editors,Proceedings of the 8th Colloquium on Trees in Algebra
and Programming, L’Aquila, Lecture Notes in Computer Science, volume 159, pages
377–391. Springer, 1983.

Sch86. David Schmidt.Denotational Semantics: A Methodology for Language Development.
Allyn and Bacon, 1986.

Sch87. Oliver Schoett.Data Abstraction and the Correctness of Modular Programs. PhD
thesis, University of Edinburgh, Department of Computer Science, 1987.

Sch90. Oliver Schoett. Behavioural correctness of data representations.Science of Computer
Programming, 14(1):43–57, 1990.

Sch92. Oliver Schoett. Two impossibility theorems on behaviour specification of abstract
data types.Acta Informatica, 29(6/7):595–621, 1992.

Sco76. Dana Scott. Data types as lattices.SIAM Journal of Computing, 5(3):522–587, 1976.
Sco04. Giuseppe Scollo. An institution isomorphism for planar graph colouring. In Rudolf

Berghammer, Bernhard M̈oller, and Georg Struth, editors,Relational and Kleene-
Algebraic Methods in Computer Science. Selected Papers from the 7th International
Seminar on Relational Methods in Computer Science and 2nd International Workshop
on Applications of Kleene Algebra, Bad Malente,Lecture Notes in Computer Science,
volume 3051, pages 252–264. Springer, 2004.

SCS94. Aḿılcar Sernadas, José F́elix Costa, and Cristina Sernadas. An institution of ob-
ject behaviour. In Hartmut Ehrig and Fernando Orejas, editors,Recent Trends in
Data Type Specification. Selected Papers from the 9th Workshop on Specification of
Abstract Data Types joint with the 4thCOMPASS Workshop, Caldes de Malavella,
Lecture Notes in Computer Science, volume 785, pages 337–350. Springer, 1994.

Sel72. Alan Selman. Completeness of calculi for axiomatically defined classes of algebras.
Algebra Universalis, 2:20–32, 1972.

Page: 548 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

http://www.itu.dk/people/sestoft/mosml/manual.pdf
http://www.itu.dk/people/sestoft/mosml/manual.pdf

References 549

SH00. Christopher A. Stone and Robert Harper. Deciding type equivalence in a language
with singleton kinds. InProceedings of the 27th ACM Symposium on Principles of
Programming Languages, Boston, pages 214–227, 2000.

Sha08. Stewart Shapiro. Classical logic. In Edward N. Zalta, editor,The Stan-
ford Encyclopedia of Philosophy. CSLI, Stanford University, fall 2008 edi-
tion, 2008. Available fromhttp://plato.stanford.edu/archives/
fall2008/entries/logic-classical/ .

SM09. Lutz Schr̈oder and Till Mossakowski. HASCASL: Integrated higher-order specifica-
tion and program development.Theoretical Computer Science, 410(12–13):1217–
1260, 2009.

Smi93. Douglas R. Smith. Constructing specification morphisms.Journal of Symbolic Com-
putation, 15(5/6):571–606, 1993.

Smi06. Douglas R. Smith. Composition by colimit and formal software development. In Ko-
kichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors,Algebra, Mean-
ing, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, Lecture Notes in Computer Science, volume 4060, pages 317–332.
Springer, 2006.

SML05. Lutz Schr̈oder, Till Mossakowski, and Christoph Lüth. Type class polymorphism
in an institutional framework. In José Fiadeiro, editor,Recent Trends in Algebraic
Development Techniques.. Selected Papers from the 17th International Workshop on
Algebraic Development Techniques, Barcelona,Lecture Notes in Computer Science,
volume 3423, pages 234–248. Springer, 2005.

Smo86. Gert Smolka. Order-sorted Horn logic: Semantics and deduction. Technical Report
SR-86-17, Universiẗat Kaiserslautern, Fachbereich Informatik, 1986.

SMT+05. Lutz Schr̈oder, Till Mossakowski, Andrzej Tarlecki, Bartek Klin, and Piotr Hoffman.
Amalgamation in the semantics of CASL. Theoretical Computer Science, 331(1):215–
247, 2005.

Spi92. J. Michael Spivey.The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, second edition, 1992.

SS93. Antonino Salibra and Guiseppe Scollo. A soft stairway to institutions. In Michel
Bidoit and Christine Choppy, editors,Recent Trends in Data Type Specification. Se-
lected Papers from the 8th Workshop on Specification of Abstract Data Types joint
with the 3rdCOMPASSWorkshop, Dourdan,Lecture Notes in Computer Science, vol-
ume 655, pages 310–329. Springer, 1993.

SS96. Antonino Salibra and Giuseppe Scollo. Interpolation and compactness in categories
of pre-institutions. Mathematical Structures in Computer Science, 6(3):261–286,
1996.

SST92. Donald Sannella, Stefan Sokołowski, and Andrzej Tarlecki. Toward formal devel-
opment of programs from algebraic specifications: Parameterisation revisited.Acta
Informatica, 29(8):689–736, 1992.

ST85. Donald Sannella and Andrzej Tarlecki. Program specification and development in
Standard ML. InProceedings of the 12th ACM Symposium on Principles of Pro-
gramming Languages, New Orleans, pages 67–77, 1985.

ST86. Donald Sannella and Andrzej Tarlecki. Extended ML: An institution-independent
framework for formal program development. In David H. Pitt, Samson Abramsky,
Axel Poigńe, and David E. Rydeheard, editors,Proceedings of the Tutorial and Work-
shop on Category Theory and Computer Programming, Guildford,Lecture Notes in
Computer Science, volume 240, pages 364–389. Springer, 1986.

ST87. Donald Sannella and Andrzej Tarlecki. On observational equivalence and algebraic
specification.Journal of Computer and System Sciences, 34:150–178, 1987.

ST88a. Donald Sannella and Andrzej Tarlecki. Specifications in an arbitrary institution.In-
formation and Computation, 76(2/3):165–210, 1988.

ST88b. Donald Sannella and Andrzej Tarlecki. Toward formal development of programs from
algebraic specifications: Implementations revisited.Acta Informatica, 25:233–281,
1988.

Page: 549 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

http://plato.stanford.edu/archives/fall2008/entries/logic-classical/
http://plato.stanford.edu/archives/fall2008/entries/logic-classical/

550 References

ST89. Donald Sannella and Andrzej Tarlecki. Toward formal development of ML programs:
Foundations and methodology. In Josep Dı́az and Fernando Orejas, editors,TAP-
SOFT’89: Proceedings of the International Joint Conference on Theory and Practice
of Software Development. Volume 2: Advanced Seminar on Foundations of Innovative
Software Development II and Colloquium on Current Issues in Programming Lan-
guages, Barcelona,Lecture Notes in Computer Science, volume 352, pages 375–389.
Springer, 1989.

ST97. Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specification
and program development.Formal Aspects of Computing, 9:229–269, 1997.

ST04. Donald Sannella and Andrzej Tarlecki, editors. CASL semantics. In[Mos04]. 2004.
ST06. Donald Sannella and Andrzej Tarlecki. Horizontal composability revisited. In Ko-

kichi Futatsugi, Jean-Pierre Jouannaud, and José Meseguer, editors,Algebra, Mean-
ing and Computation: Essays Dedicated to Joseph A. Goguen on the Occasion of His
65th Birthday, Lecture Notes in Computer Science, volume 4060, pages 296–316.
Springer, 2006.

ST08. Donald Sannella and Andrzej Tarlecki. Observability concepts in abstract data
type specification, 30 years later. In Pierpaolo Degano, Rocco de Nicola, and José
Meseguer, editors,Concurrency, Graphs and Models: Essays Dedicated to Ugo Mon-
tanari on the Occasion of his 65th Birthday, Lecture Notes in Computer Science.
Springer, 2008.

Str67. Christopher Strachey. Fundamental concepts in programming languages. InNATO
Summer School in Programming, Copenhagen. 1967. Also in:Higher-Order and
Symbolic Computation13(1–2):11–49, 2000.

SU06. Morten H. Sørensen and Paweł Urzyczyn.Lectures on the Curry-Howard Isomor-
phism. Number 149 in Studies in Logic and the Foundations of Mathematics. Elsevier
Science, 2006.

SW82. Donald Sannella and Martin Wirsing. Implementation of parameterised specifica-
tions. In Mogens Nielsen and Erik Meineche Schmidt, editors,Proceeding of the
9th International Colloquium on Automata, Languages and Programming, Aarhus,
Lecture Notes in Computer Science, volume 140, pages 473–488. Springer, 1982.

SW83. Donald Sannella and Martin Wirsing. A kernel language for algebraic specification
and implementation. In Marek Karpinski, editor,Proceedings of the 1983 Interna-
tional Conference on Foundations of Computation Theory, Borgholm,Lecture Notes
in Computer Science, volume 158, pages 413–427. Springer, 1983.

SW99. Donald Sannella and Martin Wirsing. Specification languages. In Egidio Astesiano,
Hans-J̈org Kreowski, and Bernd Krieg-Brückner, editors,Algebraic Foundations of
Systems Specification, chapter 8, pages 243–272. Springer, 1999.

Tar85. Andrzej Tarlecki. On the existence of free models in abstract algebraic institutions.
Theoretical Computer Science, 37(3):269–304, 1985.

Tar86a. Andrzej Tarlecki. Bits and pieces of the theory of institutions. In David H. Pitt,
Samson Abramsky, Axel Poigné, and David E. Rydeheard, editors,Proceedings of the
Tutorial and Workshop on Category Theory and Computer Programming, Guildford,
Lecture Notes in Computer Science, volume 240, pages 334–360. Springer, 1986.

Tar86b. Andrzej Tarlecki. Quasi-varieties in abstract algebraic institutions.Journal of Com-
puter and System Sciences, 33(3):333–360, 1986.

Tar87. Andrzej Tarlecki. Institution representation. Unpublished note, Dept. of Computer
Science, University of Edinburgh, 1987.

Tar96. Andrzej Tarlecki. Moving between logical systems. In Magne Haveraaen, Olaf Owe,
and Ole-Johan Dahl, editors,Recent Trends in Data Type Specification. Selected Pa-
pers from the 11th Workshop on Specification of Abstract Data Types, Oslo,Lecture
Notes in Computer Science, volume 1130, pages 478–502. Springer, 1996.

Tar99. Andrzej Tarlecki. Institutions: An abstract framework for formal specification. In
Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner, editors,Algebraic
Foundations of Systems Specification, chapter 4, pages 105–130. Springer, 1999.

Page: 550 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

References 551

Tar00. Andrzej Tarlecki. Towards heterogeneous specifications. In Dov Gabbay and Maarten
de Rijke, editors,Frontiers of Combining Systems 2, Studies in Logic and Computa-
tion, pages 337–360. Research Studies Press, 2000.

TBG91. Andrzej Tarlecki, Rod M. Burstall, and Joseph A. Goguen. Some fundamental alge-
braic tools for the semantics of computation. Part 3: Indexed categories.Theoretical
Computer Science, 91(2):239–264, 1991.

Ter03. Terese.Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science,
volume 55. Cambridge University Press, 2003.

Tho89. Simon Thompson. A logic for Miranda.Formal Aspects of Computing, 1(4):339–365,
1989.

TM87. Władysław M. Turski and Thomas S.E. Maibaum.Specification of Computer Pro-
grams. Addison-Wesley, 1987.

Tra93. Will Tracz. Parametrized programming in LILEANNA. InProceedings of the 1993
ACM/SIGAPP Symposium on Applied Computing, Indianapolis, pages 77–86, 1993.

TWW82. James Thatcher, Eric Wagner, and Jesse Wright. Data type specification: Parameteri-
zation and the power of specification techniques.ACM Transactions on Programming
Languages and Systems, 4(4):711–732, 1982.

Vra88. Jos L.M. Vrancken. The algebraic specification of semi-computable data types. In
Donald Sannella and Andrzej Tarlecki, editors,Recent Trends in Data Type Specifica-
tion. Selected Papers from the 5th Workshop on Specification of Abstract Data Types,
Gullane,Lecture Notes in Computer Science, volume 332, pages 249–259. Springer,
1988.

Wad89. Philip Wadler. Theorems for free! InProceedings of the 4th International ACM Con-
ference on Functional Programming Languages and Computer Architecture, London,
pages 347–359, 1989.

Wan79. Mitchell Wand. Final algebra semantics and data type extensions.Journal of Com-
puter and System Sciences, 19:27–44, 1979.

Wan82. Mitchell Wand. Specifications, models, and implementations of data abstractions.
Theoretical Computer Science, 20(1):3–32, 1982.

WB82. Martin Wirsing and Manfred Broy. An analysis of semantic models for algebraic
specifications. In Manfred Broy and Gunther Schmidt, editors,Theoretical Foun-
dations of Programming Methodology: Lecture Notes of an International Summer
School, Marktoberdorf 1981, pages 351–416. Reidel, 1982.

WB89. Martin Wirsing and Manfred Broy. A modular framework for specification and imple-
mentation. In Josep D́ıaz and Fernando Orejas, editors,TAPSOFT’89: Proceedings of
the International Joint Conference on Theory and Practice of Software Development.
Volume 1: Advanced Seminar on Foundations of Innovative Software Development I
and Colloquium on Trees in Algebra and Programming, Barcelona,Lecture Notes in
Computer Science, volume 351, pages 42–73. Springer, 1989.

WE87. Eric G. Wagner and Hartmut Ehrig. Canonical constraints for parameterized data
types.Theoretical Computer Science, 50:323–349, 1987.

Wec92. Wolfgang Wechler.Universal Algebra for Computer Scientists, EATCS Monographs
on Theoretical Computer Science, volume 25. Springer, 1992.

Wik. Wikipedia. Hash table. Available fromhttp://en.wikipedia.org/wiki/
Hash_table .

Wir82. Martin Wirsing. Structured algebraic specifications. InProceedings of the AFCET
Symposium on Mathematics for Computer Science, Paris, pages 93–107, 1982.

Wir86. Martin Wirsing. Structured algebraic specifications: A kernel language.Theoretical
Computer Science, 42(2):123–249, 1986.

Wir90. Martin Wirsing. Algebraic specification. In Jan van Leeuwen, editor,Handbook
of Theoretical Computer Science. Volume B (Formal Models and Semantics), pages
675–788. North-Holland and MIT Press, 1990.

Wir93. Martin Wirsing. Structured specifications: Syntax, semantics and proof calculus. In
Friedrich L. Bauer, Wilfried Brauer, and Helmut Schwichtenberg, editors,Logic and

Page: 551 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Hash_table

552 References

Algebra of Specification: Proceedings of the NATO Advanced Study Institute, Mark-
toberdorf 1991, pages 411–442. Springer, 1993.

WM97. Michal Walicki and Sigurd Meldal. Algebraic approches to nondeterminism: An
overview.ACM Computing Surveys, 29(1):30–81, 1997.

Zil74. Steven Zilles. Abstract specification of data types. Technical Report 119, Computa-
tion Structures Group, Massachusetts Institute of Technology, 1974.

Zuc99. Elena Zucca. From static to dynamic abstract data-types: An institution transforma-
tion. Theoretical Computer Science, 216(1–2):109–157, 1999.

Page: 552 job: root macro: svmono.cls date/time: 29-Sep-2010/18:05

	Category theory
	Introducing categories
	Categories
	Constructing categories
	Category-theoretic definitions

	Limits and colimits
	Initial and terminal objects
	Products and coproducts
	Equalisers and coequalisers
	Pullbacks and pushouts
	The general situation

	Factorisation systems
	Functors and natural transformations
	Functors
	Natural transformations
	Constructing categories, revisited

	Adjoints
	Free objects
	Left adjoints
	Adjunctions

	Bibliographical remarks

	References

