Natural transformations

Natural transformations

Given two parallel functors $\mathbf{F}, \mathbf{G}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$,

$\mathbf{K :}$	$\mathbf{K}^{\prime}:$	
A	$\mathbf{F}(A)$	$\mathbf{G}(A)$
B	$\mathbf{F}(B)$	$\mathbf{G}(B)$

Natural transformations

Given two parallel functors $\mathbf{F}, \mathbf{G}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, a natural transformation from \mathbf{F} to \mathbf{G}

$$
\tau: \mathbf{F} \rightarrow \mathbf{G}
$$

$\mathbf{K :}$	$\mathbf{K}^{\prime}:$	
A	$\mathbf{F}(A)$	$\mathbf{G}(A)$
B	$\mathbf{F}(B)$	$\mathbf{G}(B)$

Natural transformations

Given two parallel functors $\mathbf{F}, \mathbf{G}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, a natural transformation from \mathbf{F} to \mathbf{G}

$$
\tau: \mathbf{F} \rightarrow \mathbf{G}
$$

is a family $\tau=\left\langle\tau_{A}: \mathbf{F}(A) \rightarrow \mathbf{G}(A)\right\rangle_{A \in|\mathbf{K}|}$ of \mathbf{K}^{\prime}-morphisms

$$
\begin{array}{rl}
\mathbf{K}: & \begin{array}{l}
\mathbf{K}^{\prime}: \\
A
\end{array} \\
& \mathbf{F}(A) \xrightarrow{\tau_{A}} \mathbf{G}(A) \\
B & \mathbf{F}(B) \xrightarrow{\tau_{B}} \mathbf{G}(B)
\end{array}
$$

Natural transformations

Given two parallel functors $\mathbf{F}, \mathbf{G}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, a natural transformation from \mathbf{F} to \mathbf{G}

$$
\tau: \mathbf{F} \rightarrow \mathbf{G}
$$

is a family $\tau=\left\langle\tau_{A}: \mathbf{F}(A) \rightarrow \mathbf{G}(A)\right\rangle_{A \in|\mathbf{K}|}$ of \mathbf{K}^{\prime}-morphisms such that for all $f: A \rightarrow B$ in \mathbf{K} (with $A, B \in|\mathbf{K}|$),

$$
\begin{gathered}
\mathbf{K}: \\
A \\
f \mid \\
\dagger \\
\forall
\end{gathered}
$$

\mathbf{K}^{\prime} :
$\mathbf{F}(A) \xrightarrow{\tau_{A}} \mathbf{G}(A)$
$\mathbf{F}(B) \xrightarrow{\tau_{B}} \mathbf{G}(B)$

Natural transformations

Given two parallel functors $\mathbf{F}, \mathbf{G}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, a natural transformation from \mathbf{F} to \mathbf{G}

$$
\tau: \mathbf{F} \rightarrow \mathbf{G}
$$

is a family $\tau=\left\langle\tau_{A}: \mathbf{F}(A) \rightarrow \mathbf{G}(A)\right\rangle_{A \in|\mathbf{K}|}$ of \mathbf{K}^{\prime}-morphisms such that for all $f: A \rightarrow B$ in \mathbf{K} (with $A, B \in|\mathbf{K}|), \quad \tau_{A} ; \mathbf{G}(f)=\mathbf{F}(f) ; \tau_{B}$

Natural transformations

Given two parallel functors $\mathbf{F}, \mathbf{G}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, a natural transformation from \mathbf{F} to \mathbf{G}

$$
\tau: \mathbf{F} \rightarrow \mathbf{G}
$$

is a family $\tau=\left\langle\tau_{A}: \mathbf{F}(A) \rightarrow \mathbf{G}(A)\right\rangle_{A \in|\mathbf{K}|}$ of \mathbf{K}^{\prime}-morphisms such that for all $f: A \rightarrow B$ in \mathbf{K} (with $A, B \in|\mathbf{K}|), \quad \tau_{A} ; \mathbf{G}(f)=\mathbf{F}(f) ; \tau_{B}$

Then, τ is a natural isomorphism if for all $A \in|\mathbf{K}|, \tau_{A}$ is an isomorphism.

K:
A
f
f
\square
B

Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$

Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$
- singleton functions: sing: $\mathbf{I d}_{\text {Set }} \rightarrow \mathbf{P}(:$ Set \rightarrow Set $)$, where for all $X \in \mid$ Set \mid, $\operatorname{sing}_{X}: X \rightarrow \mathbf{P}(X)$ is a function defined by $\operatorname{sing}_{X}(x)=\{x\}$ for $x \in X$.

Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$
- singleton functions: sing: $\mathbf{I d}_{\text {Set }} \rightarrow \mathbf{P}(:$ Set \rightarrow Set $)$, where for all $X \in \mid$ Set \mid, $\operatorname{sing}_{X}: X \rightarrow \mathbf{P}(X)$ is a function defined by $\operatorname{sing}_{X}(x)=\{x\}$ for $x \in X$.

$$
X \quad \mathbf{I d}_{\mathbf{S e t}}(X) \xrightarrow{\operatorname{sing}_{X}} \mathbf{P}(X)
$$

$$
Y \quad \mathbf{I d}_{\mathbf{S e t}}(Y) \xrightarrow{\operatorname{sing}_{Y}} \mathbf{P}(Y)
$$

Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$
- singleton functions: sing: $\mathbf{I d}_{\text {Set }} \rightarrow \mathbf{P}(:$ Set \rightarrow Set $)$, where for all $X \in \mid$ Set \mid, $\operatorname{sing}_{X}: X \rightarrow \mathbf{P}(X)$ is a function defined by $\operatorname{sing}_{X}(x)=\{x\}$ for $x \in X$.

Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$
- singleton functions: sing: $\mathbf{I d}_{\text {Set }} \rightarrow \mathbf{P}(:$ Set \rightarrow Set $)$, where for all $X \in \mid$ Set \mid, $\operatorname{sing}_{X}: X \rightarrow \mathbf{P}(X)$ is a function defined by $\operatorname{sing}_{X}(x)=\{x\}$ for $x \in X$.

For all $f: X \rightarrow Y$, $\operatorname{sing}_{X} ; \mathbf{P}(f)=\mathbf{I d}_{\text {Set }}(f) ; \operatorname{sing}_{Y}$, i.e. $\operatorname{sing}_{X} ; \vec{f}=f ; \operatorname{sing}_{Y}$,

Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$
- singleton functions: sing: $\mathbf{I d}_{\text {Set }} \rightarrow \mathbf{P}(:$ Set \rightarrow Set $)$, where for all $X \in \mid$ Set \mid, $\operatorname{sing}_{X}: X \rightarrow \mathbf{P}(X)$ is a function defined by $\operatorname{sing}_{X}(x)=\{x\}$ for $x \in X$.

For all $f: X \rightarrow Y$, $\operatorname{sing}_{X} ; \mathbf{P}(f)=\mathbf{I d}_{\text {Set }}(f) ; \operatorname{sing}_{Y}$, i.e. $\operatorname{sing}_{X} ; \vec{f}=f ; \operatorname{sing}_{Y}$, i.e. for $x \in X, \vec{f}(\{x\})=\{f(x)\}$.

Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$
- singleton functions: sing: $\mathbf{I d}_{\text {Set }} \rightarrow \mathbf{P}(:$ Set \rightarrow Set $)$, where for all $X \in \mid$ Set \mid, $\operatorname{sing}_{X}: X \rightarrow \mathbf{P}(X)$ is a function defined by $\operatorname{sing}_{X}(x)=\{x\}$ for $x \in X$.
- singleton-list functions: sing ${ }^{\text {List }}: \mathbf{I d}_{\text {Set }} \rightarrow \mid$ List $\mid(:$ Set \rightarrow Set $)$, where \mid List $|=\mathbf{L i s t} ;|-|: \operatorname{Set}(\rightarrow$ Monoid $) \rightarrow \mathbf{S e t}$, and for all $X \in| \operatorname{Set} \mid$, $\sin g_{X}^{\text {List }}: X \rightarrow X^{*}$ is a function defined by $\operatorname{sing} g_{X}^{\text {List }}(x)=\langle x\rangle$ for $x \in X$

Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$
- singleton functions: sing: $\mathbf{I d}_{\text {Set }} \rightarrow \mathbf{P}(:$ Set \rightarrow Set $)$, where for all $X \in \mid$ Set \mid, $\operatorname{sing}_{X}: X \rightarrow \mathbf{P}(X)$ is a function defined by $\operatorname{sing}_{X}(x)=\{x\}$ for $x \in X$.
- singleton-list functions: sing ${ }^{\text {List }}: \mathbf{I d}_{\text {Set }} \rightarrow \mid$ List $\mid(:$ Set \rightarrow Set $)$, where \mid List $|=\mathbf{L i s t} ;|-|: \operatorname{Set}(\rightarrow$ Monoid $) \rightarrow \mathbf{S e t}$, and for all $X \in| \operatorname{Set} \mid$, $\operatorname{sing}{ }_{X}^{\text {List }}: X \rightarrow X^{*}$ is a function defined by $\operatorname{sing}{ }_{X}^{\text {List }}(x)=\langle x\rangle$ for $x \in X$
- append functions: append: \mid List $|; \mathbf{C P} \rightarrow|$ List \mid (: Set \rightarrow Set), where for all $X \in|\operatorname{Set}|$, append $_{X}:\left(X^{*} \times X^{*}\right) \rightarrow X^{*}$ is the usual append function (list concatenation) polymorphic functions between algebraic types

Examples

- identity transformations: $i d_{\mathbf{F}}: \mathbf{F} \rightarrow \mathbf{F}$, where $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$, for all objects $A \in|\mathbf{K}|,\left(i d_{\mathbf{F}}\right)_{A}=i d_{A}: \mathbf{F}(A) \rightarrow \mathbf{F}(A)$
- singleton functions: sing: $\mathbf{I d}_{\text {Set }} \rightarrow \mathbf{P}(:$ Set \rightarrow Set $)$, where for all $X \in \mid$ Set \mid, $\operatorname{sing}_{X}: X \rightarrow \mathbf{P}(X)$ is a function defined by $\operatorname{sing}_{X}(x)=\{x\}$ for $x \in X$.
- singleton-list functions: sing ${ }^{\text {List }}: \mathbf{I d}_{\text {Set }} \rightarrow \mid$ List $\mid(:$ Set \rightarrow Set $)$, where \mid List $|=\mathbf{L i s t} ;|-|: \operatorname{Set}(\rightarrow$ Monoid $) \rightarrow \mathbf{S e t}$, and for all $X \in| \operatorname{Set} \mid$, $\operatorname{sing}_{X}^{\text {List }}: X \rightarrow X^{*}$ is a function defined by $\operatorname{sing}_{X}^{\text {List }}(x)=\langle x\rangle$ for $x \in X$
- append functions: append: \mid List $|; \mathbf{C P} \rightarrow|$ List \mid (: Set \rightarrow Set), where for all $X \in|\operatorname{Set}|$, append $_{X}:\left(X^{*} \times X^{*}\right) \rightarrow X^{*}$ is the usual append function (list concatenation) polymorphic functions between algebraic types

Polymorphic functions

Work out the following generalisation of the last two examples:

Polymorphic functions

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_{1} \ldots \alpha_{n} \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket$: Set $^{n} \rightarrow$ Set

Polymorphic functions

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_{1} \ldots \alpha_{n} \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket:$ Set $^{n} \rightarrow$ Set
- $\llbracket \alpha_{i} \rrbracket\left(X_{1}, \ldots, X_{n}\right)=X_{i}$
- 【int】 $\left(X_{1}, \ldots, X_{n}\right)=\{\ldots,-2,-1,0,1,2, \ldots\}$
$\cdot \llbracket T_{1} \times T_{2} \rrbracket\left(X_{1}, \ldots, X_{n}\right)=\llbracket T_{1} \rrbracket\left(X_{1}, \ldots, X_{n}\right) \times \llbracket T_{2} \rrbracket\left(X_{1}, \ldots, X_{n}\right)$
$\cdot \llbracket T_{1}+T_{2} \rrbracket\left(X_{1}, \ldots, X_{n}\right)=\llbracket T_{1} \rrbracket\left(X_{1}, \ldots, X_{n}\right)+\llbracket T_{2} \rrbracket\left(X_{1}, \ldots, X_{n}\right)$
- ... recursive type definitions work as well. . .

Polymorphic functions

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_{1} \ldots \alpha_{n} \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket:$ Set $^{n} \rightarrow$ Set
- argue that in a representative subset of Standard ML, for each polymorphic expression $E: \forall \alpha_{1} \ldots \alpha_{n} \cdot T \rightarrow T^{\prime}$ its semantics is a natural transformation $\llbracket E \rrbracket: \llbracket T \rrbracket \rightarrow \llbracket T^{\prime} \rrbracket$

Polymorphic functions

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_{1} \ldots \alpha_{n} \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket:$ Set $^{n} \rightarrow$ Set
- argue that in a representative subset of Standard ML, for each polymorphic expression $E: \forall \alpha_{1} \ldots \alpha_{n} \cdot T \rightarrow T^{\prime}$ its semantics is a natural transformation $\llbracket E \rrbracket: \llbracket T \rrbracket \rightarrow \llbracket T^{\prime} \rrbracket$
- by induction on the structure of well-typed expressions

Polymorphic functions

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_{1} \ldots \alpha_{n} \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket:$ Set $^{n} \rightarrow$ Set
- argue that in a representative subset of Standard ML, for each polymorphic expression $E: \forall \alpha_{1} \ldots \alpha_{n} \cdot T \rightarrow T^{\prime}$ its semantics is a natural transformation $\llbracket E \rrbracket: \llbracket T \rrbracket \rightarrow \llbracket T^{\prime} \rrbracket$
- Then for $f_{1}: X_{1} \rightarrow Y_{1}, \ldots, f_{n}: X_{n} \rightarrow Y_{n}:$

$$
\llbracket T \rrbracket\left(f_{1}, \ldots, f_{n}\right) ; \llbracket E \rrbracket_{\left\langle Y_{1}, \ldots, Y_{n}\right\rangle}=\llbracket E \rrbracket_{\left\langle X_{1}, \ldots, X_{n}\right\rangle} ; \llbracket T^{\prime} \rrbracket\left(f_{1}, \ldots, f_{n}\right)
$$

Polymorphic functions

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_{1} \ldots \alpha_{n} \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket:$ Set $^{n} \rightarrow \mathbf{S e t}$
- argue that in a representative subset of Standard ML, for each polymorphic expression $E: \forall \alpha_{1} \ldots \alpha_{n} \cdot T \rightarrow T^{\prime}$ its semantics is a natural transformation $\llbracket E \rrbracket: \llbracket T \rrbracket \rightarrow \llbracket T^{\prime} \rrbracket$
- Then for $f_{1}: X_{1} \rightarrow Y_{1}, \ldots, f_{n}: X_{n} \rightarrow Y_{n}:$

$$
\llbracket T \rrbracket\left(f_{1}, \ldots, f_{n}\right) ; \llbracket E \rrbracket_{\left\langle Y_{1}, \ldots, Y_{n}\right\rangle}=\llbracket E \rrbracket_{\left\langle X_{1}, \ldots, X_{n}\right\rangle} ; \llbracket T^{\prime} \rrbracket\left(f_{1}, \ldots, f_{n}\right)
$$

For instance, for rev: α list $\rightarrow \alpha$ list, even : int \rightarrow bool and l : int list:

$$
\operatorname{rev}\left(\operatorname{even}^{*}(l)\right)=\operatorname{even}^{*}(\operatorname{rev}(l))
$$

Polymorphic functions

Work out the following generalisation of the last two examples:

- for each algebraic type scheme $\forall \alpha_{1} \ldots \alpha_{n} \cdot T$, built in Standard ML using at least products and algebraic data types (no function types though), define the corresponding functor $\llbracket T \rrbracket:$ Set $^{n} \rightarrow$ Set
- argue that in a representative subset of Standard ML, for each polymorphic expression $E: \forall \alpha_{1} \ldots \alpha_{n} \cdot T \rightarrow T^{\prime}$ its semantics is a natural transformation $\llbracket E \rrbracket: \llbracket T \rrbracket \rightarrow \llbracket T^{\prime} \rrbracket$
- Then for $f_{1}: X_{1} \rightarrow Y_{1}, \ldots, f_{n}: X_{n} \rightarrow Y_{n}:$

$$
\llbracket T \rrbracket\left(f_{1}, \ldots, f_{n}\right) ; \llbracket E \rrbracket_{\left\langle Y_{1}, \ldots, Y_{n}\right\rangle}=\llbracket E \rrbracket_{\left\langle X_{1}, \ldots, X_{n}\right\rangle} ; \llbracket T^{\prime} \rrbracket\left(f_{1}, \ldots, f_{n}\right)
$$

For instance, for rev: α list $\rightarrow \alpha$ list, even : int \rightarrow bool and l : int list:

$$
\operatorname{rev}\left(\operatorname{even}^{*}(l)\right)=\operatorname{even}^{*}(\operatorname{rev}(l))
$$

Theorems for free!
(see Wadler 89)

Yoneda lemma

Yoneda lemma

Given a locally small category \mathbf{K}, functor $\mathbf{F}: \mathbf{K} \rightarrow$ Set and object $A \in|\mathbf{K}|$:

Yoneda lemma

Given a locally small category \mathbf{K}, functor $\mathbf{F}: \mathbf{K} \rightarrow$ Set and object $A \in|\mathbf{K}|$:

$$
\operatorname{Nat}\left(\operatorname{Hom}_{\mathbf{K}}\left(A,,_{-}\right), \mathbf{F}\right) \cong \mathbf{F}(A)
$$

Yoneda lemma

Given a locally small category \mathbf{K}, functor $\mathbf{F}: \mathbf{K} \rightarrow$ Set and object $A \in|\mathbf{K}|$:

$$
\operatorname{Nat}\left(\operatorname{Hom}_{\mathbf{K}}(A,-), \mathbf{F}\right) \cong \mathbf{F}(A)
$$

> natural transformations from $\mathbf{H o m}_{\mathbf{K}}(A,-)$ to \mathbf{F}, between functors from \mathbf{K} to Set, are given exactly by the elements of the set $\mathbf{F}(A)$

Yoneda lemma

Given a locally small category \mathbf{K}, functor $\mathbf{F}: \mathbf{K} \rightarrow$ Set and object $A \in|\mathbf{K}|$:

$$
\operatorname{Nat}\left(\operatorname{Hom}_{\mathbf{K}}(A,-), \mathbf{F}\right) \cong \mathbf{F}(A)
$$

natural transformations from $\operatorname{Hom}_{\mathbf{K}}\left(A,,^{\prime}\right)$ to \mathbf{F}, between functors from \mathbf{K} to Set, are given exactly by the elements of the set $\mathbf{F}(A)$

EXERCISES:

- Dualise: for G: K ${ }^{o p} \rightarrow$ Set,

Yoneda lemma

Given a locally small category \mathbf{K}, functor $\mathbf{F}: \mathbf{K} \rightarrow$ Set and object $A \in|\mathbf{K}|$:

$$
\operatorname{Nat}\left(\operatorname{Hom}_{\mathbf{K}}(A,-), \mathbf{F}\right) \cong \mathbf{F}(A)
$$

natural transformations from $\mathbf{H o m}_{\mathbf{K}}\left(A,,_{-}\right)$to \mathbf{F}, between functors from \mathbf{K} to Set, are given exactly by the elements of the set $\mathbf{F}(A)$

EXERCISES:

- Dualise: for G: K ${ }^{o p} \rightarrow$ Set,

$$
N a t\left(\operatorname{Hom}_{\mathbf{K}}(-, A), \mathbf{G}\right) \cong \mathbf{G}(A)
$$

Yoneda lemma

Given a locally small category \mathbf{K}, functor $\mathbf{F}: \mathbf{K} \rightarrow$ Set and object $A \in|\mathbf{K}|$:

$$
\operatorname{Nat}\left(\operatorname{Hom}_{\mathbf{K}}(A,-), \mathbf{F}\right) \cong \mathbf{F}(A)
$$

natural transformations from $\mathbf{H o m}_{\mathbf{K}}\left(A,_{-}\right)$to \mathbf{F}, between functors from \mathbf{K} to Set, are given exactly by the elements of the set $\mathbf{F}(A)$

EXERCISES:

- Dualise: for G: K ${ }^{o p} \rightarrow$ Set,

$$
N a t\left(\operatorname{Hom}_{\mathbf{K}}(-, A), \mathbf{G}\right) \cong \mathbf{G}(A)
$$

- Characterise all natural transformations from $\operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right)$to $\operatorname{Hom}_{\mathbf{K}}\left(B,{ }_{-}\right)$, for all objects $A, B \in|\mathbf{K}|$.

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$,

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. Note: $\mathbf{F}(f): \mathbf{F}(A) \rightarrow \mathbf{F}(B)$ in Set, so $\mathbf{F}(f)(a) \in \mathbf{F}(B)$.

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$

K:

Set:

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,

K:

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$, $\mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)$

K:
B
g
\dagger
C

Set:

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$, $\mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a))$ K:
B

C

Set:

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,

$$
\begin{gathered}
\mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a)) \\
=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)
\end{gathered}
$$

K:
B
g
\dagger
C

Set:

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,

$$
\begin{gathered}
\mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a)) \\
=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)
\end{gathered}
$$

$$
=\tau_{C}^{a}\left(\operatorname{Hom}_{\mathbf{K}}(A, g)(f)\right)
$$

K:
B

C

Set:
$\mathbf{K}(A, B) \xrightarrow{\tau_{B}^{a}} \mathbf{F}(B)$

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,

$$
\begin{aligned}
& \mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a)) \\
& \quad=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)
\end{aligned}
$$

$$
=\tau_{C}^{a}\left(\operatorname{Hom}_{\mathbf{K}}(A, g)(f)\right)
$$

Then $\tau_{A}^{a}\left(i d_{A}\right)=a$,

K:
B
g
\downarrow
C

Set:

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,

$$
\begin{aligned}
& \mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a)) \\
& \quad=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)
\end{aligned}
$$

$$
=\tau_{C}^{a}\left(\operatorname{Hom}_{\mathbf{K}}(A, g)(f)\right)
$$

Then $\tau_{A}^{a}\left(i d_{A}\right)=a$, and so for distinct $a, a^{\prime} \in \mathbf{F}(A), \tau^{a}$ and $\tau^{a^{\prime}}$ differ.

$$
\mathbf{K}:
$$

B
\dagger
C

Set:
Set.
$\mathbf{K}(A, B) \xrightarrow{\tau_{B}^{a}} \mathbf{F}(B)$

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,

$$
\begin{aligned}
& \mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a)) \\
& \quad=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)
\end{aligned}
$$

$$
=\tau_{C}^{a}\left(\operatorname{Hom}_{\mathbf{K}}(A, g)(f)\right)
$$

Then $\tau_{A}^{a}\left(i d_{A}\right)=a$, and so for distinct $a, a^{\prime} \in \mathbf{F}(A), \tau^{a}$ and $\tau^{a^{\prime}}$ differ.

$$
\mathbf{K}:
$$

K:
B
g
\dagger
C

Set:
$\mathbf{K}(A, B) \xrightarrow{\tau_{B}^{a}} \mathbf{F}(B)$

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,
$\mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a))$
$=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)$
$=\tau_{C}^{a}\left(\operatorname{Hom}_{\mathbf{K}}(A, g)(f)\right)$
Then $\tau_{A}^{a}\left(i d_{A}\right)=a$, and so for distinct $a, a^{\prime} \in \mathbf{F}(A), \tau^{a}$ and $\tau^{a^{\prime}}$ differ.

K:

Set:
$\mathbf{K}(A, B) \xrightarrow{\tau_{B}^{a}} \mathbf{F}(B)$

- If $\tau: \operatorname{Hom}_{\mathbf{K}}\left(A,{ }_{-}\right) \rightarrow \mathbf{F}$ is a natural transformation

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,
$\mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a))$
$=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)$
$=\tau_{C}^{a}\left(\operatorname{Hom}_{\mathbf{K}}(A, g)(f)\right)$
Then $\tau_{A}^{a}\left(i d_{A}\right)=a$, and so for distinct $a, a^{\prime} \in \mathbf{F}(A), \tau^{a}$ and $\tau^{a^{\prime}}$ differ.

K:

C

Set:
$\mathbf{K}(A, B) \xrightarrow{\tau_{B}^{a}} \mathbf{F}(B)$

- If $\tau: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$ is a natural transformation then $\tau=\tau^{a}$, where we put $a=\tau_{A}\left(i d_{A}\right)$,

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,
$\mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a))$
$=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)$
$=\tau_{C}^{a}\left(\operatorname{Hom}_{\mathbf{K}}(A, g)(f)\right)$
Then $\tau_{A}^{a}\left(i d_{A}\right)=a$, and so for distinct $a, a^{\prime} \in \mathbf{F}(A), \tau^{a}$ and $\tau^{a^{\prime}}$ differ.

K:

C

Set:
$\mathbf{K}(A, B) \xrightarrow{\tau_{B}^{a}} \mathbf{F}(B)$

- If $\tau: \operatorname{Hom}_{\mathbf{K}}\left(A, _\right) \rightarrow \mathbf{F}$ is a natural transformation then $\tau=\tau^{a}$, where we put $a=\tau_{A}\left(i d_{A}\right)$, since for $B \in|\mathbf{K}|$ and $f: A \rightarrow B, \tau_{B}(f)=\mathbf{F}(f)\left(\tau_{A}\left(i d_{A}\right)\right)$

Proof

- For $a \in \mathbf{F}(A)$, define $\tau^{a}: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$, as the family of functions $\tau_{B}^{a}: \mathbf{K}(A, B) \rightarrow \mathbf{F}(B), B \in|\mathbf{K}|$, given by $\tau_{B}^{a}(f)=\mathbf{F}(f)(a)$ for $f: A \rightarrow B$ in \mathbf{K}. This is a natural transformation, since for $g: B \rightarrow C$ and then $f: A \rightarrow B$,

$$
\begin{gathered}
\mathbf{F}(g)\left(\tau_{B}^{a}(f)\right)=\mathbf{F}(g)(\mathbf{F}(f)(a)) \\
=\mathbf{F}(f ; g)(a)=\tau_{C}^{a}(f ; g)
\end{gathered}
$$

K:
B

$$
=\tau_{C}^{a}\left(\operatorname{Hom}_{\mathbf{K}}(A, g)(f)\right)
$$

Then $\tau_{A}^{a}\left(i d_{A}\right)=a$, and so for distinct $a, a^{\prime} \in \mathbf{F}(A), \tau^{a}$ and $\tau^{a^{\prime}}$ differ.

- If $\tau: \operatorname{Hom}_{\mathbf{K}}(A,-) \rightarrow \mathbf{F}$ is a natural transformation then $\tau=\tau^{a}$, where we put $a=\tau_{A}\left(i d_{A}\right)$, since for $B \in|\mathbf{K}|$ and $f: A \rightarrow B, \tau_{B}(f)=\mathbf{F}(f)\left(\tau_{A}\left(i d_{A}\right)\right)$ by naturality of τ :

A

B

Set:

Compositions

Compositions

vertical composition:

Compositions

vertical composition:

Compositions

vertical composition:

Compositions

vertical composition:
horizontal composition:

Compositions

horizontal composition:

Compositions

$\underline{\underline{\text { vertical composition: }}}$

horizontal composition:

Vertical composition

The vertical composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{F}^{\prime} \rightarrow \mathbf{F}^{\prime \prime}$ between parallel functors $\mathbf{F}, \mathbf{F}^{\prime}, \mathbf{F}^{\prime \prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$

The vertical composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{F}^{\prime} \rightarrow \mathbf{F}^{\prime \prime}$ between parallel functors $\mathbf{F}, \mathbf{F}^{\prime}, \mathbf{F}^{\prime \prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$

$$
\tau ; \sigma: \mathbf{F} \rightarrow \mathbf{F}^{\prime \prime}
$$

Vertical composition

The vertical composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{F}^{\prime} \rightarrow \mathbf{F}^{\prime \prime}$ between parallel functors $\mathbf{F}, \mathbf{F}^{\prime}, \mathbf{F}^{\prime \prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$

$$
\tau ; \sigma: \mathbf{F} \rightarrow \mathbf{F}^{\prime \prime}
$$

is a natural transformation given by $(\tau ; \sigma)_{A}=\tau_{A} ; \sigma_{A}$ for all $A \in|\mathbf{K}|$.

Vertical composition

The vertical composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{F}^{\prime} \rightarrow \mathbf{F}^{\prime \prime}$ between parallel functors $\mathbf{F}, \mathbf{F}^{\prime}, \mathbf{F}^{\prime \prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$

$$
\tau ; \sigma: \mathbf{F} \rightarrow \mathbf{F}^{\prime \prime}
$$

is a natural transformation given by $(\tau ; \sigma)_{A}=\tau_{A} ; \sigma_{A}$ for all $A \in|\mathbf{K}|$.

Horizontal composition

Horizontal composition

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

Horizontal composition

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

Horizontal composition

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

Horizontal composition

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}$ for all $A \in|\mathbf{K}|$.
$\mathbf{K}^{\prime \prime}$:
$\mathbf{G}(\mathbf{F}(A)) \xrightarrow{\sigma_{\mathbf{F}(A)}} \mathbf{G}^{\prime}(\mathbf{F}(A))$

Horizontal composition

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}$ for all $A \in|\mathbf{K}|$.

$\mathbf{K}^{\prime \prime}$:

Horizontal composition

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A} \quad=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.
$\mathbf{K}^{\prime}:$
$\mathbf{F}(A)$
τ_{A}
$\mathbf{F}^{\prime}(A)$
$\mathbf{K}^{\prime \prime}$:

Horizontal composition

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}=\mathbf{G}\left(\tau_{A}\right) ; \sigma_{\mathbf{F}^{\prime}(A)}=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}=\mathbf{G}\left(\tau_{A}\right) ; \sigma_{\mathbf{F}^{\prime}(A)}=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.
$\mathbf{K}^{\prime}:$
$\mathbf{F}(A)$
τ_{A}
$\mathbf{F}^{\prime}(A)$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

$$
\begin{array}{ll}
\mathbf{K}: \\
A & \mathbf{\mathbf { K } ^ { \prime \prime } :} \\
\mathbf{G}(\mathbf{F}(A)) \longrightarrow \mathbf{G}^{\prime}\left(\mathbf{F}^{\prime}(A)\right)
\end{array}
$$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

$$
\begin{array}{ll}
\mathbf{K}: \\
A & \mathbf{\mathbf { K } ^ { \prime \prime } :} \\
\mathbf{G}(\mathbf{F}(A)) \longrightarrow \mathbf{G}^{\prime}\left(\mathbf{F}^{\prime}(A)\right)
\end{array}
$$

B
$\mathbf{G}(\mathbf{F}(B)) \longrightarrow \mathbf{G}^{\prime}\left(\mathbf{F}^{\prime}(B)\right)$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}=\mathbf{G}\left(\tau_{A}\right) ; \sigma_{\mathbf{F}^{\prime}(A)}=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.
$\mathbf{K}^{\prime}:$
$\mathbf{F}(A)$
τ_{A}
$\mathbf{F}^{\prime}(A)$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}=\mathbf{G}\left(\tau_{A}\right) ; \sigma_{\mathbf{F}^{\prime}(A)}=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.
Multiplication by functor:
$\mathbf{K}^{\prime}:$
$\mathbf{F}(A)$
$\tau_{A} \mid$
$\mathbf{F}^{\prime}(A)$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}=\mathbf{G}\left(\tau_{A}\right) ; \sigma_{\mathbf{F}^{\prime}(A)}=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.
Multiplication by functor:

$$
-\tau \cdot \mathbf{G}=\tau \cdot i d_{\mathbf{G}}: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}
$$

$\mathbf{K}^{\prime}:$
$\mathbf{F}(A)$
τ_{A}
$\mathbf{F}^{\prime}(A)$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}=\mathbf{G}\left(\tau_{A}\right) ; \sigma_{\mathbf{F}^{\prime}(A)}=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.
Multiplication by functor:

$$
\begin{aligned}
- & \tau \cdot \mathbf{G}=\tau \cdot i d_{\mathbf{G}}: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G} \\
& \text { i.e., }(\tau \cdot \mathbf{G})_{A}=\mathbf{G}\left(\tau_{A}\right)
\end{aligned}
$$

$\mathbf{K}^{\prime}:$
$\mathbf{F}(A)$
$\tau_{A} \mid$
$\mathbf{F}^{\prime}(A)$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}=\mathbf{G}\left(\tau_{A}\right) ; \sigma_{\mathbf{F}^{\prime}(A)}=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.
Multiplication by functor:

$$
\begin{aligned}
&- \tau \cdot \mathbf{G}=\tau \cdot i d_{\mathbf{G}}: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G} \\
& \text { i.e., }(\tau \cdot \mathbf{G})_{A}=\mathbf{G}\left(\tau_{A}\right) \\
&-\mathbf{F} \cdot \sigma=i d_{\mathbf{F}} \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F} ; \mathbf{G}^{\prime}
\end{aligned}
$$

$\mathbf{K}^{\prime}:$
$\mathbf{F}(A)$
$\tau_{A} \mid$
$\mathbf{F}^{\prime}(A)$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

The horizontal composition of natural transformations $\tau: \mathbf{F} \rightarrow \mathbf{F}^{\prime}$ and $\sigma: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ between composable pairs of parallel functors $\mathbf{F}, \mathbf{F}^{\prime}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}, \mathbf{G}, \mathbf{G}^{\prime}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}^{\prime \prime}$

$$
\tau \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G}^{\prime}
$$

is a natural transformation given by $(\tau \cdot \sigma)_{A}=\mathbf{G}\left(\tau_{A}\right) ; \sigma_{\mathbf{F}^{\prime}(A)}=\sigma_{\mathbf{F}(A)} ; \mathbf{G}^{\prime}\left(\tau_{A}\right)$ for all $A \in|\mathbf{K}|$.
Multiplication by functor:

$$
\begin{aligned}
&- \tau \cdot \mathbf{G}=\tau \cdot i d_{\mathbf{G}}: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F}^{\prime} ; \mathbf{G} \\
& \text { i.e., }(\tau \cdot \mathbf{G})_{A}=\mathbf{G}\left(\tau_{A}\right) \\
&-\mathbf{F} \cdot \sigma=i d_{\mathbf{F}} \cdot \sigma: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F} ; \mathbf{G}^{\prime} \\
& \text { i.e., }(\mathbf{F} \cdot \sigma)_{A}=\sigma_{\mathbf{F}(A)}
\end{aligned}
$$

$\mathbf{K}^{\prime}:$
$\mathbf{F}(A)$
$\tau_{A} \mid$
$\mathbf{F}^{\prime}(A)$

Show that indeed, $\tau \cdot \sigma$ is a natural transformation

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}
- morphisms: natural transformations between them

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

- View the category of S-sorted sets, $\mathbf{S e t}^{S}$, as a functor category.

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

- View the category of S-sorted sets, $\mathbf{S e t}^{S}$, as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}^{\prime}}$ is (finitely) (co)complete whenever \mathbf{K} is so.

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well.

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$: Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$

- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|,(\mathbf{F} \times \mathbf{G})\left(A^{\prime}\right)=\mathbf{F}\left(A^{\prime}\right) \times \mathbf{G}\left(A^{\prime}\right)$

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$

- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|,(\mathbf{F} \times \mathbf{G})\left(A^{\prime}\right)=\mathbf{F}\left(A^{\prime}\right) \times \mathbf{G}\left(A^{\prime}\right)$
- for $f: A^{\prime} \rightarrow B^{\prime}$,

$$
(\mathbf{F} \times \mathbf{G})(f)=\left\langle\pi_{\mathbf{F}\left(A^{\prime}\right)} ; \mathbf{F}(f), \pi_{\mathbf{G}\left(A^{\prime}\right)} ; \mathbf{G}(f)\right\rangle:(\mathbf{F} \times \mathbf{G})\left(A^{\prime}\right) \rightarrow(\mathbf{F} \times \mathbf{G})\left(B^{\prime}\right)
$$

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$

- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|,(\mathbf{F} \times \mathbf{G})\left(A^{\prime}\right)=\mathbf{F}\left(A^{\prime}\right) \times \mathbf{G}\left(A^{\prime}\right)$
- for $f: A^{\prime} \rightarrow B^{\prime}$,

$$
(\mathbf{F} \times \mathbf{G})(f)=\left\langle\pi_{\mathbf{F}\left(A^{\prime}\right)} ; \mathbf{F}(f), \pi_{\mathbf{G}\left(A^{\prime}\right)} ; \mathbf{G}(f)\right\rangle:(\mathbf{F} \times \mathbf{G})\left(A^{\prime}\right) \rightarrow(\mathbf{F} \times \mathbf{G})\left(B^{\prime}\right)
$$

$\mathbf{F}\left(A^{\prime}\right) \times \mathbf{G}\left(A^{\prime}\right) \longrightarrow \mathbf{F}\left(B^{\prime}\right) \times \mathbf{G}\left(B^{\prime}\right)$

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$

- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|,(\mathbf{F} \times \mathbf{G})\left(A^{\prime}\right)=\mathbf{F}\left(A^{\prime}\right) \times \mathbf{G}\left(A^{\prime}\right)$
- for $f: A^{\prime} \rightarrow B^{\prime}$,

$$
(\mathbf{F} \times \mathbf{G})(f)=\left\langle\pi_{\mathbf{F}\left(A^{\prime}\right)} ; \mathbf{F}(f), \pi_{\mathbf{G}\left(A^{\prime}\right)} ; \mathbf{G}(f)\right\rangle:(\mathbf{F} \times \mathbf{G})\left(A^{\prime}\right) \rightarrow(\mathbf{F} \times \mathbf{G})\left(B^{\prime}\right)
$$

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$

- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|,(\mathbf{F} \times \mathbf{G})\left(A^{\prime}\right)=\mathbf{F}\left(A^{\prime}\right) \times \mathbf{G}\left(A^{\prime}\right)$
- for $f: A^{\prime} \rightarrow B^{\prime}$,

$$
(\mathbf{F} \times \mathbf{G})(f)=\left\langle\pi_{\mathbf{F}\left(A^{\prime}\right)} ; \mathbf{F}(f), \pi_{\mathbf{G}\left(A^{\prime}\right)} ; \mathbf{G}(f)\right\rangle:(\mathbf{F} \times \mathbf{G})\left(A^{\prime}\right) \rightarrow(\mathbf{F} \times \mathbf{G})\left(B^{\prime}\right)
$$

$$
\mathbf{F}\left(A^{\prime}\right) \times \mathbf{G}\left(A^{\prime}\right) \longrightarrow \mathbf{F}\left(B^{\prime}\right) \times \mathbf{G}\left(B^{\prime}\right)
$$

This yields natural transformations:
$\pi_{\mathbf{F}}=\left\langle\pi_{\mathbf{F}\left(A^{\prime}\right)}\right\rangle_{A^{\prime} \in\left|\mathbf{K}^{\prime}\right|}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{F}$
$\pi_{\mathbf{G}}=\left\langle\pi_{\mathbf{G}\left(A^{\prime}\right)}\right\rangle_{A^{\prime} \in\left|\mathbf{K}^{\prime}\right|}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{G}$

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ with product projections $\pi_{\mathbf{F}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{F}$ and $\pi_{\mathbf{G}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{G}$.

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$: Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}. Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ with product projections $\pi_{\mathbf{F}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{F}$ and $\pi_{\mathbf{G}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{G}$.

Equalisers:

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ with product projections $\pi_{\mathbf{F}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{F}$ and $\pi_{\mathbf{G}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{G}$.

Equalisers: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma: \mathbf{F} \rightarrow \mathbf{G}$ is $\delta: \mathbf{H} \rightarrow \mathbf{F}$, where:

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ with product projections $\pi_{\mathbf{F}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{F}$ and $\pi_{\mathbf{G}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{G}$.

Equalisers: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma: \mathbf{F} \rightarrow \mathbf{G}$ is $\delta: \mathbf{H} \rightarrow \mathbf{F}$, where:

- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|, \delta_{A^{\prime}}: \mathbf{H}\left(A^{\prime}\right) \rightarrow \mathbf{F}\left(A^{\prime}\right)$ is equaliser of $\tau_{A^{\prime}}, \sigma_{A^{\prime}}: \mathbf{F}\left(A^{\prime}\right) \rightarrow \mathbf{G}\left(A^{\prime}\right)$

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well.
Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ with product projections $\pi_{\mathbf{F}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{F}$ and $\pi_{\mathbf{G}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{G}$.

Equalisers: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma: \mathbf{F} \rightarrow \mathbf{G}$ is $\delta: \mathbf{H} \rightarrow \mathbf{F}$, where:

- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|, \delta_{A^{\prime}}: \mathbf{H}\left(A^{\prime}\right) \rightarrow \mathbf{F}\left(A^{\prime}\right)$ is equaliser of $\tau_{A^{\prime}}, \sigma_{A^{\prime}}: \mathbf{F}\left(A^{\prime}\right) \rightarrow \mathbf{G}\left(A^{\prime}\right)$
- for $f: A^{\prime} \rightarrow B^{\prime}, \mathbf{H}(f): \mathbf{H}\left(A^{\prime}\right) \rightarrow \mathbf{H}\left(B^{\prime}\right)$ is s. t. $\delta_{A^{\prime}} ; \mathbf{H}(f)=\mathbf{G}(f) ; \delta_{B^{\prime}}$.

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ with product projections $\pi_{\mathbf{F}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{F}$ and $\pi_{\mathbf{G}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{G}$.
Equalisers: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma: \mathbf{F} \rightarrow \mathbf{G}$ is $\delta: \mathbf{H} \rightarrow \mathbf{F}$, where:

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ with product projections $\pi_{\mathbf{F}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{F}$ and $\pi_{\mathbf{G}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{G}$.
Equalisers: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma: \mathbf{F} \rightarrow \mathbf{G}$ is $\delta: \mathbf{H} \rightarrow \mathbf{F}$, where:

> To be checked:
> $\mathbf{H}\left(i d_{A^{\prime}}\right)=i d_{\mathbf{H}\left(A^{\prime}\right)}$, and
> $\mathbf{H}(f ; g)=\mathbf{H}(f) ; \mathbf{H}(g)$

Theorem: If \mathbf{K} is finitely complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is finitely complete as well. Proof (idea): Define a terminal object, binary products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$:
Terminal object: $\mathbf{C}_{T}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is terminal in $\mathbf{K}^{\mathbf{K}^{\prime}}$, where T is terminal in \mathbf{K}.
Products: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, their product in $\mathbf{K}^{\mathbf{K}^{\prime}}$ is $\mathbf{F} \times \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ with product projections $\pi_{\mathbf{F}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{F}$ and $\pi_{\mathbf{G}}:(\mathbf{F} \times \mathbf{G}) \rightarrow \mathbf{G}$.
Equalisers: Given $\mathbf{F}, \mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$, equaliser of two natural transformations $\tau, \sigma: \mathbf{F} \rightarrow \mathbf{G}$ is $\delta: \mathbf{H} \rightarrow \mathbf{F}$, where:

> To be checked:
> $\mathbf{H}\left(i d_{A^{\prime}}\right)=i d_{\mathbf{H}\left(A^{\prime}\right)}$, and
> $\mathbf{H}(f ; g)=\mathbf{H}(f) ; \mathbf{H}(g)$

This yields a natural transformation:
$\delta=\left\langle\delta_{A^{\prime}}\right\rangle_{A^{\prime} \in\left|\mathbf{K}^{\prime}\right|}: \mathbf{H} \rightarrow \mathbf{F}$

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Define (arbitrary) products and equalisers in $\mathbf{K}^{\mathbf{K}^{\prime}}$, as for the finite case.

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let \mathbf{D} be a diagram in $\mathbf{K}^{\mathbf{K}^{\prime}}$ with nodes $n \in N$ and edges $e \in E$.

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let \mathbf{D} be a diagram in $\mathbf{K}^{\mathbf{K}^{\prime}}$ with nodes $n \in N$ and edges $e \in E$.
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, define $\mathbf{D}\left(A^{\prime}\right)$ to be a diagram in \mathbf{K} with $\mathbf{D}\left(A^{\prime}\right)_{n}=\mathbf{D}_{n}\left(A^{\prime}\right)$ and $\mathbf{D}\left(A^{\prime}\right)_{e}=\left(\mathbf{D}_{e}\right)_{A^{\prime}}$

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let \mathbf{D} be a diagram in $\mathbf{K}^{\mathbf{K}^{\prime}}$ with nodes $n \in N$ and edges $e \in E$.
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, define $\mathbf{D}\left(A^{\prime}\right)$ to be a diagram in \mathbf{K} with $\mathbf{D}\left(A^{\prime}\right)_{n}=\mathbf{D}_{n}\left(A^{\prime}\right)$ and $\mathbf{D}\left(A^{\prime}\right)_{e}=\left(\mathbf{D}_{e}\right)_{A^{\prime}}$
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, define a diagram morphism $\mathbf{D}(f): \mathbf{D}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(B^{\prime}\right)$ by $\mathbf{D}(f)_{n}=\mathbf{D}_{n}(f)$

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let \mathbf{D} be a diagram in $\mathbf{K}^{\mathbf{K}^{\prime}}$ with nodes $n \in N$ and edges $e \in E$.
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, define $\mathbf{D}\left(A^{\prime}\right)$ to be a diagram in \mathbf{K} with $\mathbf{D}\left(A^{\prime}\right)_{n}=\mathbf{D}_{n}\left(A^{\prime}\right)$ and $\mathbf{D}\left(A^{\prime}\right)_{e}=\left(\mathbf{D}_{e}\right)_{A^{\prime}}$
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, define a diagram morphism $\mathbf{D}(f): \mathbf{D}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(B^{\prime}\right)$ by

$$
\mathbf{D}(f)_{n}=\mathbf{D}_{n}(f)
$$

- Define a functor $\mathbf{X}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural transformations $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ as follows:

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let \mathbf{D} be a diagram in $\mathbf{K}^{\mathbf{K}^{\prime}}$ with nodes $n \in N$ and edges $e \in E$.
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, define $\mathbf{D}\left(A^{\prime}\right)$ to be a diagram in \mathbf{K} with $\mathbf{D}\left(A^{\prime}\right)_{n}=\mathbf{D}_{n}\left(A^{\prime}\right)$ and $\mathbf{D}\left(A^{\prime}\right)_{e}=\left(\mathbf{D}_{e}\right)_{A^{\prime}}$
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, define a diagram morphism $\mathbf{D}(f): \mathbf{D}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(B^{\prime}\right)$ by

$$
\mathbf{D}(f)_{n}=\mathbf{D}_{n}(f)
$$

- Define a functor $\mathbf{X}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural transformations $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ as follows:
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, let $\alpha^{A^{\prime}}: \mathbf{X}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(A^{\prime}\right)$ be the limit of $\mathbf{D}\left(A^{\prime}\right)$ in \mathbf{K}

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let \mathbf{D} be a diagram in $\mathbf{K}^{\mathbf{K}^{\prime}}$ with nodes $n \in N$ and edges $e \in E$.
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, define $\mathbf{D}\left(A^{\prime}\right)$ to be a diagram in \mathbf{K} with $\mathbf{D}\left(A^{\prime}\right)_{n}=\mathbf{D}_{n}\left(A^{\prime}\right)$ and $\mathbf{D}\left(A^{\prime}\right)_{e}=\left(\mathbf{D}_{e}\right)_{A^{\prime}}$
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, define a diagram morphism $\mathbf{D}(f): \mathbf{D}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(B^{\prime}\right)$ by $\mathbf{D}(f)_{n}=\mathbf{D}_{n}(f)$
- Define a functor $\mathbf{X}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural transformations $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ as follows:
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, let $\alpha^{A^{\prime}}: \mathbf{X}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(A^{\prime}\right)$ be the limit of $\mathbf{D}\left(A^{\prime}\right)$ in \mathbf{K}
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, let $\mathbf{X}(f): \mathbf{X}\left(A^{\prime}\right) \rightarrow \mathbf{X}\left(B^{\prime}\right)$ be unique such that $\alpha^{A^{\prime}} ; \mathbf{D}(f)=\mathbf{X}(f) ; \alpha^{B^{\prime}}$ (given by the limit property of $\alpha^{B^{\prime}}$)

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let \mathbf{D} be a diagram in $\mathbf{K}^{\mathbf{K}^{\prime}}$ with nodes $n \in N$ and edges $e \in E$.
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, define $\mathbf{D}\left(A^{\prime}\right)$ to be a diagram in \mathbf{K} with $\mathbf{D}\left(A^{\prime}\right)_{n}=\mathbf{D}_{n}\left(A^{\prime}\right)$ and $\mathbf{D}\left(A^{\prime}\right)_{e}=\left(\mathbf{D}_{e}\right)_{A^{\prime}}$
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, define a diagram morphism $\mathbf{D}(f): \mathbf{D}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(B^{\prime}\right)$ by

$$
\mathbf{D}(f)_{n}=\mathbf{D}_{n}(f)
$$

- Define a functor $\mathbf{X}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural transformations $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ as follows:
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, let $\alpha^{A^{\prime}}: \mathbf{X}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(A^{\prime}\right)$ be the limit of $\mathbf{D}\left(A^{\prime}\right)$ in \mathbf{K}
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, let $\mathbf{X}(f): \mathbf{X}\left(A^{\prime}\right) \rightarrow \mathbf{X}\left(B^{\prime}\right)$ be unique such that $\alpha^{A^{\prime}} ; \mathbf{D}(f)=\mathbf{X}(f) ; \alpha^{B^{\prime}}$ (given by the limit property of $\alpha^{B^{\prime}}$)
- define $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ by $\left(\alpha_{n}\right)_{A^{\prime}}=\left(\alpha^{A^{\prime}}\right)_{n}$, for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let \mathbf{D} be a diagram in $\mathbf{K}^{\mathbf{K}^{\prime}}$ with nodes $n \in N$ and edges $e \in E$.
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, define $\mathbf{D}\left(A^{\prime}\right)$ to be a diagram in \mathbf{K} with $\mathbf{D}\left(A^{\prime}\right)_{n}=\mathbf{D}_{n}\left(A^{\prime}\right)$ and $\mathbf{D}\left(A^{\prime}\right)_{e}=\left(\mathbf{D}_{e}\right)_{A^{\prime}}$
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, define a diagram morphism $\mathbf{D}(f): \mathbf{D}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(B^{\prime}\right)$ by $\mathbf{D}(f)_{n}=\mathbf{D}_{n}(f)$
- Define a functor $\mathbf{X}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural transformations $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ as follows:
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, let $\alpha^{A^{\prime}}: \mathbf{X}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(A^{\prime}\right)$ be the limit of $\mathbf{D}\left(A^{\prime}\right)$ in \mathbf{K}
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, let $\mathbf{X}(f): \mathbf{X}\left(A^{\prime}\right) \rightarrow \mathbf{X}\left(B^{\prime}\right)$ be unique such that $\alpha^{A^{\prime}} ; \mathbf{D}(f)=\mathbf{X}(f) ; \alpha^{B^{\prime}}$ (given by the limit property of $\alpha^{B^{\prime}}$)
- define $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ by $\left(\alpha_{n}\right)_{A^{\prime}}=\left(\alpha^{A^{\prime}}\right)_{n}$, for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$
- check that $\mathbf{X}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is a functor, and $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ are natural transformations

Theorem: If \mathbf{K} is complete then $\mathbf{K}^{\mathbf{K}^{\prime}}$ is complete as well.
Proof (idea): Or proceed with limit construction for an arbitrary diagram:

- Let \mathbf{D} be a diagram in $\mathbf{K}^{\mathbf{K}^{\prime}}$ with nodes $n \in N$ and edges $e \in E$.
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, define $\mathbf{D}\left(A^{\prime}\right)$ to be a diagram in \mathbf{K} with $\mathbf{D}\left(A^{\prime}\right)_{n}=\mathbf{D}_{n}\left(A^{\prime}\right)$ and $\mathbf{D}\left(A^{\prime}\right)_{e}=\left(\mathbf{D}_{e}\right)_{A^{\prime}}$
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, define a diagram morphism $\mathbf{D}(f): \mathbf{D}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(B^{\prime}\right)$ by $\mathbf{D}(f)_{n}=\mathbf{D}_{n}(f)$
- Define a functor $\mathbf{X}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural transformations $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ as follows:
- for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$, let $\alpha^{A^{\prime}}: \mathbf{X}\left(A^{\prime}\right) \rightarrow \mathbf{D}\left(A^{\prime}\right)$ be the limit of $\mathbf{D}\left(A^{\prime}\right)$ in \mathbf{K}
- for $f: A^{\prime} \rightarrow B^{\prime}$ in \mathbf{K}^{\prime}, let $\mathbf{X}(f): \mathbf{X}\left(A^{\prime}\right) \rightarrow \mathbf{X}\left(B^{\prime}\right)$ be unique such that $\alpha^{A^{\prime}} ; \mathbf{D}(f)=\mathbf{X}(f) ; \alpha^{B^{\prime}}$ (given by the limit property of $\alpha^{B^{\prime}}$)
- define $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ by $\left(\alpha_{n}\right)_{A^{\prime}}=\left(\alpha^{A^{\prime}}\right)_{n}$, for $A^{\prime} \in\left|\mathbf{K}^{\prime}\right|$
- check that $\mathbf{X}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ is a functor, and $\alpha_{n}: \mathbf{X} \rightarrow \mathbf{D}_{n}$ are natural transformations
- Prove that $\alpha: \mathbf{X} \rightarrow \mathbf{D}$ is a limit of \mathbf{D} in $\mathbf{K}^{\mathbf{K}^{\prime}}$.

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

- View the category of S-sorted sets, $\mathbf{S e t}^{S}$, as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}^{\prime}}$ is (finitely) (co)complete whenever \mathbf{K} is so.
- Show how any functor $\mathbf{F}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}^{\prime}$ induces a functor $(\mathbf{F} ;-)$: $\mathbf{K}^{\mathbf{K}^{\prime}} \rightarrow \mathbf{K}^{\mathbf{K}^{\prime \prime}}$,

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

- View the category of S-sorted sets, $\mathbf{S e t}^{S}$, as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}^{\prime}}$ is (finitely) (co)complete whenever \mathbf{K} is so.
- Show how any functor $\mathbf{F}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}^{\prime}$ induces a functor $(\mathbf{F} ;-): \mathbf{K}^{\mathbf{K}^{\prime}} \rightarrow \mathbf{K}^{\mathbf{K}^{\prime \prime}}$, where for $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K},(\mathbf{F} ;-)(\mathbf{G})=\mathbf{F} ; \mathbf{G}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}$,

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

- View the category of S-sorted sets, $\mathbf{S e t}^{S}$, as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}^{\prime}}$ is (finitely) (co)complete whenever \mathbf{K} is so.
- Show how any functor $\mathbf{F}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}^{\prime}$ induces a functor $(\mathbf{F} ;-): \mathbf{K}^{\mathbf{K}^{\prime}} \rightarrow \mathbf{K}^{\mathbf{K}^{\prime \prime}}$, where for $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K},(\mathbf{F} ;-)(\mathbf{G})=\mathbf{F} ; \mathbf{G}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}$, and for $\tau: \mathbf{G} \rightarrow \mathbf{G}^{\prime}\left(: \mathbf{K}^{\prime} \rightarrow \mathbf{K}\right),(\mathbf{F} ;-)(\tau)=\mathbf{F} \cdot \tau: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F} ; \mathbf{G}^{\prime}$.

Functor categories

Given two categories $\mathbf{K}, \mathbf{K}^{\prime}$, define the category of functors from \mathbf{K}^{\prime} to $\mathbf{K}, \mathbf{K}^{\mathbf{K}^{\prime}}$, as follows:

- objects: functors from \mathbf{K}^{\prime} to \mathbf{K}
- morphisms: natural transformations between them
- composition: vertical composition of the natural transformations

Exercises:

- View the category of S-sorted sets, $\mathbf{S e t}^{S}$, as a functor category.
- Check whether $\mathbf{K}^{\mathbf{K}^{\prime}}$ is (finitely) (co)complete whenever \mathbf{K} is so.
- Show how any functor $\mathbf{F}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}^{\prime}$ induces a functor $(\mathbf{F} ;-): \mathbf{K}^{\mathbf{K}^{\prime}} \rightarrow \mathbf{K}^{\mathbf{K}^{\prime \prime}}$, where for $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K},(\mathbf{F} ;-)(\mathbf{G})=\mathbf{F} ; \mathbf{G}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}$, and for $\tau: \mathbf{G} \rightarrow \mathbf{G}^{\prime}\left(: \mathbf{K}^{\prime} \rightarrow \mathbf{K}\right),(\mathbf{F} ;-)(\tau)=\mathbf{F} \cdot \tau: \mathbf{F} ; \mathbf{G} \rightarrow \mathbf{F} ; \mathbf{G}^{\prime}$.
- Check if $(\mathbf{F} ;-): \mathbf{K}^{\mathbf{K}^{\prime}} \rightarrow \mathbf{K}^{\mathbf{K}^{\prime \prime}}$ is (finitely) (co)continuous, for any $\mathbf{F}: \mathbf{K}^{\prime \prime} \rightarrow \mathbf{K}^{\prime}$.

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \operatorname{Set}^{\mathbf{K}^{o p}}
$$

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \operatorname{Set}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \operatorname{Set}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$

$$
- \text { for } X \in|\mathbf{K}|, \mathcal{Y}(A)(X)=\operatorname{Hom}_{\mathbf{K}}(X, A)
$$

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \mathbf{S e t}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$
- for $X \in|\mathbf{K}|, \mathcal{Y}(A)(X)=\operatorname{Hom}_{\mathbf{K}}(X, A)$
- for $h: X \rightarrow Y$ in $\mathbf{K}, \mathcal{Y}(A)(h)=(h ;-): \operatorname{Hom}_{\mathbf{K}}(Y, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, A)$

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \operatorname{Set}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$
- for $X \in|\mathbf{K}|, \mathcal{Y}(A)(X)=\operatorname{Hom}_{\mathbf{K}}(X, A)$
- for $h: X \rightarrow Y$ in $\mathbf{K}, \mathcal{Y}(A)(h)=(h ;-): \operatorname{Hom}_{\mathbf{K}}(Y, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, A)$
- $\mathcal{Y}(f)_{X}=(-; f): \operatorname{Hom}_{\mathbf{K}}(X, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, B)$, for $f: A \rightarrow B$ in \mathbf{K}, $X \in\left|\mathbf{K}^{o p}\right|$.

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \mathbf{S e t}^{\mathbf{K}^{o p}}
$$

X	$\mathcal{Y}(A)(X)$	$\mathcal{Y}(B)(X)$
h	$\stackrel{\text { ® }}{\stackrel{\text { E }}{4}}$	会
Y	$\mathcal{Y}(A)(Y)$	$\mathcal{Y}(B)(Y)$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$
- for $X \in|\mathbf{K}|, \mathcal{Y}(A)(X)=\operatorname{Hom}_{\mathbf{K}}(X, A)$
- for $h: X \rightarrow Y$ in $\mathbf{K}, \mathcal{Y}(A)(h)=(h ;-): \operatorname{Hom}_{\mathbf{K}}(Y, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, A)$
- $\mathcal{Y}(f)_{X}=(-; f): \operatorname{Hom}_{\mathbf{K}}(X, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, B)$, for $f: A \rightarrow B$ in \mathbf{K}, $X \in\left|\mathbf{K}^{o p}\right|$.
- for $f: A \rightarrow B, \mathcal{Y}(f): \mathcal{Y}(A) \rightarrow \mathcal{Y}(B)\left(: \mathbf{K}^{o p} \rightarrow \mathbf{S e t}\right)$

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \mathbf{S e t}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$

- for $X \in|\mathbf{K}|, \mathcal{Y}(A)(X)=\operatorname{Hom}_{\mathbf{K}}(X, A)$
- for $h: X \rightarrow Y$ in $\mathbf{K}, \mathcal{Y}(A)(h)=(h ;-): \operatorname{Hom}_{\mathbf{K}}(Y, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, A)$
- $\mathcal{Y}(f)_{X}=\left(_; f\right): \operatorname{Hom}_{\mathbf{K}}(X, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, B)$, for $f: A \rightarrow B$ in \mathbf{K}, $X \in\left|\mathbf{K}^{o p}\right|$.
- for $f: A \rightarrow B, \mathcal{Y}(f): \mathcal{Y}(A) \rightarrow \mathcal{Y}(B)\left(: \mathbf{K}^{o p} \rightarrow \mathbf{S e t}\right)$
- for $X \in\left|\mathbf{K}^{o p}\right|, \mathcal{Y}(f)_{X}: \mathcal{Y}(A)(X) \rightarrow \mathcal{Y}(B)(X)$

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \mathbf{S e t}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$

- for $X \in|\mathbf{K}|, \mathcal{Y}(A)(X)=\operatorname{Hom}_{\mathbf{K}}(X, A)$
- for $h: X \rightarrow Y$ in $\mathbf{K}, \mathcal{Y}(A)(h)=(h ;-): \operatorname{Hom}_{\mathbf{K}}(Y, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, A)$
- $\mathcal{Y}(f)_{X}=(-; f): \operatorname{Hom}_{\mathbf{K}}(X, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, B)$, for $f: A \rightarrow B$ in \mathbf{K}, $X \in\left|\mathbf{K}^{o p}\right|$.
- for $f: A \rightarrow B, \mathcal{Y}(f): \mathcal{Y}(A) \rightarrow \mathcal{Y}(B)\left(: \mathbf{K}^{o p} \rightarrow\right.$ Set $)$
- for $X \in\left|\mathbf{K}^{o p}\right|, \mathcal{Y}(f)_{X}: \mathcal{Y}(A)(X) \rightarrow \mathcal{Y}(B)(X)$
- naturality of $\mathcal{Y}(f): \mathcal{Y}(A) \rightarrow \mathcal{Y}(B)$: for $h: X \rightarrow Y$ in \mathbf{K}, $\mathcal{Y}(A)(h) ; \mathcal{Y}(f)_{X}=(h ;-) ;(-; f)=h ;-f=(-; f) ;(h ;-)=\mathcal{Y}(f)_{Y} ; \mathcal{Y}(B)(h)$

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \operatorname{Set}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$
- $\mathcal{Y}(f)_{X}=(-; f): \operatorname{Hom}_{\mathbf{K}}(X, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, B)$, for $f: A \rightarrow B$ in \mathbf{K}, $X \in\left|\mathbf{K}^{o p}\right|$.
Theorem: The category of presheaves $\mathbf{S e t} \mathbf{K}^{\mathbf{K}^{o p}}$ is complete and cocomplete.

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \operatorname{Set}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$
- $\mathcal{Y}(f)_{X}=(-; f): \operatorname{Hom}_{\mathbf{K}}(X, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, B)$, for $f: A \rightarrow B$ in \mathbf{K}, $X \in\left|\mathbf{K}^{o p}\right|$.
Theorem: The category of presheaves $\mathbf{S e t} \mathbf{K}^{\mathbf{K}^{o p}}$ is complete and cocomplete.
Theorem: $\mathcal{Y}: \mathbf{K} \rightarrow \mathbf{S e t}^{\mathbf{K}^{\text {op }}}$ is full and faithful.

Yoneda embedding

Given a locally small category \mathbf{K}, define

$$
\mathcal{Y}: \mathbf{K} \rightarrow \operatorname{Set}^{\mathbf{K}^{o p}}
$$

- $\mathcal{Y}(A)=\operatorname{Hom}_{\mathbf{K}}(-, A): \mathbf{K}^{o p} \rightarrow \mathbf{S e t}$, for $A \in|\mathbf{K}|$
- $\mathcal{Y}(f)_{X}=(-; f): \operatorname{Hom}_{\mathbf{K}}(X, A) \rightarrow \operatorname{Hom}_{\mathbf{K}}(X, B)$, for $f: A \rightarrow B$ in \mathbf{K}, $X \in\left|\mathbf{K}^{o p}\right|$.
Theorem: The category of presheaves $\mathbf{S e t} \mathbf{K}^{\mathbf{K}^{o p}}$ is complete and cocomplete.
Theorem: $\mathcal{Y}: \mathbf{K} \rightarrow \boldsymbol{\operatorname { S e t }}^{\mathbf{K}^{\text {op }}}$ is full and faithful.

$$
\begin{aligned}
& \mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime} \text { is full and faithfull } \\
& \text { if for all } A, B \in|\mathbf{K}|, \\
& \mathbf{F}: \mathbf{K}(A, B) \rightarrow \mathbf{K}^{\prime}(\mathbf{F}(A), \mathbf{F}(B)) \text { is a bijection }
\end{aligned}
$$

Diagrams as functors

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \operatorname{Path}(G) \rightarrow \mathbf{K}$

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \mathbf{P a t h}(G) \rightarrow \mathbf{K}$ given by:

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \mathbf{P a t h}(G) \rightarrow \mathbf{K}$ given by:

- $\mathbf{F}_{D}(n)=D_{n}$, for all nodes $n \in|G|_{\text {nodes }}$

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \mathbf{P a t h}(G) \rightarrow \mathbf{K}$ given by:

- $\mathbf{F}_{D}(n)=D_{n}$, for all nodes $n \in|G|_{\text {nodes }}$
- $\mathbf{F}_{D}\left(n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}\right)=D_{e_{1}} ; \ldots ; D_{e_{k}}$, for paths $n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}$ in G

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \mathbf{P a t h}(G) \rightarrow \mathbf{K}$ given by:

- $\mathbf{F}_{D}(n)=D_{n}$, for all nodes $n \in|G|_{\text {nodes }}$
- $\mathbf{F}_{D}\left(n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}\right)=D_{e_{1}} ; \ldots ; D_{e_{k}}$, for paths $n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}$ in G

Moreover:

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \mathbf{P a t h}(G) \rightarrow \mathbf{K}$ given by:

- $\mathbf{F}_{D}(n)=D_{n}$, for all nodes $n \in|G|_{\text {nodes }}$
- $\mathbf{F}_{D}\left(n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}\right)=D_{e_{1}} ; \ldots ; D_{e_{k}}$, for paths $n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}$ in G

Moreover:

- for distinct diagrams D and D^{\prime} of shape G, \mathbf{F}_{D} and $\mathbf{F}_{D^{\prime}}$ are different

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \mathbf{P a t h}(G) \rightarrow \mathbf{K}$ given by:

- $\mathbf{F}_{D}(n)=D_{n}$, for all nodes $n \in|G|_{\text {nodes }}$
- $\mathbf{F}_{D}\left(n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}\right)=D_{e_{1}} ; \ldots ; D_{e_{k}}$, for paths $n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}$ in G

Moreover:

- for distinct diagrams D and D^{\prime} of shape G, \mathbf{F}_{D} and $\mathbf{F}_{D^{\prime}}$ are different
- all functors from $\operatorname{Path}(G)$ to \mathbf{K} are given by diagrams over G

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \mathbf{P a t h}(G) \rightarrow \mathbf{K}$ given by:

- $\mathbf{F}_{D}(n)=D_{n}$, for all nodes $n \in|G|_{\text {nodes }}$
- $\mathbf{F}_{D}\left(n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}\right)=D_{e_{1}} ; \ldots ; D_{e_{k}}$, for paths $n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}$ in G

Moreover:

- for distinct diagrams D and D^{\prime} of shape G, \mathbf{F}_{D} and $\mathbf{F}_{D^{\prime}}$ are different
- all functors from $\operatorname{Path}(G)$ to \mathbf{K} are given by diagrams over G

Diagram morphisms $\mu: D \rightarrow D^{\prime}$ between diagrams of the same shape G are exactly natural transformations $\mu: \mathbf{F}_{D} \rightarrow \mathbf{F}_{D^{\prime}}$.

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \operatorname{Path}(G) \rightarrow \mathbf{K}$ given by:

- $\mathbf{F}_{D}(n)=D_{n}$, for all nodes $n \in|G|_{\text {nodes }}$
- $\mathbf{F}_{D}\left(n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}\right)=D_{e_{1}} ; \ldots ; D_{e_{k}}$, for paths $n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}$ in G

Moreover:

- for distinct diagrams D and D^{\prime} of shape G, \mathbf{F}_{D} and $\mathbf{F}_{D^{\prime}}$ are different
- all functors from $\operatorname{Path}(G)$ to \mathbf{K} are given by diagrams over G

Diagram morphisms $\mu: D \rightarrow D^{\prime}$ between diagrams of the same shape G are exactly natural transformations $\mu: \mathbf{F}_{D} \rightarrow \mathbf{F}_{D^{\prime}}$.

$$
\operatorname{Diag}_{\mathbf{K}}^{G} \cong \mathbf{K}^{\operatorname{Path}(G)}
$$

Diagrams as functors

Each diagram D over graph G in category \mathbf{K} yields a functor $\mathbf{F}_{D}: \operatorname{Path}(G) \rightarrow \mathbf{K}$ given by:

- $\mathbf{F}_{D}(n)=D_{n}$, for all nodes $n \in|G|_{\text {nodes }}$
- $\mathbf{F}_{D}\left(n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}\right)=D_{e_{1}} ; \ldots ; D_{e_{k}}$, for paths $n_{0} e_{1} n_{1} \ldots n_{k-1} e_{k} n_{k}$ in G

Moreover:

- for distinct diagrams D and D^{\prime} of shape G, \mathbf{F}_{D} and $\mathbf{F}_{D^{\prime}}$ are different
- all functors from $\operatorname{Path}(G)$ to \mathbf{K} are given by diagrams over G

Diagram morphisms $\mu: D \rightarrow D^{\prime}$ between diagrams of the same shape G are exactly natural transformations $\mu: \mathbf{F}_{D} \rightarrow \mathbf{F}_{D^{\prime}}$.

$$
\operatorname{Diag}_{\mathbf{K}}^{G} \cong \mathbf{K}^{\operatorname{Path}(G)}
$$

Diagrams are functors from small (shape) categories

Double law

Double law

Given:

Double law

Given:

then:

Double law

Given:

then:

Double law

Given:

then:

$$
(\tau \cdot \sigma) ;\left(\tau^{\prime} \cdot \sigma^{\prime}\right)=\left(\tau ; \tau^{\prime}\right) \cdot\left(\sigma ; \sigma^{\prime}\right)
$$

F;G

Double law

Given:

then:

$$
(\tau \cdot \sigma) ;\left(\tau^{\prime} \cdot \sigma^{\prime}\right)=\left(\tau ; \tau^{\prime}\right) \cdot\left(\sigma ; \sigma^{\prime}\right)
$$

This holds in Cat, which is a paradigmatic example of a twocategory.

Double law

Given:

then:

$$
(\tau \cdot \sigma) ;\left(\tau^{\prime} \cdot \sigma^{\prime}\right)=\left(\tau ; \tau^{\prime}\right) \cdot\left(\sigma ; \sigma^{\prime}\right)
$$

This holds in Cat, which is a paradigmatic example of a twocategory.
A category \mathbf{K} is a two-category when for all objects $A, B \in$ $|\mathbf{K}|, \mathbf{K}(A, B)$ is again a category, with 1-morphisms (the usual K-morphisms) as objects and 2morphisms between them.

Double law

Given:

then:

$$
(\tau \cdot \sigma) ;\left(\tau^{\prime} \cdot \sigma^{\prime}\right)=\left(\tau ; \tau^{\prime}\right) \cdot\left(\sigma ; \sigma^{\prime}\right)
$$

F; G

This holds in Cat, which is a paradigmatic example of a twocategory.
A category \mathbf{K} is a two-category when for all objects $A, B \in$ $|\mathbf{K}|, \mathbf{K}(A, B)$ is again a category, with 1-morphisms (the usual K-morphisms) as objects and 2morphisms between them.
Those 2-morphisms compose vertically (in the categories $\mathbf{K}(A, B)$) and horizontally, subject to the double law as stated here.

Double law

Given:

then:

$$
(\tau \cdot \sigma) ;\left(\tau^{\prime} \cdot \sigma^{\prime}\right)=\left(\tau ; \tau^{\prime}\right) \cdot\left(\sigma ; \sigma^{\prime}\right)
$$

F; G

This holds in Cat, which is a paradigmatic example of a twocategory.
A category \mathbf{K} is a two-category when for all objects $A, B \in$ $|\mathbf{K}|, \mathbf{K}(A, B)$ is again a category, with 1-morphisms (the usual K-morphisms) as objects and 2morphisms between them.
Those 2-morphisms compose vertically (in the categories $\mathbf{K}(A, B)$) and horizontally, subject to the double law as stated here.
In two-category Cat, we have $\operatorname{Cat}\left(\mathbf{K}^{\prime}, \mathbf{K}\right)=\mathbf{K}^{\mathbf{K}^{\prime}}$.

Equivalence of categories

Equivalence of categories

- Two categories \mathbf{K} and \mathbf{K}^{\prime} are isomorphic if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ such that $\mathbf{F} ; \mathbf{G}=\mathbf{I d}_{\mathbf{K}}$ and $\mathbf{G} ; \mathbf{F}=\mathbf{I d}_{\mathbf{K}^{\prime}}$.

Equivalence of categories

- Two categories \mathbf{K} and \mathbf{K}^{\prime} are isomorphic if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ such that $\mathbf{F} ; \mathbf{G}=\mathbf{I d}_{\mathbf{K}}$ and $\mathbf{G} ; \mathbf{F}=\mathbf{I d}_{\mathbf{K}^{\prime}}$.
- Two categories \mathbf{K} and \mathbf{K}^{\prime} are equivalent if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural isomorphisms $\eta: \mathbf{I d}_{\mathbf{K}} \rightarrow \mathbf{F} ; \mathbf{G}$ and $\epsilon: \mathbf{G} ; \mathbf{F} \rightarrow \mathbf{I d}_{\mathbf{K}^{\prime}}$.

Equivalence of categories

- Two categories \mathbf{K} and \mathbf{K}^{\prime} are isomorphic if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ such that $\mathbf{F} ; \mathbf{G}=\mathbf{I d}_{\mathbf{K}}$ and $\mathbf{G} ; \mathbf{F}=\mathbf{I d}_{\mathbf{K}^{\prime}}$.
- Two categories \mathbf{K} and \mathbf{K}^{\prime} are equivalent if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural isomorphisms $\eta: \mathbf{I d}_{\mathbf{K}} \rightarrow \mathbf{F} ; \mathbf{G}$ and $\epsilon: \mathbf{G} ; \mathbf{F} \rightarrow \mathbf{I d}_{\mathbf{K}^{\prime}}$.
- A category is skeletal if any two isomorphic objects are identical.

Equivalence of categories

- Two categories \mathbf{K} and \mathbf{K}^{\prime} are isomorphic if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ such that $\mathbf{F} ; \mathbf{G}=\mathbf{I d}_{\mathbf{K}}$ and $\mathbf{G} ; \mathbf{F}=\mathbf{I d}_{\mathbf{K}^{\prime}}$.
- Two categories \mathbf{K} and \mathbf{K}^{\prime} are equivalent if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural isomorphisms $\eta: \mathbf{I d}_{\mathbf{K}} \rightarrow \mathbf{F} ; \mathbf{G}$ and $\epsilon: \mathbf{G} ; \mathbf{F} \rightarrow \mathbf{I d}_{\mathbf{K}^{\prime}}$.
- A category is skeletal if any two isomorphic objects are identical.
- A skeleton of a category is any of its maximal skeletal subcategory.

Equivalence of categories

- Two categories \mathbf{K} and \mathbf{K}^{\prime} are isomorphic if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ such that $\mathbf{F} ; \mathbf{G}=\mathbf{I d}_{\mathbf{K}}$ and $\mathbf{G} ; \mathbf{F}=\mathbf{I d}_{\mathbf{K}^{\prime}}$.
- Two categories \mathbf{K} and \mathbf{K}^{\prime} are equivalent if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural isomorphisms $\eta: \mathbf{I d}_{\mathbf{K}} \rightarrow \mathbf{F} ; \mathbf{G}$ and $\epsilon: \mathbf{G} ; \mathbf{F} \rightarrow \mathbf{I d}_{\mathbf{K}^{\prime}}$.
- A category is skeletal if any two isomorphic objects are identical.
- A skeleton of a category is any of its maximal skeletal subcategory.

Theorem: Two categories are equivalent iff they have isomorphic skeletons.

Equivalence of categories

- Two categories \mathbf{K} and \mathbf{K}^{\prime} are isomorphic if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ such that $\mathbf{F} ; \mathbf{G}=\mathbf{I d}_{\mathbf{K}}$ and $\mathbf{G} ; \mathbf{F}=\mathbf{I d}_{\mathbf{K}^{\prime}}$.
- Two categories \mathbf{K} and \mathbf{K}^{\prime} are equivalent if there are functors $\mathbf{F}: \mathbf{K} \rightarrow \mathbf{K}^{\prime}$ and $\mathbf{G}: \mathbf{K}^{\prime} \rightarrow \mathbf{K}$ and natural isomorphisms $\eta: \mathbf{I d}_{\mathbf{K}} \rightarrow \mathbf{F} ; \mathbf{G}$ and $\epsilon: \mathbf{G} ; \mathbf{F} \rightarrow \mathbf{I d}_{\mathbf{K}^{\prime}}$.
- A category is skeletal if any two isomorphic objects are identical.
- A skeleton of a category is any of its maximal skeletal subcategory.

Theorem: Two categories are equivalent iff they have isomorphic skeletons.

All "categorical" properties are preserved under equivalence of categories

