Signatures

Algebraic signature:

$$
\Sigma=(S, \Omega, \text { arity }, \text { sort })
$$

with sort names S, operation names Ω, and arity and result sort functions
arity: $\Omega \rightarrow S^{*}$ and sort: $\Omega \rightarrow S$.

Signatures

Algebraic signature:

$$
\Sigma=(S, \Omega)
$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega=\left\langle\Omega_{w, s}\right\rangle_{w \in S^{*}, s \in S}$

Alternatively:

$$
\Sigma=(S, \Omega, \text { arity }, \text { sort })
$$

with sort names S, operation names Ω, and arity and result sort functions arity: $\Omega \rightarrow S^{*}$ and sort: $\Omega \rightarrow S$.

- $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ stands for $s_{1}, \ldots, s_{n}, s \in S$ and $f \in \Omega_{s_{1} \ldots s_{n}, s}$

Signatures

Algebraic signature:

$$
\Sigma=(S, \Omega)
$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega=\left\langle\Omega_{w, s}\right\rangle_{w \in S^{*}, s \in S}$

Alternatively:

$$
\Sigma=(S, \Omega, \text { arity }, \text { sort })
$$

with sort names S, operation names Ω, and arity and result sort functions arity: $\Omega \rightarrow S^{*}$ and sort: $\Omega \rightarrow S$.

- $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ stands for $s_{1}, \ldots, s_{n}, s \in S$ and $f \in \Omega_{s_{1} \ldots s_{n}, s}$

Signatures

Algebraic signature:

$$
\Sigma=(S, \Omega)
$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega=\left\langle\Omega_{w, s}\right\rangle_{w \in S^{*}, s \in S}$

Alternatively:

$$
\Sigma=(S, \Omega, \text { arity }, \text { sort })
$$

with sort names S, operation names Ω, and arity and result sort functions arity: $\Omega \rightarrow S^{*}$ and sort: $\Omega \rightarrow S$.

- $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ stands for $s_{1}, \ldots, s_{n}, s \in S$ and $f \in \Omega_{s_{1} \ldots s_{n}, s}$
- $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $f: s_{1}^{\prime} \times \ldots \times s_{m}^{\prime} \rightarrow s^{\prime}$ - overloading allowed

> Compare the two notions

Signatures

Algebraic signature:

$$
\Sigma=(S, \Omega)
$$

- sort names: S
- operation names, classified by arities and result sorts: $\Omega=\left\langle\Omega_{w, s}\right\rangle_{w \in S^{*}, s \in S}$

Alternatively:

$$
\Sigma=(S, \Omega, \text { arity }, \text { sort })
$$

with sort names S, operation names Ω, and arity and result sort functions arity: $\Omega \rightarrow S^{*}$ and sort: $\Omega \rightarrow S$.

- $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ stands for $s_{1}, \ldots, s_{n}, s \in S$ and $f \in \Omega_{s_{1} \ldots s_{n}, s}$
- $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $f: s_{1}^{\prime} \times \ldots \times s_{m}^{\prime} \rightarrow s^{\prime}$ - overloading allowed
- $n=0$ yields $f: \rightarrow s$, often written $f: s$ - constants allowed

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Algebras

- Σ-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

- carrier sets: $\left.|A|=\left.\langle | A\right|_{s}\right\rangle_{s \in S}$
- operations: $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightarrow|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Algebras

- Σ-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

- carrier sets: $\left.|A|=\left.\langle | A\right|_{s}\right\rangle_{s \in S}$
- operations: $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightarrow|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ BTW: constants: $f_{A}:\{\langle \rangle\} \rightarrow|A|_{s}$, i.e. $f_{A} \in|A|_{s}$, for $f: s$

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Algebras

- Σ-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

- carrier sets: $\left.|A|=\left.\langle | A\right|_{s}\right\rangle_{s \in S}$
- operations: $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightarrow|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$
- the class of all Σ-algebras:

$$
\operatorname{Alg}(\Sigma)
$$

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Algebras

- Σ-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

- carrier sets: $\left.|A|=\left.\langle | A\right|_{s}\right\rangle_{s \in S}$
- operations: $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightarrow|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$
- the class of all Σ-algebras:

$$
\operatorname{Alg}(\Sigma)
$$

Can $\operatorname{Alg}(\Sigma)$ be empty? Finite?

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Algebras

- Σ-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

- carrier sets: $\left.|A|=\left.\langle | A\right|_{s}\right\rangle_{s \in S}$
- operations: $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightarrow|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$
- the class of all Σ-algebras:

$$
\operatorname{Alg}(\Sigma)
$$

Can $\operatorname{Alg}(\Sigma)$ be empty? Finite?
Can $A \in \mathbf{A l g}(\Sigma)$ have empty carriers?

Intermezzo: many-sorted sets

Given a set (of sort names) S,

$$
S \text {-sorted set } X=\left\langle X_{s}\right\rangle_{s \in S} \text { is a family of sets } X_{s}, s \in S \text {. }
$$

Intermezzo: many-sorted sets

Given a set (of sort names) S,

$$
S \text {-sorted set } X=\left\langle X_{s}\right\rangle_{s \in S} \text { is a family of sets } X_{s}, s \in S \text {. }
$$

The usual set-theoretic concepts and notations apply component-wise.

Intermezzo: many-sorted sets

Given a set (of sort names) S,

$$
S \text {-sorted set } X=\left\langle X_{s}\right\rangle_{s \in S} \text { is a family of sets } X_{s}, s \in S
$$

The usual set-theoretic concepts and notations apply component-wise.
For instance, given $X=\left\langle X_{s}\right\rangle_{s \in S}, Y=\left\langle Y_{s}\right\rangle_{s \in S}, Z=\left\langle Z_{s}\right\rangle_{s \in S}$:

- $X \cap Y=\left\langle X_{s} \cap Y_{s}\right\rangle_{s \in S}, X \times Y=\left\langle X_{s} \times Y_{s}\right\rangle_{s \in S}$, etc
- $X \subseteq Y$ iff $X_{s} \subseteq Y_{s}$, for $s \in S$
- $R \subseteq X \times Y$ means $R=\left\langle R_{s} \subseteq X_{s} \times Y_{s}\right\rangle_{s \in S}$
- $f: X \rightarrow Y$ means $f=\left\langle f_{s}: X_{s} \rightarrow Y_{s}\right\rangle_{s \in S}$

Intermezzo: many-sorted sets

Given a set (of sort names) S,

$$
S \text {-sorted set } X=\left\langle X_{s}\right\rangle_{s \in S} \text { is a family of sets } X_{s}, s \in S \text {. }
$$

The usual set-theoretic concepts and notations apply component-wise.
For instance, given $X=\left\langle X_{s}\right\rangle_{s \in S}, Y=\left\langle Y_{s}\right\rangle_{s \in S}, Z=\left\langle Z_{s}\right\rangle_{s \in S}$:

- $X \cap Y=\left\langle X_{s} \cap Y_{s}\right\rangle_{s \in S}, X \times Y=\left\langle X_{s} \times Y_{s}\right\rangle_{s \in S}$, etc
- $X \subseteq Y$ iff $X_{s} \subseteq Y_{s}$, for $s \in S$
- $R \subseteq X \times Y$ means $R=\left\langle R_{s} \subseteq X_{s} \times Y_{s}\right\rangle_{s \in S}$
- $f: X \rightarrow Y$ means $f=\left\langle f_{s}: X_{s} \rightarrow Y_{s}\right\rangle_{s \in S}$
- for $f: X \rightarrow Y, g: Y \rightarrow Z, f ; g=\left\langle f_{s} ; g_{s}: X_{s} \rightarrow Z_{s}\right\rangle_{s \in S}: X \rightarrow Z$

BTW: $(f ; g)(x)=g(f(x))$, where by abuse of notation for $x \in X_{s}, f(x)=f_{s}(x)$

Subalgebras

Definition: For $A, A_{\text {sub }} \in \mathbf{A l g}(\Sigma), A_{\text {sub }}$ is a Σ-subalgebra of A, written $A_{\text {sub }} \subseteq A$, if
$-\left|A_{\text {sub }}\right| \subseteq|A|$, and

- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$, and $a_{1} \in\left|A_{\text {sub }}\right|_{s_{1}}, \ldots, a_{n} \in\left|A_{\text {sub }}\right|_{s_{n}}$, $f_{A_{\text {sub }}}\left(a_{1}, \ldots, a_{n}\right)=f_{A}\left(a_{1}, \ldots, a_{n}\right)$

Subalgebras

- for $A \in \mathbf{A l g}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in\left|A_{s u b}\right|_{s_{1}}, \ldots, a_{n} \in\left|A_{s u b}\right|_{s_{n}}$,

$$
f_{A}\left(a_{1}, \ldots, a_{n}\right) \in\left|A_{s u b}\right|
$$

Subalgebras

- for $A \in \mathbf{A l g}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations.
- for $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A genereted by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \operatorname{Alg}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Subalgebras

- for $A \in \mathbf{A l g}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations.
- for $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A genereted by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \operatorname{Alg}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|,\langle A\rangle_{X}$ exists.

Subalgebras

- for $A \in \mathbf{A l g}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations.
- for $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A genereted by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \operatorname{Alg}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|,\langle A\rangle_{X}$ exists.
Proof: Let $X_{0}=X$, and for $i \geq 0$,
$X_{i+1}=X_{i} \cup\left\{f_{A}\left(x_{1}, \ldots, x_{n}\right) \mid f: s_{1} \times \ldots \times s_{n} \rightarrow s, x_{1} \in\left(X_{i}\right)_{s_{1}}, \ldots, x_{n} \in\left(X_{i}\right)_{s_{n}}\right\}$.

Subalgebras

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations.
- for $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A genereted by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \operatorname{Alg}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|,\langle A\rangle_{X}$ exists.
Proof: Let $X_{0}=X$, and for $i \geq 0$,
$X_{i+1}=X_{i} \cup\left\{f_{A}\left(x_{1}, \ldots, x_{n}\right) \mid f: s_{1} \times \ldots \times s_{n} \rightarrow s, x_{1} \in\left(X_{i}\right)_{s_{1}}, \ldots, x_{n} \in\left(X_{i}\right)_{s_{n}}\right\}$.
Then $\left|\langle A\rangle_{X}\right|=\bigcup_{i \geq 0} X_{i}$ contains X (clearly) and is closed under the operations.
Moreover, if a subset of $|A|$ contains X and is closed under the operations then it contains each $X_{i}, i \geq 0$, and hence so defined $\left|\langle A\rangle_{X}\right|$ as well.

Subalgebras

- for $A \in \mathbf{A l g}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations.
- for $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A genereted by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \mathbf{A l g}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|,\langle A\rangle_{X}$ exists.
Proof:
Lemma: The intersection of any family of subsets of $|A|$ closed under the operations is closed under the operations as well.

Subalgebras

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations.
- for $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A genereted by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \mathbf{A l g}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|,\langle A\rangle_{X}$ exists.
Proof:
Lemma: The intersection of any family of subsets of $|A|$ closed under the operations is closed under the operations as well.

Then $\left|\langle A\rangle_{X}\right|=\bigcap\left\{\left|A_{\text {sub }}\right||X \subseteq| A_{\text {sub }} \mid, A_{\text {sub }} \subseteq A\right\}$ is closed under the operations and contains X. Moreover, it is contained in every subalgebra of A that contains X.

Subalgebras

- for $A \in \mathbf{A l g}(\Sigma)$, a Σ-subalgebra $A_{\text {sub }} \subseteq A$ is given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations.
- for $A \in \operatorname{Alg}(\Sigma)$ and $X \subseteq|A|$, the subalgebra of A genereted by $X,\langle A\rangle_{X}$, is the least subalgebra of A that contains X.
- $A \in \mathbf{A l g}(\Sigma)$ is reachable if $\langle A\rangle_{\emptyset}$ coincides with A.

Theorem: For any $A \in \mathbf{A l g}(\Sigma)$ and $X \subseteq|A|,\langle A\rangle_{X}$ exists.
Proof (idea):

- generate the generated subalgebra from X by closing it under operations in A; or
- the intersection of any family of subalgebras of A is a subalgebra of A.

Homomorphisms

- for $A, B \in \mathbf{A l g}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Homomorphisms

- for $A, B \in \mathbf{A l g}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Theorem: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.

Homomorphisms

- for $A, B \in \mathbf{A l g}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Theorem: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.

Proof: Check that:

- $h^{-1}\left(\left|B_{\text {sub }}\right|\right)$ is closed under the operations (in A) - easy!
- $h\left(\left|A_{\text {sub }}\right|\right)$ is closed under the operations (in B) - just a tiny bit more difficult. ..

Homomorphisms

- for $A, B \in \mathbf{A l g}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Theorem: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.

Theorem: Given a homomorphism $h: A \rightarrow B$ and $X \subseteq|A|, h\left(\langle A\rangle_{X}\right)=\langle B\rangle_{h(X)}$.

Homomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Theorem: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.

Theorem: Given a homomorphism $h: A \rightarrow B$ and $X \subseteq|A|, h\left(\langle A\rangle_{X}\right)=\langle B\rangle_{h(X)}$. Proof:

- $h\left(\langle A\rangle_{X}\right) \supseteq\langle B\rangle_{h(X)}$, since $h\left(\langle A\rangle_{X}\right)$ is a subalgebra of B and contains $h(X)$;
$-\langle A\rangle_{X} \subseteq h^{-1}\left(\langle B\rangle_{h(X)}\right)$, since $h^{-1}\left(\langle B\rangle_{h(X)}\right)$ is a subalgebra of A and contains X. Hence $h\left(\langle A\rangle_{X}\right) \subseteq h\left(h^{-1}\left(\langle B\rangle_{h(X)}\right)\right) \subseteq\langle B\rangle_{h(X)}$.

Homomorphisms

- for $A, B \in \mathbf{A l g}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Theorem: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.

Theorem: Given a homomorphism $h: A \rightarrow B$ and $X \subseteq|A|, h\left(\langle A\rangle_{X}\right)=\langle B\rangle_{h(X)}$.
Theorem: If two homomorphisms $h_{1}, h_{2}: A \rightarrow B$ coincide on $X \subseteq|A|$, then they coincide on $\langle A\rangle_{X}$.

Homomorphisms

- for $A, B \in \mathbf{A l g}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Theorem: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.

Theorem: Given a homomorphism $h: A \rightarrow B$ and $X \subseteq|A|, h\left(\langle A\rangle_{X}\right)=\langle B\rangle_{h(X)}$.
Theorem: If two homomorphisms $h_{1}, h_{2}: A \rightarrow B$ coincide on $X \subseteq|A|$, then they coincide on $\langle A\rangle_{X}$.

Proof: Check that $\left\{a \in|A| \mid h_{1}(a)=h_{2}(a)\right\}$ is closed under the operations in A.

Homomorphisms

- for $A, B \in \mathbf{A l g}(\Sigma)$, a Σ-homomorphism $h: A \rightarrow B$ is a function $h:|A| \rightarrow|B|$ that preserves the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)
$$

Theorem: Given a homomorphism $h: A \rightarrow B$ and subalgebras $A_{\text {sub }}$ of A and $B_{\text {sub }}$ of B, the image of $A_{\text {sub }}$ under $h, h\left(A_{\text {sub }}\right)$, is a subalgebra of B, and the coimage of $B_{\text {sub }}$ under $h, h^{-1}\left(B_{\text {sub }}\right)$, is a subalgebra of A.
Theorem: Given a homomorphism $h: A \rightarrow B$ and $X \subseteq|A|, h\left(\langle A\rangle_{X}\right)=\langle B\rangle_{h(X)}$.
Theorem: If two homomorphisms $h_{1}, h_{2}: A \rightarrow B$ coincide on $X \subseteq|A|$, then they coincide on $\langle A\rangle_{X}$.

Theorem: Identity function on the carrier of $A \in \operatorname{Alg}(\Sigma)$ is a homomorphism $i d_{A}: A \rightarrow A$. Composition of homomorphisms $h: A \rightarrow B$ and $g: B \rightarrow C$ is a homomorphism $h ; g: A \rightarrow C$.

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.

$$
A \longrightarrow B
$$

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.

- Σ-algebras are isomorphic if there exists an isomorphism between them.

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.

- Σ-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (" 1 - 1 " and "onto").

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.

- Σ-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (" 1 -1" and "onto").

Proof (" ""): For $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $b_{1} \in|B|_{s_{1}}, \ldots, b_{n} \in|B|_{s_{n}}$, $i_{s}^{-1}\left(f_{B}\left(b_{1}, \ldots, b_{n}\right)\right)=i_{s}^{-1}\left(f_{B}\left(i\left(i^{-1}\left(b_{1}\right)\right), \ldots, i\left(i^{-1}\left(b_{n}\right)\right)\right)\right)=$

$$
i_{s}^{-1}\left(i\left(f_{A}\left(i^{-1}\left(b_{1}\right), \ldots, i^{-1}\left(b_{n}\right)\right)\right)\right)=f_{A}\left(i^{-1}\left(b_{1}\right), \ldots, i^{-1}\left(b_{n}\right)\right)
$$

Isomorphisms

- for $A, B \in \operatorname{Alg}(\Sigma)$, a Σ-isomorphism is any Σ-homomorphism $i: A \rightarrow B$ that has an inverse, i.e., a Σ-homomorphism $i^{-1}: B \rightarrow A$ such that $i ; i^{-1}=i d_{A}$ and $i^{-1} ; i=i d_{B}$.

- Σ-algebras are isomorphic if there exists an isomorphism between them.

Theorem: A Σ-homomorphism is a Σ-isomorphism iff it is bijective (" 1 - 1 " and "onto").

Theorem: Identities are isomorphisms, and any composition of isomorphisms is an isomorphism.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$, if $a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime}$ then $f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$, if $a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime}$ then $f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$.

BTW:
equivalence

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:

$$
\begin{aligned}
- \text { for } f: s_{1} & \times \ldots \times s_{n} \rightarrow s \text { and } a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}, \\
& \text { if } a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime} \text { then } f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) .
\end{aligned}
$$

BTW:

$$
\begin{aligned}
& \text { equivalence } \\
& \approx \subseteq X \times X
\end{aligned}
$$

- reflexivity: $x \approx x$
- symmetry: if $x \approx y$ then $y \approx x$
- transitivity: if $x \approx y$ and $y \approx z$ then $x \approx z$

Then:

- equivalence class: $[x] \approx=\{y \in X \mid y \approx x\}$
- quotient set: $X / \approx=\left\{[x]_{\approx} \mid x \in X\right\}$

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$, if $a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime}$ then $f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$, if $a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime}$ then $f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$,

$$
\text { if } a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime} \text { then } f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \text {. }
$$

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right) \longmapsto \xrightarrow{f_{A}} f_{A}\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$,

$$
\text { if } a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime} \text { then } f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \text {. }
$$

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$, if $a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime}$ then $f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$.

Theorem: For any relation $R \subseteq|A| \times|A|$ on the carrier of a Σ-algebra A, there exists the least congruence on A that conatins R.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$,

$$
\text { if } a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime} \text { then } f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)
$$

Theorem: For any relation $R \subseteq|A| \times|A|$ on the carrier of a Σ-algebra A, there exists the least congruence on A that conatins R.

Proof (idea):

- generate the least congruence from R by closing it under reflexivity, symmetry, transitivity and the operations in A; or
- the intersection of any family of congruences on A is a congruence on A.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$,

$$
\text { if } a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime} \text { then } f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \text {. }
$$

Theorem: For any relation $R \subseteq|A| \times|A|$ on the carrier of a Σ-algebra A, there exists the least congruence on A that conatins R.

Theorem: For any Σ-homomorphism $h: A \rightarrow B$, the kernel of $h, K(h) \subseteq|A| \times|A|$, where $a K(h) a^{\prime}$ iff $h(a)=h\left(a^{\prime}\right)$, is a Σ-congruence on A.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$,

$$
\text { if } a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime} \text { then } f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \text {. }
$$

Theorem: For any relation $R \subseteq|A| \times|A|$ on the carrier of a Σ-algebra A, there exists the least congruence on A that conatins R.

Theorem: For any Σ-homomorphism $h: A \rightarrow B$, the kernel of $h, K(h) \subseteq|A| \times|A|$, where $a K(h) a^{\prime}$ iff $h(a)=h\left(a^{\prime}\right)$, is a Σ-congruence on A.

Proof: For $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$, if $a_{1} K(h)_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} K(h)_{s_{n}} a_{n}^{\prime}$ then $f_{A}\left(a_{1}, \ldots, a_{n}\right) K(h)_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$, since $h_{s}\left(f_{A}\left(a_{1}, \ldots, a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}\right), \ldots, h_{s_{n}}\left(a_{n}\right)\right)=f_{B}\left(h_{s_{1}}\left(a_{1}^{\prime}\right), \ldots, h_{s_{n}}\left(a_{n}^{\prime}\right)\right)=$ $h_{s}\left(f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)\right)$.

Congruences

- for $A \in \operatorname{Alg}(\Sigma)$, a Σ-congruence on A is an equivalence $\equiv \subseteq|A| \times|A|$ that is closed under the operations:
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1}, a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}, a_{n}^{\prime} \in|A|_{s_{n}}$,

$$
\text { if } a_{1} \equiv_{s_{1}} a_{1}^{\prime}, \ldots, a_{n} \equiv_{s_{n}} a_{n}^{\prime} \text { then } f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right) \text {. }
$$

Theorem: For any relation $R \subseteq|A| \times|A|$ on the carrier of a Σ-algebra A, there exists the least congruence on A that conatins R.

Theorem: For any Σ-homomorphism $h: A \rightarrow B$, the kernel of $h, K(h) \subseteq|A| \times|A|$, where $a K(h) a^{\prime}$ iff $h(a)=h\left(a^{\prime}\right)$, is a Σ-congruence on A.

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,\left.|A| \equiv\right|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv_{s} a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,\left.|A| \equiv\right|_{s}=\left\{[a]_{\equiv}|a \in| A \mid s\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv_{s} a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Theorem: The above is well-defined.

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,\left.|A| \equiv\right|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv_{s} a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Theorem: The above is well-defined.
Proof: Given $a_{1}^{\prime} \in|A|_{s_{1}}, \ldots, a_{n}^{\prime} \in|A|{s_{n}}_{n}$ such that $a_{1}^{\prime} \equiv s_{s_{1}} a_{1}, \ldots, a_{n}^{\prime} \equiv_{s_{n}} a_{n}$

- so that a_{i}^{\prime} is another representant of the equivalence class $\left[a_{i}\right]_{\equiv,} i=1, \ldots, n$ $f_{A}\left(a_{1}, \ldots, a_{n}\right) \equiv_{s} f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)$. Hence $f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots\left[a_{n}\right]_{\equiv}\right)=$ $\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}=\left[f_{A}\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)\right]_{\equiv}=f_{A / \equiv}\left(\left[a_{1}^{\prime}\right]_{\equiv}, \ldots\left[a_{n}^{\prime}\right]_{\equiv}\right)$

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,\left.|A| \equiv\right|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv_{s} a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ-homomorphisms $[-]_{\equiv}: A \rightarrow A / \equiv$.

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,\left.|A| \equiv\right|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv_{s} a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ-homomorphisms $[-] \equiv: A \rightarrow A / \equiv$.
Theorem: Given two Σ-congruences \equiv and \equiv^{\prime} on $A, \equiv \subseteq \equiv^{\prime}$ iff there exists a Σ-homomorphism $h: A / \equiv \rightarrow A / \equiv^{\prime}$ such that $[-]_{\equiv} ; h=[-]_{\equiv^{\prime}}$.

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,|A / \equiv|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv_{s} a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ-homomorphisms $[-]_{\equiv}: A \rightarrow A / \equiv$.

Theorem: Given two Σ-congruences \equiv and \equiv^{\prime} on $A, \equiv \subseteq \equiv^{\prime}$ iff there exists a Σ-homomorphism $h: A / \equiv \rightarrow A / \equiv^{\prime}$ such that $[-]_{\equiv} ; h=[-]_{\equiv^{\prime}}$.

Proof (idea): Define $h\left([a]_{\equiv}\right)=[a]_{\equiv^{\prime}}$:

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,\left.|A| \equiv\right|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv_{s} a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ-homomorphisms $[-] \equiv: A \rightarrow A / \equiv$.
Theorem: Given two Σ-congruences \equiv and \equiv^{\prime} on $A, \equiv \subseteq \equiv^{\prime}$ iff there exists a Σ-homomorphism $h: A / \equiv \rightarrow A / \equiv^{\prime}$ such that $[-]_{\equiv} ; h=[-]_{\equiv^{\prime}}$.

Theorem: For any Σ-homomorphism $h: A \rightarrow B, A / K(h)$ is isomorphic with $h(A)$.

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,\left.|A| \equiv\right|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv_{s} a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ-homomorphisms $[-]_{\equiv}: A \rightarrow A / \equiv$.

Theorem: Given two Σ-congruences \equiv and \equiv^{\prime} on $A, \equiv \subseteq \equiv^{\prime}$ iff there exists a Σ-homomorphism $h: A / \equiv \rightarrow A / \equiv^{\prime}$ such that []$_{\equiv} ; h=[-]_{\equiv^{\prime}}$.

Theorem: For any Σ-homomorphism $h: A \rightarrow B, A / K(h)$ is isomorphic with $h(A)$.
Proof (idea): Check that $i: A / K(h) \rightarrow B$ defined by $i\left([a]_{K(h)}\right)=h(a)$ is injective and is "onto" $h(A)$.

Quotients

- for $A \in \operatorname{Alg}(\Sigma)$ and Σ-congruence $\equiv \subseteq|A| \times|A|$ on A, the quotient algebra A / \equiv is built in the natural way on the equivalence classes of \equiv :
- for $s \in S,\left.|A| \equiv\right|_{s}=\left\{\left.[a]_{\equiv}|a \in| A\right|_{s}\right\}$, with $[a]_{\equiv}=\left\{a^{\prime} \in|A|_{s} \mid a \equiv_{s} a^{\prime}\right\}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in|A|_{s_{1}}, \ldots, a_{n} \in|A|_{s_{n}}$,

$$
f_{A / \equiv}\left(\left[a_{1}\right]_{\equiv}, \ldots,\left[a_{n}\right]_{\equiv}\right)=\left[f_{A}\left(a_{1}, \ldots, a_{n}\right)\right]_{\equiv}
$$

Theorem: The above is well-defined. Moreover, the natural map that assigns to every element its equivalence class is a Σ-homomorphisms $[-] \equiv: A \rightarrow A / \equiv$.
Theorem: Given two Σ-congruences \equiv and \equiv^{\prime} on $A, \equiv \subseteq \equiv^{\prime}$ iff there exists a Σ-homomorphism $h: A / \equiv \rightarrow A / \equiv^{\prime}$ such that $[-]_{\equiv} ; h=[-]_{\equiv^{\prime}}$.

Theorem: For any Σ-homomorphism $h: A \rightarrow B, A / K(h)$ is isomorphic with $h(A)$.

Products

- for $A_{i} \in \operatorname{Alg}(\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:

Products

- for $A_{i} \in \operatorname{Alg}(\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:

BTW:
Cartesian product of sets $X_{i}, i \in \mathcal{I}$ $\prod_{i \in \mathcal{I}} X_{i}$
$-\prod_{i \in \mathcal{I}} X_{i}=\left\{p: \mathcal{I} \rightarrow \bigcup_{i \in \mathcal{I}} X_{i} \mid p(i) \in X_{i}, i \in \mathcal{I}\right\}$

- projections $\pi_{k}: \prod_{i \in \mathcal{I}} X_{i} \rightarrow X_{k}, \pi_{k}(p)=p(k)$.

Products

- for $A_{i} \in \operatorname{Alg}(\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:

BTW:
Cartesian product of sets $X_{i}, i \in \mathcal{I}$ $\prod_{i \in \mathcal{I}} X_{i}$
$-\prod_{i \in \mathcal{I}} X_{i}=\left\{p: \mathcal{I} \rightarrow \bigcup_{i \in \mathcal{I}} X_{i} \mid p(i) \in X_{i}, i \in \mathcal{I}\right\}$
(for $\mathcal{I}=\emptyset, \bigcup_{i \in \mathcal{I}} X_{i}=\emptyset$)

- projections $\pi_{k}: \prod_{i \in \mathcal{I}} X_{i} \rightarrow X_{k}, \pi_{k}(p)=p(k)$.

Products

- for $A_{i} \in \operatorname{Alg}(\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:
- for $s \in S,\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s}=\prod_{i \in \mathcal{I}}\left|A_{i}\right|_{s}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{1}}, \ldots, a_{n} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{n}}$, for $i \in \mathcal{I}, f_{\prod_{i \in \mathcal{I}} A_{i}}\left(a_{1}, \ldots, a_{n}\right)(i)=f_{A_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)$

Products

- for $A_{i} \in \operatorname{Alg}(\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:
- for $s \in S,\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s}=\prod_{i \in \mathcal{I}}\left|A_{i}\right|_{s}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{1}}, \ldots, a_{n} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{n}}$, for $i \in \mathcal{I}, f_{\prod_{i \in \mathcal{I}} A_{i}}\left(a_{1}, \ldots, a_{n}\right)(i)=f_{A_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)$
Theorem: For any family $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}$ of Σ-algebras, projections $\pi_{i}(a)=a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}}\left|A_{i}\right|$, are Σ-homomorphisms $\pi_{i}: \prod_{i \in \mathcal{I}} A_{i} \rightarrow A_{i}$.

Products

- for $A_{i} \in \operatorname{Alg}(\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:
- for $s \in S,\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s}=\prod_{i \in \mathcal{I}}\left|A_{i}\right|_{s}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{1}}, \ldots, a_{n} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{n}}$, for $i \in \mathcal{I}, f_{\prod_{i \in \mathcal{I}} A_{i}}\left(a_{1}, \ldots, a_{n}\right)(i)=f_{A_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)$
Theorem: For any family $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}$ of Σ-algebras, projections $\pi_{i}(a)=a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}}\left|A_{i}\right|$, are Σ-homomorphisms $\pi_{i}: \prod_{i \in \mathcal{I}} A_{i} \rightarrow A_{i}$.

Define the product of the empty family of Σ-algebras.

Products

- for $A_{i} \in \operatorname{Alg}(\Sigma), i \in \mathcal{I}$, the product of $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}, \prod_{i \in \mathcal{I}} A_{i}$ is built in the natural way on the Cartesian product of the carriers of $A_{i}, i \in \mathcal{I}$:
- for $s \in S,\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s}=\prod_{i \in \mathcal{I}}\left|A_{i}\right|_{s}$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $a_{1} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{1}}, \ldots, a_{n} \in\left|\prod_{i \in \mathcal{I}} A_{i}\right|_{s_{n}}$, for $i \in \mathcal{I}, f_{\prod_{i \in \mathcal{I}} A_{i}}\left(a_{1}, \ldots, a_{n}\right)(i)=f_{A_{i}}\left(a_{1}(i), \ldots, a_{n}(i)\right)$
Theorem: For any family $\left\langle A_{i}\right\rangle_{i \in \mathcal{I}}$ of Σ-algebras, projections $\pi_{i}(a)=a(i)$, where $i \in \mathcal{I}$ and $a \in \prod_{i \in \mathcal{I}}\left|A_{i}\right|$, are Σ-homomorphisms $\pi_{i}: \prod_{i \in \mathcal{I}} A_{i} \rightarrow A_{i}$.

Define the product of the empty family of Σ-algebras. When the projection π_{i} is an isomorphism?

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$
BTW:
$-f\left(t_{1}, \ldots, t_{n}\right)$ really is " $\left.f^{\prime \prime \wedge "(" \wedge} t_{1}{ }^{\wedge}{ }^{\prime \prime},{ }^{\prime} . . . ", " \wedge t_{n}{ }^{\wedge} "\right)$ "

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$
BTW:
$-f\left(t_{1}, \ldots, t_{n}\right)$ really is " $\left.f^{\prime \prime \wedge "(" \wedge} t_{1}{ }^{\wedge}{ }^{\prime \prime}, " \ldots ", " \wedge t_{n}{ }^{\wedge} "\right)$ "
- constants: for $f: s$ (i.e. $f: \rightarrow s$), the term $f()$ is simply written as f

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$
BTW:
$-f\left(t_{1}, \ldots, t_{n}\right)$ really is " $\left.f^{\prime \prime \wedge "(" \wedge} t_{1}{ }^{\wedge}{ }^{\prime \prime}, " \ldots ", " \wedge t_{n}{ }^{\wedge} "\right)$ "
- constants: for $f: s$ (i.e. $f: \rightarrow s$), the term $f()$ is simply written as f
- overloading may cause probles with "parsing": consider for instance $a: s_{1}, f: s_{1} \rightarrow s, a: s_{2}, f: s_{2} \rightarrow s$; then there are "two" terms " $f(a)$ " of sort s

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$
BTW:
$-f\left(t_{1}, \ldots, t_{n}\right)$ really is " $\left.f^{\prime \prime \wedge "(" \wedge} t_{1}{ }^{\wedge}{ }^{\prime \prime}, " \ldots ", " \wedge t_{n}{ }^{\wedge} "\right)$ "
- constants: for $f: s$ (i.e. $f: \rightarrow s$), the term $f()$ is simply written as f
- overloading may cause probles with "parsing": consider for instance $a: s_{1}, f: s_{1} \rightarrow s, a: s_{2}, f: s_{2} \rightarrow s$; then there are "two" terms " $f(a)$ " of sort s
— better write terms for instance as $f\left(a: s_{1}\right): s$ and $f\left(a: s_{2}\right): s$.

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$

Above and in the following: assuming unambiguous "parsing" of terms!

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$
- for any Σ-algebra A and valuation $v: X \rightarrow|A|$, the value $t_{A}[v] \in|A|_{s}$ of a term $t \in\left|T_{\Sigma}(X)\right|_{s}$ in A under v is determined inductively:
$-x_{A}[v]=v_{s}(x)$, for $x \in X_{s}, s \in S$
$-\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{A}[v]=f_{A}\left(\left(t_{1}\right)_{A}[v], \ldots,\left(t_{n}\right)_{A}[v]\right)$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$
- for any Σ-algebra A and valuation $v: X \rightarrow|A|$, the value $t_{A}[v] \in|A|_{s}$ of a term $t \in\left|T_{\Sigma}(X)\right|_{s}$ in A under v is determined inductively:
$-x_{A}[v]=v_{s}(x)$, for $x \in X_{s}, s \in S$
$-\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{A}[v]=f_{A}\left(\left(t_{1}\right)_{A}[v], \ldots,\left(t_{n}\right)_{A}[v]\right)$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$
BTW: There are three kinds of parenthesis here!

Terms

Consider an S-sorted set X of variables.

- terms $t \in\left|T_{\Sigma}(X)\right|$ are built using variables X, constants and operations from Ω in the usual way: $\left|T_{\Sigma}(X)\right|$ is the least set such that
$-X \subseteq\left|T_{\Sigma}(X)\right|$
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f\left(t_{1}, \ldots, t_{n}\right) \in\left|T_{\Sigma}(X)\right|_{s}$
- for any Σ-algebra A and valuation $v: X \rightarrow|A|$, the value $t_{A}[v] \in|A|_{s}$ of a term $t \in\left|T_{\Sigma}(X)\right|_{s}$ in A under v is determined inductively:
$-x_{A}[v]=v_{s}(x)$, for $x \in X_{s}, s \in S$
$-\left(f\left(t_{1}, \ldots, t_{n}\right)\right)_{A}[v]=f_{A}\left(\left(t_{1}\right)_{A}[v], \ldots,\left(t_{n}\right)_{A}[v]\right)$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$

Above and in the following: assuming unambiguous "parsing" of terms!

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f_{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f_{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.
- Ground terms: terms with no variables.
- Ground term algebra:

$$
T_{\Sigma}=T_{\Sigma}(\emptyset)
$$

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f_{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Fact: $T_{\Sigma}(X)$ is generated by $X ; T_{\Sigma}$ is reachable.

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f_{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Theorem: For any S-sorted set X of variables,

Set S
$\operatorname{Alg}(\Sigma)$

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f_{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Theorem: For any S-sorted set X of variables, Σ-algebra A and valuation $v: X \rightarrow|A|$,

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f_{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Theorem: For any S-sorted set X of variables, Σ-algebra A and valuation $v: X \rightarrow|A|$, there is a unique Σ-homomorphism $v^{\#}: T_{\Sigma}(X) \rightarrow A$ that extends v.

Term algebras

Consider an S-sorted set X of variables.

- The term algebra $T_{\Sigma}(X)$ has the set of terms as the carrier and operations defined "syntactically":
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ and $t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}$, $f_{T_{\Sigma}(X)}\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Theorem: For any S-sorted set X of variables, Σ-algebra A and valuation $v: X \rightarrow|A|$, there is a unique Σ-homomorphism $v^{\#}: T_{\Sigma}(X) \rightarrow A$ that extends v. Moreover, for $t \in\left|T_{\Sigma}(X)\right|$, $v^{\#}(t)=t_{A}[v]$.

One simple consequence

One simple consequence

Notation: Given $t \in\left|T_{\Sigma}(X)\right|, x_{1} \in X_{s_{1}}, t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, x_{n} \in X_{s_{n}}$, $t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}, x_{1}, \ldots, x_{n}$ mutually distinct:
t with t_{1}, \ldots, t_{n} simultaneously substituted for x_{1}, \ldots, x_{n}, respectively:

$$
t\left[x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right]
$$

One simple consequence

Notation: Given $t \in\left|T_{\Sigma}(X)\right|, x_{1} \in X_{s_{1}}, t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, x_{n} \in X_{s_{n}}$, $t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}, x_{1}, \ldots, x_{n}$ mutually distinct:
t with t_{1}, \ldots, t_{n} simultaneously substituted for x_{1}, \ldots, x_{n}, respectively:

$$
t\left[x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right]
$$

Fact: $\quad t\left[x_{1} \mapsto t_{1}\right]\left[x_{2} \mapsto t_{2}\right]=t\left[x_{1} \mapsto t_{1}\left[x_{2} \mapsto t_{2}\right], x_{2} \mapsto t_{2}\right]$

One simple consequence

Notation: Given $t \in\left|T_{\Sigma}(X)\right|, x_{1} \in X_{s_{1}}, t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, x_{n} \in X_{s_{n}}$, $t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}, x_{1}, \ldots, x_{n}$ mutually distinct:
t with t_{1}, \ldots, t_{n} simultaneously substituted for x_{1}, \ldots, x_{n}, respectively:

$$
t\left[x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right]
$$

Fact: $\quad t\left[x_{1} \mapsto t_{1}\right]\left[x_{2} \mapsto t_{2}\right]=t\left[x_{1} \mapsto t_{1}\left[x_{2} \mapsto t_{2}\right], x_{2} \mapsto t_{2}\right]$
Proof: By laborious (double) induction on the structure of t and t_{1}.

One simple consequence

Notation: Given $t \in\left|T_{\Sigma}(X)\right|, x_{1} \in X_{s_{1}}, t_{1} \in\left|T_{\Sigma}(X)\right|_{s_{1}}, \ldots, x_{n} \in X_{s_{n}}$, $t_{n} \in\left|T_{\Sigma}(X)\right|_{s_{n}}, x_{1}, \ldots, x_{n}$ mutually distinct:
t with t_{1}, \ldots, t_{n} simultaneously substituted for x_{1}, \ldots, x_{n}, respectively:

$$
t\left[x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right]
$$

Fact: $\quad t\left[x_{1} \mapsto t_{1}\right]\left[x_{2} \mapsto t_{2}\right]=t\left[x_{1} \mapsto t_{1}\left[x_{2} \mapsto t_{2}\right], x_{2} \mapsto t_{2}\right]$
Proof: By laborious (double) induction on the structure of t and t_{1}.
Alternative:

Generalise!

One simple consequence

Notation: Given substitution $\theta: X \rightarrow\left|T_{\Sigma}(X)\right|$:
t with substition θ carried out: $t[\theta]$

One simple consequence

Notation: Given substitution $\theta: X \rightarrow\left|T_{\Sigma}(X)\right|$:

$$
t \text { with substition } \theta \text { carried out: } t[\theta]
$$

Fact: $\quad t[\theta]=t_{T_{\Sigma}(X)}[\theta]=\theta^{\#}(t)$

One simple consequence

Theorem: For any S-sorted sets X, Y and Z (of variables) and substitutions $\theta_{1}: X \rightarrow\left|T_{\Sigma}(Y)\right|$ and $\theta_{2}: Y \rightarrow\left|T_{\Sigma}(Z)\right|$

$\operatorname{Alg}(\Sigma)$

One simple consequence

Theorem: For any S-sorted sets X, Y and Z (of variables) and substitutions $\theta_{1}: X \rightarrow\left|T_{\Sigma}(Y)\right|$ and $\theta_{2}: Y \rightarrow\left|T_{\Sigma}(Z)\right|$

One simple consequence

Theorem: For any S-sorted sets X, Y and Z (of variables) and substitutions $\theta_{1}: X \rightarrow\left|T_{\Sigma}(Y)\right|$ and $\theta_{2}: Y \rightarrow\left|T_{\Sigma}(Z)\right|$

One simple consequence

Theorem: For any S-sorted sets X, Y and Z (of variables) and substitutions $\theta_{1}: X \rightarrow\left|T_{\Sigma}(Y)\right|$ and $\theta_{2}: Y \rightarrow\left|T_{\Sigma}(Z)\right|$

$$
\theta_{1}^{\#} ; \theta_{2}^{\#}=\left(\theta_{1} ; \theta_{2}^{\#}\right)^{\#}
$$

One simple consequence

Theorem: For any S-sorted set X, Σ-algebras $A, B \in \operatorname{Alg}(\Sigma)$, valuation $v: X \rightarrow|A|$ and Σ-homomorphism $h: A \rightarrow B$,

$$
v^{\#} ; h=(v ; h)^{\#}
$$

In other words, for any term $t \in\left|T_{\Sigma}(X)\right|_{s}, h_{s}\left(t_{A}[v]\right)=t_{B}[v ; h]$.

Consequences for reachability

Consequences for reachability

Consequences for reachability

Theorem:

- For any Σ-algebra $A \in \operatorname{Alg}(\Sigma)$, there is a unique Σ-homomorphism $!_{A}: T_{\Sigma} \rightarrow A$.

Consequences for reachability

Theorem:

- For any Σ-algebra $A \in \operatorname{Alg}(\Sigma)$, there is a unique Σ-homomorphism $!_{A}: T_{\Sigma} \rightarrow A$.
- Σ-algebra $A \in \operatorname{Alg}(\Sigma)$ is reachable iff the unique homomorphism $!_{A}: T_{\Sigma} \rightarrow A$ is surjective.

Consequences for reachability

Theorem:

- For any Σ-algebra $A \in \operatorname{Alg}(\Sigma)$, there is a unique Σ-homomorphism $!_{A}: T_{\Sigma} \rightarrow A$.
- Σ-algebra $A \in \operatorname{Alg}(\Sigma)$ is reachable iff the unique homomorphism $!_{A}: T_{\Sigma} \rightarrow A$ is surjective.
- Each reachable Σ-algebra is isomorphic to a quotient of T_{Σ}.

Consequences for reachability

Theorem:

- For any Σ-algebra $A \in \operatorname{Alg}(\Sigma)$, there is a unique Σ-homomorphism $!_{A}: T_{\Sigma} \rightarrow A$.
- Σ-algebra $A \in \operatorname{Alg}(\Sigma)$ is reachable iff the unique homomorphism $!_{A}: T_{\Sigma} \rightarrow A$ is surjective.
- Each reachable Σ-algebra is isomorphic to a quotient of T_{Σ}.
- For any Σ-algebras $A, B \in \operatorname{Alg}(\Sigma)$, if A is reachable then there is at most one homomorphism $h: A \rightarrow B$.

Consequences for reachability

Theorem:

- For any Σ-algebra $A \in \operatorname{Alg}(\Sigma)$, there is a unique Σ-homomorphism $!_{A}: T_{\Sigma} \rightarrow A$.
- Σ-algebra $A \in \operatorname{Alg}(\Sigma)$ is reachable iff the unique homomorphism $!_{A}: T_{\Sigma} \rightarrow A$ is surjective.
- Each reachable Σ-algebra is isomorphic to a quotient of T_{Σ}.
- For any Σ-algebras $A, B \in \operatorname{Alg}(\Sigma)$, if A is reachable then there is at most one homomorphism $h: A \rightarrow B$.
- For any reachable Σ-algebra A, each homomorphism $h: B \rightarrow A$ is surjective.

Equations

- Equation:

$$
\forall X . t=t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.

Equations

- Equation:

$$
\forall X . t=t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.
- Satisfaction relation: Σ-algebra A satisfies $\forall X . t=t^{\prime}$

$$
A \models \forall X . t=t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]=t_{A}^{\prime}[v]$.

Equations

- Equation:

$$
\forall X . t=t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.
- Satisfaction relation: Σ-algebra A satisfies $\forall X . t=t^{\prime}$

$$
A \models \forall X . t=t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]=t_{A}^{\prime}[v]$.

BTW: $A \models \forall X . t=t^{\prime}$ holds "trivially" if for some $s \in S, X_{s} \neq \emptyset$ and $|A|_{s}=\emptyset$.

Semantic entailment

$$
\Phi \models_{\Sigma} \varphi
$$

Σ-equation φ is a semantic consequence of a set of Σ-equations Φ if φ holds in every Σ-algebra that satisfies Φ.

Semantic entailment

$$
\Phi \models \Sigma \varphi
$$

Σ-equation φ is a semantic consequence of a set of Σ-equations Φ if φ holds in every Σ-algebra that satisfies Φ.

BTW:

- Models of a set of equations: $\operatorname{Mod}(\Phi)=\{A \in \mathbf{A l g}(\Sigma) \mid A \models \Phi\}$

Semantic entailment

$$
\Phi \models_{\Sigma} \varphi
$$

Σ-equation φ is a semantic consequence of a set of Σ-equations Φ if φ holds in every Σ-algebra that satisfies Φ.

BTW:

- Models of a set of equations: $\operatorname{Mod}(\Phi)=\{A \in \mathbf{A l g}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $\operatorname{Th}(\mathcal{C})=\{\varphi \mid \mathcal{C} \models \varphi\}$

Semantic entailment

$$
\Phi \models_{\Sigma} \varphi
$$

Σ-equation φ is a semantic consequence of a set of Σ-equations Φ

$$
\text { if } \varphi \text { holds in every } \Sigma \text {-algebra that satisfies } \Phi \text {. }
$$

BTW:

- Models of a set of equations: $\operatorname{Mod}(\Phi)=\{A \in \mathbf{A l g}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $\operatorname{Th}(\mathcal{C})=\{\varphi \mid \mathcal{C} \models \varphi\}$
- $\Phi \models \varphi \Longleftrightarrow \varphi \in \operatorname{Th}(\operatorname{Mod}(\Phi))$

Semantic entailment

$$
\Phi \models_{\Sigma} \varphi
$$

$$
\begin{aligned}
& \Sigma \text {-equation } \varphi \text { is a semantic consequence of a set of } \Sigma \text {-equations } \Phi \\
& \text { if } \varphi \text { holds in every } \Sigma \text {-algebra that satisfies } \Phi .
\end{aligned}
$$

BTW:

- Models of a set of equations: $\operatorname{Mod}(\Phi)=\{A \in \mathbf{A l g}(\Sigma) \mid A \models \Phi\}$
- Theory of a class of algebras: $\operatorname{Th}(\mathcal{C})=\{\varphi \mid \mathcal{C} \models \varphi\}$
- $\Phi \models \varphi \Longleftrightarrow \varphi \in \operatorname{Th}(\operatorname{Mod}(\Phi))$
- Mod and $T h$ form a Galois connection: $\operatorname{Mod}(\Phi) \supseteq \mathcal{C}$ iff $\Phi \subseteq \operatorname{Th}(\mathcal{C})$.
$-\mathcal{C} \subseteq \operatorname{Mod}(\operatorname{Th}(\mathcal{C})), \Phi \subseteq \operatorname{Th}(\operatorname{Mod}(\Phi))$
$-\operatorname{Mod}(\operatorname{Th}(\operatorname{Mod}(\Phi)))=\operatorname{Mod}(\Phi), \operatorname{Th}(\operatorname{Mod}(\operatorname{Th}(\mathcal{C})))=\operatorname{Th}(\mathcal{C})$

Equational specifications

$$
\langle\Sigma, \Phi\rangle
$$

- signature Σ, to determine the static module interface
- axioms (Σ-equations), to determine required module properties

Equational specifications

$$
\langle\Sigma, \Phi\rangle
$$

- signature Σ, to determine the static module interface
- axioms (Σ-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable "modules"

Equational specifications

$$
\langle\Sigma, \Phi\rangle
$$

- signature Σ, to determine the static module interface
- axioms (Σ-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable "modules"

Theorem: A class of Σ-algebras is equationally definable iff it is a variety (i.e. is closed under subalgebras, products and homomorphic images).

Equational specifications

$$
\langle\Sigma, \Phi\rangle
$$

- signature Σ, to determine the static module interface
- axioms (Σ-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable "modules"

Theorem: A class of Σ-algebras is equationally definable iff it is a variety (i.e. is closed under subalgebras, products and homomorphic images).

$$
" \Longrightarrow ": \text { Easy! }
$$

Equational specifications

$$
\langle\Sigma, \Phi\rangle
$$

- signature Σ, to determine the static module interface
- axioms (Σ-equations), to determine required module properties

BUT:

Equational specifications typically admit a lot of undesirable "modules"

Theorem: A class of Σ-algebras is equationally definable iff it is a variety (i.e. is closed under subalgebras, products and homomorphic images).

$$
\begin{aligned}
& " \Longrightarrow ": ~ E a s y! \\
& " \Longleftarrow ": ~ N o t ~ s o ~ e a s y, ~ h i n t s ~ l a t e r . ~
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { spec NAIVENAT }=\text { sort } N a t \\
& \qquad \begin{aligned}
& \text { ops } 0: N a t ; \\
& \text { succ }: N a t \rightarrow N a t ; \\
&-+\ldots N a t \times N a t \rightarrow N a t \\
& \text { axioms } \forall n: N a t \bullet n+0=n ; \\
& \forall n, m: N a t \bullet n+\operatorname{succ}(m)=\operatorname{succ}(n+m)
\end{aligned} \\
& \left.\qquad \begin{array}{l}
\\
\end{array}\right) \\
&
\end{aligned}
$$

Now:

$$
\text { NAIVENAT } \not \vDash \forall n, m: N a t \bullet n+m=m+n
$$

How to fix this

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles

How to fix this

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles

There has been a population explosion among logical systems. . .

How to fix this

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
- more about this elsewhere...

Institutions!

There has been a population explosion among logical systems. . .

How to fix this

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
- more about this elsewhere...

Institutions!

- Constraints:
- reachability (and generation): "no junk"
- initiality (and freeness): "no junk" \& "no confusion"

There has been a population explosion among logical systems. . .

How to fix this

- Other (stronger) logical systems: conditional equations, first-order logic, higher-order logics, other bells-and-whistles
- more about this elsewhere...

Institutions!

- Constraints:
- reachability (and generation): "no junk"
- initiality (and freeness): "no junk" \& "no confusion"

Constraints can be thought of as special (higher-order) formulae.

There has been a population explosion among logical systems...

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $\operatorname{Mod}(\Phi)$.

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $\operatorname{Mod}(\Phi)$.

P

$$
\text { where } P=\prod_{\equiv \in\left\{\equiv \mid\left(T_{\Sigma} / \equiv\right) \models \Phi\right\}} T_{\Sigma} / \equiv
$$

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $\operatorname{Mod}(\Phi)$.

$$
I=\langle P\rangle_{\emptyset} \longleftrightarrow P
$$

$$
\text { where } P=\prod_{\equiv \in\left\{\equiv \mid\left(T_{\Sigma} / \equiv\right) \models \Phi\right\}} T_{\Sigma} / \equiv
$$

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $\operatorname{Mod}(\Phi)$.

$$
I=\langle P\rangle_{\emptyset} \longleftrightarrow P \quad M \models \Phi
$$

where $P=\prod_{\equiv \in\left\{\equiv \mid\left(T_{\Sigma} / \equiv\right) \models \Phi\right\}} T_{\Sigma} / \equiv$

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $\operatorname{Mod}(\Phi)$.

$$
I=\langle P\rangle_{\emptyset} \longleftrightarrow P
$$

$$
\langle M\rangle_{\emptyset} \longleftrightarrow M \models \Phi
$$

where $P=\prod_{\equiv \in\left\{\equiv \mid\left(T_{\Sigma} / \equiv\right) \models \Phi\right\}} T_{\Sigma} / \equiv$

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $\operatorname{Mod}(\Phi)$.

$$
I=\langle P\rangle_{\emptyset} \longleftrightarrow P
$$

$$
T_{\Sigma} / \equiv \longleftrightarrow\langle M\rangle_{\emptyset} \longleftrightarrow M \models \Phi
$$

$$
\text { where } P=\prod_{\equiv \in\left\{\equiv \mid\left(T_{\Sigma} / \equiv\right) \models \Phi\right\}} T_{\Sigma} / \equiv
$$

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $\operatorname{Mod}(\Phi)$.

$$
I=\langle P\rangle_{\emptyset} \longleftrightarrow P \longrightarrow T_{\Sigma} / \equiv \longleftrightarrow\langle M\rangle_{\emptyset} \longleftrightarrow M \models \Phi
$$

where $P=\prod_{\equiv \in\left\{\equiv \mid\left(T_{\Sigma} / \equiv\right) \models \Phi\right\}} T_{\Sigma} / \equiv$

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the quotient of the algebra of ground Σ-terms by the congruence that glues together all ground terms t, t^{\prime} such that $\Phi \models \forall \emptyset . t=t^{\prime}$.

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the quotient of the algebra of ground Σ-terms by the congruence that glues together all ground terms t, t^{\prime} such that $\Phi \models \forall \emptyset . t=t^{\prime}$.

BTW: This can be generalised to the existence of a free model of $\langle\Sigma, \Phi\rangle$ over any (many-sorted) set of data.

Free models

Theorem: For any equational specification $\langle\Sigma, \Phi\rangle$ and S-sorted set X, there exists an algebra $F \in \operatorname{Mod}(\Phi)$ over X that is free over X with unit $\eta: X \rightarrow|F|$, i.e. such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ and valuation $v: X \rightarrow|M|$, there exists a unique Σ-homomorphism $h: F \rightarrow M$ such that $\eta ; h=v$.

Free models

Theorem: For any equational specification $\langle\Sigma, \Phi\rangle$ and S-sorted set X, there exists an algebra $F \in \operatorname{Mod}(\Phi)$ over X that is free over X with unit $\eta: X \rightarrow|F|$, i.e. such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ and valuation $v: X \rightarrow|M|$, there exists a unique Σ-homomorphism $h: F \rightarrow M$ such that $\eta ; h=v$.

Free models

Theorem: For any equational specification $\langle\Sigma, \Phi\rangle$ and S-sorted set X, there exists an algebra $F \in \operatorname{Mod}(\Phi)$ over X that is free over X with unit $\eta: X \rightarrow|F|$, i.e. such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ and valuation $v: X \rightarrow|M|$, there exists a unique Σ-homomorphism $h: F \rightarrow M$ such that $\eta ; h=v$.

Proof:

- Define $\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

Free models

Theorem: For any equational specification $\langle\Sigma, \Phi\rangle$ and S-sorted set X, there exists an algebra $F \in \operatorname{Mod}(\Phi)$ over X that is free over X with unit $\eta: X \rightarrow|F|$, i.e. such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ and valuation $v: X \rightarrow|M|$, there exists a unique Σ-homomorphism $h: F \rightarrow M$ such that $\eta ; h=v$.

Proof:

- Define $\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$
- Show that \equiv is a congruence on $T_{\Sigma}(X)$, and $T_{\Sigma}(X) / \equiv \models \Phi$

Free models

Theorem: For any equational specification $\langle\Sigma, \Phi\rangle$ and S-sorted set X, there exists an algebra $F \in \operatorname{Mod}(\Phi)$ over X that is free over X with unit $\eta: X \rightarrow|F|$, i.e. such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ and valuation $v: X \rightarrow|M|$, there exists a unique Σ-homomorphism $h: F \rightarrow M$ such that $\eta ; h=v$.

Proof:

- Define $\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$
- Show that \equiv is a congruence on $T_{\Sigma}(X)$, and $T_{\Sigma}(X) / \equiv \models \Phi$
- Show that for any $M \models \Phi$ with $v: X \rightarrow|M|, \equiv \subseteq K\left(v^{\#}: T_{\Sigma}(X) \rightarrow M\right)$

Free models

Theorem: For any equational specification $\langle\Sigma, \Phi\rangle$ and S-sorted set X, there exists an algebra $F \in \operatorname{Mod}(\Phi)$ over X that is free over X with unit $\eta: X \rightarrow|F|$, i.e. such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ and valuation $v: X \rightarrow|M|$, there exists a unique Σ-homomorphism $h: F \rightarrow M$ such that $\eta ; h=v$.

Proof:

- Define $\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X$. $t_{1}=t_{2}$
- Show that \equiv is a congruence on $T_{\Sigma}(X)$, and $T_{\Sigma}(X) / \equiv \models \Phi$
- Show that for any $M \models \Phi$ with $v: X \rightarrow|M|, \equiv \subseteq K\left(v^{\#}: T_{\Sigma}(X) \rightarrow M\right)$
- Conclude that $F=T_{\Sigma}(X) / \equiv$ with $\eta=[-]_{\equiv: X \rightarrow|F| \text { has the required property. }}^{\text {- }}$

$$
\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2} \text { iff } \Phi \models \forall X . t_{1}=t_{2}
$$

$\equiv \underline{\underline{ } \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2} \text { iff } \Phi \models \forall X . t_{1}=t_{2}}$

- \equiv is a congruence on $T_{\Sigma}(X)$

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- reflexivity, transitivity, symmetry: easy!
- congruence property: easy as well!

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$.
$\equiv \underline{\underline{\subseteq}\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2} \text { iff } \Phi \models \forall X . t_{1}=t_{2}}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$.

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$.

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$.

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$.

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$. Let $\left(\forall Y . t_{1}=t_{2}\right) \in \Phi$, and consider $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$.

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$. Let $\left(\forall Y . t_{1}=t_{2}\right) \in \Phi$, and consider $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$. Then $\Phi \models \forall X .\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}]=\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]$.

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$. Let $\left(\forall Y . t_{1}=t_{2}\right) \in \Phi$, and consider $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$.
Then $\Phi \models \forall X .\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}]=\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]$.

- for $M \models \Phi$ and $v: X \rightarrow|M|, \quad\left(\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}]\right)_{M}[v]=v^{\#}\left(\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}]\right)$

$$
\begin{aligned}
& =\left(t_{1}\right)_{M}\left[\widetilde{w} ; v^{\#}\right] \\
& =\left(t_{2}\right)_{M}\left[\widetilde{w} ; v^{\#}\right] \\
& =v^{\#}\left(\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]\right) \\
& =\left(\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]\right)_{M}[v]
\end{aligned}
$$

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$.
Let $\left(\forall Y . t_{1}=t_{2}\right) \in \Phi$, and consider $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$.
Then $\Phi \models \forall X$. $\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}]=\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]$.
So, by definition of $\equiv,\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}] \equiv\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]$.

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$.
Let $\left(\forall Y . t_{1}=t_{2}\right) \in \Phi$, and consider $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$.
Then $\Phi \models \forall X .\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}]=\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]$.
So, by definition of $\equiv,\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}] \equiv\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]$.
Hence $\left(t_{1}\right)_{T_{\Sigma}(X) / \equiv}[w]=\left[\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}=\left[\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}=\left(t_{2}\right)_{T_{\Sigma}(X) / \equiv}[w]$

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$

Lemma: For $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$, let $\widetilde{w}: Y \rightarrow\left|T_{\Sigma}(X)\right|$ be such that $w(y)=[\widetilde{w}(y)]_{\equiv,} y \in Y$. Then for $t \in\left|T_{\Sigma}(Y)\right|, t_{T_{\Sigma}(X) / \equiv}[w]=\left[t_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}$. Let $\left(\forall Y . t_{1}=t_{2}\right) \in \Phi$, and consider $w: Y \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$. Then $\Phi \models \forall X$. $\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}]=\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]$.
So, by definition of $\equiv,\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}] \equiv\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]$.
Hence $\left(t_{1}\right)_{T_{\Sigma}(X) / \equiv}[w]=\left[\left(t_{1}\right)_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}=\left[\left(t_{2}\right)_{T_{\Sigma}(X)}[\widetilde{w}]\right]_{\equiv}=\left(t_{2}\right)_{T_{\Sigma}(X) / \equiv}[w]$ and so

$$
T_{\Sigma}(X) / \equiv \models \forall Y . t_{1}=t_{2}
$$

$\equiv \underline{\underline{\subseteq}\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2} \text { iff } \Phi \models \forall X . t_{1}=t_{2}}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$
- for $M \models \Phi$ with $v: X \rightarrow|M|, \equiv \subseteq K\left(v^{\#}: T_{\Sigma}(X) \rightarrow M\right)$
$\equiv \underline{\underline{\equiv}\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2} \text { iff } \Phi \models \forall X . t_{1}=t_{2}}$
- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$
- for $M \models \Phi$ with $v: X \rightarrow|M|, \equiv \subseteq K\left(v^{\#}: T_{\Sigma}(X) \rightarrow M\right)$
- If $t_{1} \equiv t_{2}$ then $M \models \forall X . t_{1}=t_{2}$; so $v^{\#}\left(t_{1}\right)=\left(t_{1}\right)_{M}[v]=\left(t_{2}\right)_{M}[v]=v^{\#}\left(t_{2}\right)$
$\underline{\underline{\equiv} \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2} \text { iff } \Phi \models \forall X . t_{1}=t_{2}}$
- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$
- for $M \models \Phi$ with $v: X \rightarrow|M|, \equiv \subseteq K\left(v^{\#}: T_{\Sigma}(X) \rightarrow M\right)$
- for $M \models \Phi$ with $v: X \rightarrow|M|$, there is unique Σ-homomorphism $h:\left(T_{\Sigma}(X) / \equiv\right) \rightarrow M$ such that $h_{s}\left([x]_{\equiv}\right)=v(x)$.

$\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|: t_{1} \equiv t_{2}$ iff $\Phi \models \forall X . t_{1}=t_{2}$

- \equiv is a congruence on $T_{\Sigma}(X)$
- $T_{\Sigma}(X) / \equiv \models \Phi$
- for $M \models \Phi$ with $v: X \rightarrow|M|, \equiv \subseteq K\left(v^{\#}: T_{\Sigma}(X) \rightarrow M\right)$
- for $M \models \Phi$ with $v: X \rightarrow|M|$, there is unique Σ-homomorphism $h:\left(T_{\Sigma}(X) / \equiv\right) \rightarrow M$ such that $h_{s}\left([x]_{\equiv}\right)=v(x)$.

Free models

Theorem: For any equational specification $\langle\Sigma, \Phi\rangle$ and S-sorted set X, define $\equiv \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|$ so that $t_{1} \equiv t_{2}$ iff $\Phi \models \forall X$. $t_{1}=t_{2}$.
Then \equiv is a congruence on $T_{\Sigma}(X)$ and the quotient term algebra $T_{\Sigma}(X) / \equiv$ with unit $[-]_{\equiv: ~} X \rightarrow\left|T_{\Sigma}(X) / \equiv\right|$ is free over X in $\operatorname{Mod}(\Phi)$, that is $T_{\Sigma}(X) / \equiv \in \operatorname{Mod}(\Phi)$ and for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ and valuation $v: X \rightarrow|M|$, there exists a unique Σ-homomorphism $h:\left(T_{\Sigma}(X) / \equiv\right) \rightarrow M$ such that $[-]_{\equiv} ; h=v$.

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Proof (idea):

- I is the quotient of the algebra of ground Σ-terms by the congruence that glues together all ground terms t, t^{\prime} such that $\Phi \models \forall \emptyset . t=t^{\prime}$.
- I is the reachable subalgebra of the product of "all" (up to isomorphism) reachable algebras in $\operatorname{Mod}(\Phi)$.

BTW: This can be generalised to the existence of a free model of $\langle\Sigma, \Phi\rangle$ over any (many-sorted) set of data.

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Fact: Any two initial models of an equational specification are isomorphic.

BTW: This can be generalised to the existence of a free model of $\langle\Sigma, \Phi\rangle$ over any (many-sorted) set of data.

Initial models

Theorem: Every equational specification $\langle\Sigma, \Phi\rangle$ has an initial model: there exists a Σ-algebra $I \in \operatorname{Mod}(\Phi)$ such that for every Σ-algebra $M \in \operatorname{Mod}(\Phi)$ there exists a unique Σ-homomorphism from I to M.

Fact: Any two initial models of an equational specification are isomorphic.

BTW: This can be generalised to the existence of a free model of $\langle\Sigma, \Phi\rangle$ over any (many-sorted) set of data.

Example

$$
\begin{aligned}
& \text { spec NAT }=\text { free }\left\{\begin{array}{l}
\text { sort } \\
\text { ops } 0: N a t ;
\end{array}\right. \\
& \qquad \operatorname{succ}: N a t \rightarrow N a t ; \\
& -_{-}+N a t \times N a t \rightarrow N a t \\
& \\
& \text { axioms } \forall n: N a t \bullet n+0=n ; \\
& \quad \forall n, m: N a t \bullet n+\operatorname{succ}(m)=\operatorname{succ}(n+m) \\
& \}
\end{aligned}
$$

Now:

$$
\text { NAT } \models \forall n, m: N a t \bullet n+m=m+n
$$

Example ${ }^{\prime}$

$$
\begin{aligned}
\text { spec } \mathrm{NAT}^{\prime}= & \text { free type } N a t::=0 \mid \operatorname{succ}(N a t) \\
& \text { op }+_{-}: N a t \times N a t \rightarrow N a t \\
& \text { axioms } \forall n: N a t \bullet n+0=n ; \\
& \forall n, m: N a t \bullet n+\operatorname{succ}(m)=\operatorname{succ}(n+m)
\end{aligned}
$$

$$
\text { NAT } \equiv \mathrm{NAT}^{\prime}
$$

Another example

spec STRING $=$
generated \{ sort String
ops nil: String;
$a, \ldots, z: S t r i n g ;$
${ }_{-}{ }^{-}:$String \timesString \rightarrow String $\}$
axioms $\forall s: S t r i n g \bullet s{ }^{\wedge} n i l=s ;$
$\forall s:$ String $\bullet n i l{ }^{\wedge} s=s ;$
$\forall s, t, v: \operatorname{String} \bullet s^{\wedge}\left(t^{\wedge} v\right)=\left(s^{\wedge} t\right)^{\wedge} v$
\}

Birkhoff's Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Birkhoff's Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" \Longleftarrow ") :

Birkhoff's Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" ""): Make precise and prove:

Birkhoff's Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" ""): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_{X} \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_{X}: X \rightarrow\left|F_{X}\right|$,

Birkhoff's Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" ""): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_{X} \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_{X}: X \rightarrow\left|F_{X}\right|$, given as the subalgebra generated by (the image under η_{X} of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by $v(X)$ for $v: X \rightarrow|A|$.

Birkhoff's Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" \Longleftarrow "): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_{X} \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_{X}: X \rightarrow\left|F_{X}\right|$, given as the subalgebra generated by (the image under η_{X} of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by $v(X)$ for $v: X \rightarrow|A|$.
- For $t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$, if $t_{F_{X}}\left[\eta_{X}\right]=t_{F_{X}}^{\prime}\left[\eta_{X}\right]$ then $\forall X . t=t^{\prime} \in \operatorname{Th}(\mathcal{C})$.

Birkhoff's Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" \Longleftarrow "): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_{X} \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_{X}: X \rightarrow\left|F_{X}\right|$, given as the subalgebra generated by (the image under η_{X} of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by $v(X)$ for $v: X \rightarrow|A|$.
- For $t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$, if $t_{F_{X}}\left[\eta_{X}\right]=t_{F_{X}}^{\prime}\left[\eta_{X}\right]$ then $\forall X . t=t^{\prime} \in \operatorname{Th}(\mathcal{C})$.
- Let $A \in \operatorname{Mod}(\operatorname{Th}(\mathcal{C}))$. Then there is a homomorphism $h: F_{|A|} \rightarrow A$ such that $\eta_{|A|} ; h=i d_{|A|}$.

Birkhoff's Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" \Longleftarrow "): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_{X} \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_{X}: X \rightarrow\left|F_{X}\right|$, given as the subalgebra generated by (the image under η_{X} of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by $v(X)$ for $v: X \rightarrow|A|$.
- For $t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$, if $t_{F_{X}}\left[\eta_{X}\right]=t_{F_{X}}^{\prime}\left[\eta_{X}\right]$ then $\forall X . t=t^{\prime} \in \operatorname{Th}(\mathcal{C})$.
- Let $A \in \operatorname{Mod}(\operatorname{Th}(\mathcal{C}))$. Then there is a homomorphism $h: F_{|A|} \rightarrow A$ such that $\eta_{|A|} ; h=i d_{|A|}$. Hence $A \in \mathcal{C}$.

Birkhoff's Theorem

Theorem: A class of Σ-algebras is equationally definable iff it is closed under subalgebras, products and homomorphic images.

Proof (" \Longleftarrow "): Make precise and prove:

- If \mathcal{C} is closed under subalgebras and products then for any set X, there exists an algebra $F_{X} \in \mathcal{C}$ that is free in \mathcal{C} over X with unit $\eta_{X}: X \rightarrow\left|F_{X}\right|$, given as the subalgebra generated by (the image under η_{X} of) X of the product of "all" algebras $A \in \mathcal{C}$ generated by $v(X)$ for $v: X \rightarrow|A|$.
- For $t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$, if $t_{F_{X}}\left[\eta_{X}\right]=t_{F_{X}}^{\prime}\left[\eta_{X}\right]$ then $\forall X . t=t^{\prime} \in \operatorname{Th}(\mathcal{C})$.
- Let $A \in \operatorname{Mod}(\operatorname{Th}(\mathcal{C}))$. Then there is a homomorphism $h: F_{|A|} \rightarrow A$ such that $\eta_{|A|} ; h=i d_{|A|}$. Hence $A \in \mathcal{C}$.

Conclude:

$$
\operatorname{Mod}(\operatorname{Th}(\mathcal{C}))=\mathcal{C}
$$

Equational calculus

$$
\begin{array}{rc}
\overline{\forall X . t=t} \quad \frac{\forall X . t=t^{\prime}}{\forall X . t^{\prime}=t} & \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t=t^{\prime \prime}} \\
\frac{\forall X . t_{1}=t_{1}^{\prime} \quad \ldots \quad \forall X . t_{n}=t_{n}^{\prime}}{\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

Equational calculus

$$
\begin{array}{rc}
\frac{\forall X . t=t^{\prime}}{\forall X . t=t} & \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t^{\prime}=t} \\
\frac{\forall X . t}{} \frac{\forall X . t}{}=t^{\prime \prime} \\
\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right) & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

Mind the variables!

$$
a=b \text { does not follow from } a=f(x) \text { and } f(x)=b
$$

Equational calculus

$$
\begin{array}{rc}
\frac{\forall X . t=t^{\prime}}{\forall X . t=t} \quad \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t^{\prime}=t} & \frac{\forall X . t=t^{\prime \prime}}{\forall X . t_{1}=t_{1}^{\prime} \ldots \quad \forall X . t_{n}=t_{n}^{\prime}} \\
\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right) & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

Mind the variables!

$$
a=b \text { does not follow from } a=f(x) \text { and } f(x)=b
$$

In general, $\forall x: s .\left(a: s^{\prime}\right)=\left(b: s^{\prime}\right) \not \vDash \forall \emptyset .\left(a: s^{\prime}\right)=\left(b: s^{\prime}\right)$.
For instance, over signature Σ with sorts s, s^{\prime} and constants $a, b: s^{\prime}$ and no other operations, for any algebra $A \in \mathbf{A} \lg (\Sigma)$ such that $|A|_{s}=\emptyset$

$$
A \models \forall x: s . a=b, \text { even if } a_{A} \neq b_{A}
$$

Equational calculus

$$
\begin{array}{rc}
\frac{\forall X . t=t^{\prime}}{\forall X . t=t} \quad \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t^{\prime}=t} & \forall X . t=t^{\prime \prime} \\
\frac{\forall X . t_{1}=t_{1}^{\prime} \ldots \quad \forall X . t_{n}=t_{n}^{\prime}}{\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

Mind the variables!
$a=b$ does not follow from $a=f(x)$ and $f(x)=b$ without a "witness" for x

Equational calculus

$$
\begin{array}{rc}
\overline{\forall X . t=t} \quad \frac{\forall X . t=t^{\prime}}{\forall X . t^{\prime}=t} & \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t=t^{\prime \prime}} \\
\frac{\forall X . t_{1}=t_{1}^{\prime} \quad \ldots \quad \forall X . t_{n}=t_{n}^{\prime}}{\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

Equational calculus

$$
\begin{aligned}
\frac{\forall X . t=t}{\forall X . t=t^{\prime}} & \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t^{\prime}=t} \\
\frac{\forall X . t_{1}=t_{1}^{\prime} \ldots \quad \forall X . t_{n}=t_{n}^{\prime}}{\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{aligned}
$$

- reflexivity, symmetry, transitivity: clear

Equational calculus

$$
\begin{aligned}
\frac{\forall X . t=t^{\prime}}{\forall X . t=t} \quad \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t^{\prime}=t} & \forall X . t=t^{\prime \prime} \\
\frac{\forall X . t_{1}=t_{1}^{\prime} \ldots \quad \forall X . t_{n}=t_{n}^{\prime}}{\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{aligned}
$$

- reflexivity, symmetry, transitivity: clear
- congruence: clear as well

Equational calculus

$$
\begin{array}{rc}
\frac{\forall X . t=t^{\prime}}{\forall X . t=t} \quad \frac{\forall X . t=t^{\prime} \quad \forall X . t^{\prime}=t^{\prime \prime}}{\forall X . t^{\prime}=t} & \forall X . t=t^{\prime \prime} \\
\frac{\forall X . t_{1}=t_{1}^{\prime} \ldots \quad \forall X . t_{n}=t_{n}^{\prime}}{\forall X . f\left(t_{1} \ldots t_{n}\right)=f\left(t_{1}^{\prime} \ldots t_{n}^{\prime}\right)} & \frac{\forall X . t=t^{\prime}}{\forall Y . t[\theta]=t^{\prime}[\theta]} \text { for } \theta: X \rightarrow\left|T_{\Sigma}(Y)\right|
\end{array}
$$

- reflexivity, symmetry, transitivity: clear
- congruence: clear as well
- substitution allows one to:
- substitute terms for (some) variables, possibly with different variables
- increase the set of variables
- remove unused variables, if "witnesses" to substitute for them remain

Proof-theoretic entailment

Σ-equation φ is a proof-theoretic consequence of a set of Σ-equations Φ if φ can be derived from Φ by the rules.

How to justify this?
Semantics!

Soundness \& completeness

Theorem: The equational calculus is sound and complete:

$$
\Phi \models \varphi \Longleftrightarrow \Phi \vdash \varphi
$$

- soundness: "all that can be proved, is true" $(\Phi \models \varphi \Longleftarrow \Phi \vdash \varphi)$
- completeness: "all that is true, can be proved" $(\Phi \models \varphi \Longrightarrow \Phi \vdash \varphi)$
Proof (idea):
- soundness: easy!
- completeness: not so easy!

"Ground" completeness

$$
\Phi \models \forall \emptyset . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset . t_{1}=t_{2}
$$

"Ground" completeness

$$
\Phi \models \forall \emptyset . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset . t_{1}=t_{2}
$$

Proof (idea):

"Ground" completeness

$$
\Phi \models \forall \emptyset . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset . t_{1}=t_{2}
$$

Proof (idea):

- Define $\approx \subseteq\left|T_{\Sigma}\right| \times\left|T_{\Sigma}\right|: t_{1} \approx t_{2}$ iff $\Phi \vdash \forall \emptyset . t_{1}=t_{2}$

"Ground" completeness

$$
\Phi \models \forall \emptyset . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset . t_{1}=t_{2}
$$

Proof (idea):

- Define $\approx \subseteq\left|T_{\Sigma}\right| \times\left|T_{\Sigma}\right|: t_{1} \approx t_{2}$ iff $\Phi \vdash \forall \emptyset . t_{1}=t_{2}$
- Show that \approx is a congruence on T_{Σ}, and $T_{\Sigma} / \approx \models \Phi$

"Ground" completeness

$$
\Phi \models \forall \emptyset \cdot t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset \cdot t_{1}=t_{2}
$$

Proof (idea):

- Define $\approx \subseteq\left|T_{\Sigma}\right| \times\left|T_{\Sigma}\right|: t_{1} \approx t_{2}$ iff $\Phi \vdash \forall \emptyset . t_{1}=t_{2}$
- Show that \approx is a congruence on T_{Σ}, and $T_{\Sigma} / \approx \models \Phi$
- Show that for any $M \models \Phi, \approx \subseteq K\left(!_{M}: T_{\Sigma} \rightarrow M\right)$

"Ground" completeness

$$
\Phi \models \forall \emptyset \cdot t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset \cdot t_{1}=t_{2}
$$

Proof (idea):

- Define $\approx \subseteq\left|T_{\Sigma}\right| \times\left|T_{\Sigma}\right|: t_{1} \approx t_{2}$ iff $\Phi \vdash \forall \emptyset . t_{1}=t_{2}$
- Show that \approx is a congruence on T_{Σ}, and $T_{\Sigma} / \approx \models \Phi$
- Show that for any $M \models \Phi, \approx \subseteq K\left(!_{M}: T_{\Sigma} \rightarrow M\right)$
- Conclude that T_{Σ} / \approx is initial in $\operatorname{Mod}(\Phi)$

"Ground" completeness

$$
\Phi \models \forall \emptyset \cdot t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset \cdot t_{1}=t_{2}
$$

Proof (idea):

- Define $\approx \subseteq\left|T_{\Sigma}\right| \times\left|T_{\Sigma}\right|: t_{1} \approx t_{2}$ iff $\Phi \vdash \forall \emptyset . t_{1}=t_{2}$
- Show that \approx is a congruence on T_{Σ}, and $T_{\Sigma} / \approx \models \Phi$
- Show that for any $M \models \Phi, \approx \subseteq K\left(!_{M}: T_{\Sigma} \rightarrow M\right)$
- Conclude that T_{Σ} / \approx is initial in $\operatorname{Mod}(\Phi)$
- Therefore T_{Σ} / \equiv and T_{Σ} / \approx are isomorphic

"Ground" completeness

$$
\Phi \models \forall \emptyset \cdot t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset \cdot t_{1}=t_{2}
$$

Proof (idea):

- Define $\approx \subseteq\left|T_{\Sigma}\right| \times\left|T_{\Sigma}\right|: t_{1} \approx t_{2}$ iff $\Phi \vdash \forall \emptyset . t_{1}=t_{2}$
- Show that \approx is a congruence on T_{Σ}, and $T_{\Sigma} / \approx \models \Phi$
- Show that for any $M \models \Phi, \approx \subseteq K\left(!_{M}: T_{\Sigma} \rightarrow M\right)$
- Conclude that T_{Σ} / \approx is initial in $\operatorname{Mod}(\Phi)$
- Therefore T_{Σ} / \equiv and T_{Σ} / \approx are isomorphic
- Thus $\equiv=\approx$

"Ground" completeness

$$
\Phi \models \forall \emptyset \cdot t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset \cdot t_{1}=t_{2}
$$

Proof (idea):

- Define $\approx \subseteq\left|T_{\Sigma}\right| \times\left|T_{\Sigma}\right|: t_{1} \approx t_{2}$ iff $\Phi \vdash \forall \emptyset . t_{1}=t_{2}$
- Show that \approx is a congruence on T_{Σ}, and $T_{\Sigma} / \approx \models \Phi$
- Show that for any $M \models \Phi, \approx \subseteq K\left(!_{M}: T_{\Sigma} \rightarrow M\right)$
- Conclude that T_{Σ} / \approx is initial in $\operatorname{Mod}(\Phi)$
- Therefore T_{Σ} / \equiv and T_{Σ} / \approx are isomorphic
- Thus $\equiv=\approx$

$$
\Phi \models \forall \emptyset \cdot t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall \emptyset \cdot t_{1}=t_{2}
$$

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea): Generalise the previous proof by building a free algebra $T_{\Sigma}(X) / \approx$ in $\operatorname{Mod}(\Phi)$ with unit $[-] \approx: X \rightarrow T_{\Sigma}(X) / \approx$, where $\approx \subseteq\left|T_{\Sigma}(X)\right| \times\left|T_{\Sigma}(X)\right|$ is given by $t_{1} \approx t_{2}$ iff $\Phi \vdash \forall X . t_{1}=t_{2}$.

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ-algebras $A \in \operatorname{Alg}(\Sigma)$ with valuations $v: X \rightarrow|A|$ correspond to $\Sigma(X)$-algebras $A[v] \in \operatorname{Alg}(\Sigma(X))$

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ-algebras $A \in \operatorname{Alg}(\Sigma)$ with valuations $v: X \rightarrow|A|$ correspond to $\Sigma(X)$-algebras $A[v] \in \operatorname{Alg}(\Sigma(X))$
- Identify terms in $\left|T_{\Sigma}(X)\right|$ with those in $\left|T_{\Sigma(X)}\right|$ (and in $\left|T_{\Sigma}(X)\left[i d_{X}\right]\right|$)

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ-algebras $A \in \operatorname{Alg}(\Sigma)$ with valuations $v: X \rightarrow|A|$ correspond to $\Sigma(X)$-algebras $A[v] \in \operatorname{Alg}(\Sigma(X))$
- Identify terms in $\left|T_{\Sigma}(X)\right|$ with those in $\left|T_{\Sigma(X)}\right|$ (and in $\left|T_{\Sigma}(X)\left[i d_{X}\right]\right|$)
- Show $\Phi \models_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \models_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ-algebras $A \in \operatorname{Alg}(\Sigma)$ with valuations $v: X \rightarrow|A|$ correspond to $\Sigma(X)$-algebras $A[v] \in \mathbf{A l g}(\Sigma(X))$
- Identify terms in $\left|T_{\Sigma}(X)\right|$ with those in $\left|T_{\Sigma(X)}\right|$ (and in $\left|T_{\Sigma}(X)\left[i d_{X}\right]\right|$)
- Show $\Phi \models_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \models_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$
- easy!

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ-algebras $A \in \operatorname{Alg}(\Sigma)$ with valuations $v: X \rightarrow|A|$ correspond to $\Sigma(X)$-algebras $A[v] \in \mathbf{A l g}(\Sigma(X))$
- Identify terms in $\left|T_{\Sigma}(X)\right|$ with those in $\left|T_{\Sigma(X)}\right|$ (and in $\left|T_{\Sigma}(X)\left[i d_{X}\right]\right|$)
- Show $\Phi \models_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \models_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$
- Show $\Phi \vdash_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \vdash_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ-algebras $A \in \operatorname{Alg}(\Sigma)$ with valuations $v: X \rightarrow|A|$ correspond to $\Sigma(X)$-algebras $A[v] \in \mathbf{A l g}(\Sigma(X))$
- Identify terms in $\left|T_{\Sigma}(X)\right|$ with those in $\left|T_{\Sigma(X)}\right|$ (and in $\left|T_{\Sigma}(X)\left[i d_{X}\right]\right|$)
- Show $\Phi \models_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \models_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$
- Show $\Phi \vdash_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \vdash_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$
- Straightforward induction on the structure of derivation does not go through!

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ-algebras $A \in \operatorname{Alg}(\Sigma)$ with valuations $v: X \rightarrow|A|$ correspond to $\Sigma(X)$-algebras $A[v] \in \mathbf{A l g}(\Sigma(X))$
- Identify terms in $\left|T_{\Sigma}(X)\right|$ with those in $\left|T_{\Sigma(X)}\right|$ (and in $\left|T_{\Sigma}(X)\left[i d_{X}\right]\right|$)
- Show $\Phi \models_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \models_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$
- Show $\Phi \vdash_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \vdash_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$
- Straightforward induction on the structure of derivation does not go through!
- Induction works for a more general thesis:

$$
\Phi \vdash_{\Sigma} \forall X \cup Y . t_{1}=t_{2} \text { iff } \Phi \vdash_{\Sigma(X)} \forall Y . t_{1}=t_{2}
$$

Completeness

$$
\Phi \models \forall X . t_{1}=t_{2} \Longrightarrow \Phi \vdash \forall X . t_{1}=t_{2}
$$

Proof (idea):

- For each signature Σ and a set of variables X, define a new signature $\Sigma(X)$ that extends Σ by variables from X as constants
- Σ-algebras $A \in \operatorname{Alg}(\Sigma)$ with valuations $v: X \rightarrow|A|$ correspond to $\Sigma(X)$-algebras $A[v] \in \operatorname{Alg}(\Sigma(X))$
- Identify terms in $\left|T_{\Sigma}(X)\right|$ with those in $\left|T_{\Sigma(X)}\right|$ (and in $\left|T_{\Sigma}(X)\left[i d_{X}\right]\right|$)
- Show $\Phi \models_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \models_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$
- Show $\Phi \vdash_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \vdash_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$
- Using ground completeness, conclude: $\Phi \models_{\Sigma} \forall X . t_{1}=t_{2}$ iff $\Phi \models_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$ iff $\Phi \vdash_{\Sigma(X)} \forall \emptyset . t_{1}=t_{2}$ iff $\Phi \vdash_{\Sigma} \forall X . t_{1}=t_{2}$

Moving between signatures

$\underline{\underline{\text { Let } \Sigma=(S, \Omega) \text { and } \Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)}}$

$$
\sigma: \Sigma \rightarrow \Sigma^{\prime}
$$

- Signature morphism maps:
- sorts to sorts: $\sigma: S \rightarrow S^{\prime}$
- operation names to operation names, preserving their profiles:
$\sigma: \Omega_{w, s} \rightarrow \Omega_{\sigma(w), \sigma(s)}^{\prime}$, for $w \in S^{*}, s \in S$

Moving between signatures

$\underline{\underline{\text { Let } \Sigma=(S, \Omega) \text { and } \Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)}}$

$$
\sigma: \Sigma \rightarrow \Sigma^{\prime}
$$

- Signature morphism maps:
- sorts to sorts: $\sigma: S \rightarrow S^{\prime}$
- operation names to operation names, preserving their profiles: $\sigma: \Omega_{w, s} \rightarrow \Omega_{\sigma(w), \sigma(s)}^{\prime}$, for $w \in S^{*}, s \in S$, that is: if $f: s_{1} \times \ldots \times s_{n} \rightarrow s$ then $\sigma(f): \sigma\left(s_{1}\right) \times \ldots \times \sigma\left(s_{n}\right) \rightarrow \sigma(s)$,

Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$

Translating syntax

- translation of variables: $X \mapsto X^{\prime}$, where $X_{s^{\prime}}^{\prime}=\biguplus_{\sigma(s)=s^{\prime}} X_{s}$
- translation of terms: $\sigma:\left|T_{\Sigma}(X)\right|_{s} \rightarrow\left|T_{\Sigma^{\prime}}\left(X^{\prime}\right)\right|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma\left(\forall X . t_{1}=t_{2}\right)$ yields $\forall X^{\prime} . \sigma\left(t_{1}\right)=\sigma\left(t_{2}\right)$

Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$

Translating syntax

- translation of variables: $X \mapsto X^{\prime}$, where $X_{s^{\prime}}^{\prime}=\biguplus_{\sigma(s)=s^{\prime}} X_{s}$
- translation of terms: $\sigma:\left|T_{\Sigma}(X)\right|_{s} \rightarrow\left|T_{\Sigma^{\prime}}\left(X^{\prime}\right)\right|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma\left(\forall X . t_{1}=t_{2}\right)$ yields $\forall X^{\prime} . \sigma\left(t_{1}\right)=\sigma\left(t_{2}\right)$

... and semantics

- σ-reduct: $-\mid \sigma: \mathbf{A} \boldsymbol{\operatorname { l g }}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$, where for $A^{\prime} \in \mathbf{A l g}\left(\Sigma^{\prime}\right)$
$-\left.\left|A^{\prime}\right|_{\sigma}\right|_{s}=\left|A^{\prime}\right|_{\sigma(s)}$, for $s \in S$
$-\left.f_{A^{\prime}}\right|_{\sigma}=\sigma(f)_{A^{\prime}}$ for $f \in \Omega$

Translating syntax

- translation of variables: $X \mapsto X^{\prime}$, where $X_{s^{\prime}}^{\prime}=\biguplus_{\sigma(s)=s^{\prime}} X_{s}$
- translation of terms: $\sigma:\left|T_{\Sigma}(X)\right|_{s} \rightarrow\left|T_{\Sigma^{\prime}}\left(X^{\prime}\right)\right|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma\left(\forall X . t_{1}=t_{2}\right)$ yields $\forall X^{\prime} . \sigma\left(t_{1}\right)=\sigma\left(t_{2}\right)$

... and semantics

- σ-reduct: $-\mid \sigma: \mathbf{A} \boldsymbol{\operatorname { l g }}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$, where for $A^{\prime} \in \mathbf{A l g}\left(\Sigma^{\prime}\right)$
$-\left.\left|A^{\prime}\right|_{\sigma}\right|_{s}=\left|A^{\prime}\right|_{\sigma(s)}$, for $s \in S$
$-\left.f_{A^{\prime}}\right|_{\sigma}=\sigma(f)_{A^{\prime}}$ for $f \in \Omega$
this is well-defined
- for $f: s_{1} \times \ldots \times s_{n} \rightarrow s, f_{\left.A^{\prime}\right|_{\sigma}}:\left.\left|A^{\prime}\right|{ }_{\sigma}\right|_{s_{1}} \times \ldots \times\left.\left.\left|A^{\prime}\right|_{\sigma}\right|_{s_{n}} \rightarrow\left|A^{\prime}\right|_{\sigma}\right|_{s}$ since $\sigma(f)_{A^{\prime}}:\left|A^{\prime}\right|_{\sigma\left(s_{1}\right)} \times \ldots \times\left|A^{\prime}\right|_{\sigma\left(s_{n}\right)} \rightarrow\left|A^{\prime}\right|_{\sigma(s)}$

Translating syntax

- translation of variables: $X \mapsto X^{\prime}$, where $X_{s^{\prime}}^{\prime}=\biguplus_{\sigma(s)=s^{\prime}} X_{s}$
- translation of terms: $\sigma:\left|T_{\Sigma}(X)\right|_{s} \rightarrow\left|T_{\Sigma^{\prime}}\left(X^{\prime}\right)\right|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma\left(\forall X . t_{1}=t_{2}\right)$ yields $\forall X^{\prime} . \sigma\left(t_{1}\right)=\sigma\left(t_{2}\right)$

... and semantics

- σ-reduct: $-\mid \sigma: \operatorname{Alg}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$, where for $A^{\prime} \in \operatorname{Alg}\left(\Sigma^{\prime}\right)$
$-\left.\left|A^{\prime}\right|_{\sigma}\right|_{s}=\left|A^{\prime}\right|_{\sigma(s)}$, for $s \in S$
$-\left.f_{A^{\prime}}\right|_{\sigma}=\sigma(f)_{A^{\prime}}$ for $f \in \Omega$
this is well-defined

BTW: Given a Σ^{\prime}-homomorphism $h^{\prime}: A^{\prime} \rightarrow B^{\prime}, \Sigma$-homomoprhism $\left.h^{\prime}\right|_{\sigma}:\left.\left.A^{\prime}\right|_{\sigma} \rightarrow B^{\prime}\right|_{\sigma}$ is defined by $\left(\left.h^{\prime}\right|_{\sigma}\right)_{s}=h_{\sigma(s)}^{\prime}$ for $s \in S$.

Let $\sigma: \Sigma \rightarrow \Sigma^{\prime}$

Translating syntax

- translation of variables: $X \mapsto X^{\prime}$, where $X_{s^{\prime}}^{\prime}=\biguplus_{\sigma(s)=s^{\prime}} X_{s}$
- translation of terms: $\sigma:\left|T_{\Sigma}(X)\right|_{s} \rightarrow\left|T_{\Sigma^{\prime}}\left(X^{\prime}\right)\right|_{\sigma(s)}$, for $s \in S$
- translation of equations: $\sigma\left(\forall X . t_{1}=t_{2}\right)$ yields $\forall X^{\prime} . \sigma\left(t_{1}\right)=\sigma\left(t_{2}\right)$

. . . and semantics

- σ-reduct: $-\mid \sigma: \mathbf{A} \boldsymbol{\operatorname { l g }}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{A l g}(\Sigma)$, where for $A^{\prime} \in \mathbf{A l g}\left(\Sigma^{\prime}\right)$
$-\left.\left|A^{\prime}\right|_{\sigma}\right|_{s}=\left|A^{\prime}\right|_{\sigma(s)}$, for $s \in S$
$-\left.f_{A^{\prime}}\right|_{\sigma}=\sigma(f)_{A^{\prime}}$ for $f \in \Omega$

Note the contravariancy!

Satisfaction condition

Theorem: For any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebra A^{\prime} and Σ-equation φ :

Satisfaction condition

Theorem: For any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebra A^{\prime} and Σ-equation φ :

Σ^{\prime}	A^{\prime}
$\left.\sigma\right\|^{4}$	
Σ	

Satisfaction condition

Theorem: For any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebra A^{\prime} and Σ-equation φ :

Σ^{\prime}	A^{\prime}	
$\left.\sigma\right\|_{\Sigma}$		$? \models ?$

Satisfaction condition

Theorem: For any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebra A^{\prime} and Σ-equation φ :

φ

Satisfaction condition

Theorem: For any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebra A^{\prime} and Σ-equation φ :

Satisfaction condition

Theorem: For any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebra A^{\prime} and Σ-equation φ :

Satisfaction condition

Theorem: For any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebra A^{\prime} and Σ-equation φ :

Proof (idea): for $t \in\left|T_{\Sigma}(X)\right|$ and $v: X \rightarrow\left|A^{\prime}\right|_{\sigma}\left|, t_{A^{\prime}}\right|_{\sigma}[v]=\sigma(t)_{A^{\prime}}\left[v^{\prime}\right]$, where $v^{\prime}: X^{\prime} \rightarrow\left|A^{\prime}\right|$ is given by $v_{\sigma(s)}^{\prime}(x)=v_{s}(x)$ for $s \in S, x \in X_{s}$.

Satisfaction condition

Theorem: For any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}, \Sigma^{\prime}$-algebra A^{\prime} and Σ-equation φ :

TRUTH is preserved (at least) under:

- change of notation
- restriction/extension of irrelevant context

Preservation of consequence

Given any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, set of Σ-equations Φ and Σ-equation φ :

$$
\Phi \models_{\Sigma} \varphi \Longrightarrow \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

Preservation of consequence

Given any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, set of Σ-equations Φ and Σ-equation φ :

$$
\Phi \models_{\Sigma} \varphi \Longrightarrow \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

Proof: If $M^{\prime} \models \sigma(\Phi)$ then $\left.M^{\prime}\right|_{\sigma} \models \Phi$. Hence $\left.M^{\prime}\right|_{\sigma} \models \varphi$, and so $M^{\prime} \models \sigma(\varphi)$.

Preservation of consequence

Given any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, set of Σ-equations Φ and Σ-equation φ :

$$
\Phi \models_{\Sigma} \varphi \Longrightarrow \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

Proof: If $M^{\prime} \models \sigma(\Phi)$ then $\left.M^{\prime}\right|_{\sigma} \models \Phi$. Hence $\left.M^{\prime}\right|_{\sigma} \models \varphi$, and so $M^{\prime} \models \sigma(\varphi)$.

In general, the equivalence does not hold!

Preservation of consequence

Given any signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$, set of Σ-equations Φ and Σ-equation φ :

$$
\Phi \models_{\Sigma} \varphi \Longrightarrow \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

Moreover, if $\left.{ }_{-}\right|_{\sigma}: \mathbf{A} \boldsymbol{\operatorname { l g }}\left(\Sigma^{\prime}\right) \rightarrow \mathbf{\operatorname { A l g }}(\Sigma)$ is surjective then:

$$
\Phi \models_{\Sigma} \varphi \Longleftrightarrow \sigma(\Phi) \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

In general, the equivalence does not hold!

Specification morphisms

Specification morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ such that for all $M^{\prime} \in \operatorname{Alg}\left(\Sigma^{\prime}\right)$:

$$
\left.M^{\prime} \in \operatorname{Mod}\left(\Phi^{\prime}\right) \Longrightarrow M^{\prime}\right|_{\sigma} \in \operatorname{Mod}(\Phi)
$$

Specification morphisms

Specification morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ such that for all $M^{\prime} \in \operatorname{Alg}\left(\Sigma^{\prime}\right)$:

$$
\left.M^{\prime} \in \operatorname{Mod}\left(\Phi^{\prime}\right) \Longrightarrow M^{\prime}\right|_{\sigma} \in \operatorname{Mod}(\Phi)
$$

$$
\text { Then }{ }_{-}{ }_{\sigma}: \operatorname{Mod}\left(\Phi^{\prime}\right) \rightarrow \operatorname{Mod}(\Phi)
$$

Specification morphisms

Specification morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ such that for all $M^{\prime} \in \operatorname{Alg}\left(\Sigma^{\prime}\right)$:

$$
\left.M^{\prime} \in \operatorname{Mod}\left(\Phi^{\prime}\right) \Longrightarrow M^{\prime}\right|_{\sigma} \in \operatorname{Mod}(\Phi)
$$

$$
\text { Then }\left.\right|_{\sigma}: \operatorname{Mod}\left(\Phi^{\prime}\right) \rightarrow \operatorname{Mod}(\Phi)
$$

Theorem: A signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ is a specification morphism $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ if and only if $\Phi^{\prime} \models \sigma(\Phi)$.

Specification morphisms

Specification morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is a signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ such that for all $M^{\prime} \in \operatorname{Alg}\left(\Sigma^{\prime}\right)$:

$$
\left.M^{\prime} \in \operatorname{Mod}\left(\Phi^{\prime}\right) \Longrightarrow M^{\prime}\right|_{\sigma} \in \operatorname{Mod}(\Phi)
$$

$$
\text { Then }-\mid \sigma: \operatorname{Mod}\left(\Phi^{\prime}\right) \rightarrow \operatorname{Mod}(\Phi)
$$

Theorem: A signature morphism $\sigma: \Sigma \rightarrow \Sigma^{\prime}$ is a specification morphism $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ if and only if $\Phi^{\prime} \models \sigma(\Phi)$.

Proof: " \Longleftarrow " If $M^{\prime} \models \Phi^{\prime}$ then $M^{\prime} \models \sigma(\Phi)$, and so $\left.M^{\prime}\right|_{\sigma} \models \Phi$.
$" \Longrightarrow$ " If $M^{\prime} \models \Phi^{\prime}$ then $M^{\prime}{ }_{\sigma} \models \Phi$, and so $M^{\prime} \models \sigma(\Phi)$.

Conservativity

A specification morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is conservative if for all Σ-equations $\varphi: \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi) \Longrightarrow \Phi \models_{\Sigma} \varphi$

Conservativity

A specification morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is conservative if for all Σ-equations $\varphi: \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi) \Longrightarrow \Phi \models_{\Sigma} \varphi$

BTW: for all specification morphisms

$$
\Phi \models_{\Sigma} \varphi \Longrightarrow \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

Conservativity

A specification morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is conservative if for all Σ-equations $\varphi: \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi) \Longrightarrow \Phi \models_{\Sigma} \varphi$

BTW: for all specification morphisms

$$
\Phi \models_{\Sigma} \varphi \Longrightarrow \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

A specification morphism $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ admits model expansion if for each $M \in \operatorname{Mod}(\Phi)$ there exists $M^{\prime} \in \operatorname{Mod}\left(\Phi^{\prime}\right)$ such that $\left.M^{\prime}\right|_{\sigma}=M$

$$
\text { (i.e., }-\mid \sigma: \operatorname{Mod}\left(\Phi^{\prime}\right) \rightarrow \operatorname{Mod}(\Phi) \text { is surjective). }
$$

Conservativity

A specification morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is conservative if for all Σ-equations $\varphi: \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi) \Longrightarrow \Phi \models_{\Sigma} \varphi$

BTW: for all specification morphisms

$$
\Phi \models_{\Sigma} \varphi \Longrightarrow \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

A specification morphism $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ admits model expansion if for each $M \in \operatorname{Mod}(\Phi)$ there exists $M^{\prime} \in \operatorname{Mod}\left(\Phi^{\prime}\right)$ such that $\left.M^{\prime}\right|_{\sigma}=M$

$$
\text { (i.e., }-\mid \sigma: \operatorname{Mod}\left(\Phi^{\prime}\right) \rightarrow \operatorname{Mod}(\Phi) \text { is surjective). }
$$

Theorem: If $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ admits model expansion then it is conservative.

Conservativity

A specification morphism:

$$
\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle
$$

is conservative if for all Σ-equations $\varphi: \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi) \Longrightarrow \Phi \models_{\Sigma} \varphi$

> BTW: for all specification morphisms

$$
\Phi \models_{\Sigma} \varphi \Longrightarrow \Phi^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi)
$$

A specification morphism $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ admits model expansion if for each $M \in \operatorname{Mod}(\Phi)$ there exists $M^{\prime} \in \operatorname{Mod}\left(\Phi^{\prime}\right)$ such that $\left.M^{\prime}\right|_{\sigma}=M$

$$
\text { (i.e., }-\mid \sigma: \operatorname{Mod}\left(\Phi^{\prime}\right) \rightarrow \operatorname{Mod}(\Phi) \text { is surjective). }
$$

Theorem: If $\sigma:\langle\Sigma, \Phi\rangle \rightarrow\left\langle\Sigma^{\prime}, \Phi^{\prime}\right\rangle$ admits model expansion then it is conservative.

> In general, the equivalence does not hold!

More general signature morphisms

$\underline{\text { Let } \Sigma=(S, \Omega) \text { and } \Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)}$

$$
\delta: \Sigma \rightarrow \Sigma^{\prime}
$$

More general signature morphisms

$\underline{\underline{\text { Let } \Sigma=(S, \Omega) \text { and } \Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)}}$

$$
\delta: \Sigma \rightarrow \Sigma^{\prime}
$$

- Derived signature morphism maps sorts to sorts: $\delta: S \rightarrow S^{\prime}$, and operation names to terms, preserving their profiles:

More general signature morphisms

$\underline{\underline{\text { Let } \Sigma=(S, \Omega) \text { and } \Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)}}$

$$
\delta: \Sigma \rightarrow \Sigma^{\prime}
$$

- Derived signature morphism maps sorts to sorts: $\delta: S \rightarrow S^{\prime}$, and operation names to terms, preserving their profiles: for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$,

$$
\delta(f) \in\left|T_{\Sigma^{\prime}}\left(\left\{x_{1}: \delta\left(s_{1}\right), \ldots, x_{n}: \delta\left(s_{n}\right)\right\}\right)\right|_{\delta(s)}
$$

More general signature morphisms

$\underline{\underline{\text { Let } \Sigma=(S, \Omega) \text { and } \Sigma^{\prime}=\left(S^{\prime}, \Omega^{\prime}\right)}}$

$$
\delta: \Sigma \rightarrow \Sigma^{\prime}
$$

- Derived signature morphism maps sorts to sorts: $\delta: S \rightarrow S^{\prime}$, and operation names to terms, preserving their profiles: for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$,

$$
\delta(f) \in\left|T_{\Sigma^{\prime}}\left(\left\{x_{1}: \delta\left(s_{1}\right), \ldots, x_{n}: \delta\left(s_{n}\right)\right\}\right)\right|_{\delta(s)}
$$

- Translation of syntax, reducts of algebras, satisfaction condition, and many other notions and results: similarly as before.

Partial algebras

- Algebraic signature Σ : as before

Partial algebras

- Algebraic signature Σ : as before
- Partial $\mathrm{\Sigma}$-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

as before, but operations $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightharpoonup|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$, may now be partial functions.

Partial algebras

- Algebraic signature Σ : as before
- Partial $\mathrm{\Sigma}$-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

as before, but operations $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightharpoonup|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$, may now be partial functions.

BTW: Constants may be undefined as well.

Partial algebras

- Algebraic signature Σ : as before
- Partial $\mathrm{\Sigma}$-algebra:

$$
A=\left(|A|,\left\langle f_{A}\right\rangle_{f \in \Omega}\right)
$$

as before, but operations $f_{A}:|A|_{s_{1}} \times \ldots \times|A|_{s_{n}} \rightharpoonup|A|_{s}$, for $f: s_{1} \times \ldots \times s_{n} \rightarrow s$, may now be partial functions.
BTW: Constants may be undefined as well.

- PAlg (Σ) stands for the class of all partial Σ-algebras.

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations;

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations; BTW: at least three different natural notions are possible.
For $f: s_{1} \times \ldots s_{n} \rightarrow s$ and $a_{1} \in\left|A_{\text {sub }}\right|_{s_{1}}, \ldots, a_{n} \in\left|A_{\text {sub }}\right|_{s_{n}}$
- (strong) subalgebra: if $f_{A}\left(a_{1}, \ldots, a_{n}\right)$ is defined then $f_{A_{\text {sub }}}\left(a_{1}, \ldots, a_{n}\right)$ is defined
- (full) subalgebra: if $f_{A}\left(a_{1}, \ldots, a_{n}\right)$ is defined and $f_{A}\left(a_{1}, \ldots, a_{n}\right) \in\left|A_{\text {sub }}\right|_{s}$ then $f_{A_{\text {sub }}}\left(a_{1}, \ldots, a_{n}\right)$ is defined
- (weak) subalgebra: if $f_{A_{\text {sub }}}\left(a_{1}, \ldots, a_{n}\right)$ is defined then $f_{A}\left(a_{1}, \ldots, a_{n}\right)$ is defined
and $f_{A_{\text {sub }}}\left(a_{1}, \ldots, a_{n}\right)=f_{A}\left(a_{1}, \ldots, a_{n}\right)$.

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h: A \rightarrow B:$ map $h:|A| \rightarrow|B|$ that preserves definedness and results of operations;

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h: A \rightarrow B:$ map $h:|A| \rightarrow|B|$ that preserves definedness and results of operations; it is strong if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition;

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h: A \rightarrow B$: map $h:|A| \rightarrow|B|$ that preserves definedness and results of operations; it is strong if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h:|A| \rightharpoonup|B|$ that preserves results of operations.

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h: A \rightarrow B$: map $h:|A| \rightarrow|B|$ that preserves definedness and results of operations; it is strong if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h:|A| \rightharpoonup|B|$ that preserves results of operations.
- congruence \equiv on A : equivalence $\equiv \subseteq|A| \times|A|$ closed under the operations whenever they are defined;

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h: A \rightarrow B$: map $h:|A| \rightarrow|B|$ that preserves definedness and results of operations; it is strong if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h:|A| \rightharpoonup|B|$ that preserves results of operations.
- congruence \equiv on A : equivalence $\equiv \subseteq|A| \times|A|$ closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h: A \rightarrow B$: map $h:|A| \rightarrow|B|$ that preserves definedness and results of operations; it is strong if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h:|A| \rightharpoonup|B|$ that preserves results of operations.
- congruence \equiv on A : equivalence $\equiv \subseteq|A| \times|A|$ closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms
- quotient algebra A / \equiv : built in the natural way on the equivalence classes of \equiv;

Fix a signature $\Sigma=(S, \Omega)$ for a while.

Few further notions

- subalgebra $A_{\text {sub }} \subseteq A$: given by subset $\left|A_{\text {sub }}\right| \subseteq|A|$ closed under the operations; BTW: at least three different natural notions are possible.
- homomorphism $h: A \rightarrow B$: map $h:|A| \rightarrow|B|$ that preserves definedness and results of operations; it is strong if in addition it reflects definedness of operations; (strong) homomorphisms are closed under composition; BTW: very interesting alternative: partial map $h:|A| \rightharpoonup|B|$ that preserves results of operations.
- congruence \equiv on A : equivalence $\equiv \subseteq|A| \times|A|$ closed under the operations whenever they are defined; it is strong if in addition it reflects definedness of operations; (strong) congruences are kernels of (strong) homomorphisms
- quotient algebra A / \equiv : built in the natural way on the equivalence classes of \equiv; the natural homomorphism from A to A / \equiv is strong if the congruence is strong.

Formulae

Formulae

(Strong) equation:

$$
\forall X . t \stackrel{s}{=} t^{\prime}
$$

> as before

Satisfaction relation
partial Σ-algebra A satisfies $\forall X$.t $\stackrel{s}{=} t^{\prime}$

$$
A \models \forall X . t \stackrel{s}{=} t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]$ is defined iff $t_{A}[v]$ is defined, and then $t_{A}[v]=$ $t_{A}^{\prime}[v]$

Formulae

(Strong) equation:

$$
\forall X . t \stackrel{s}{=} t^{\prime}
$$

Definedness formula:

$$
\forall X . \operatorname{def} t
$$

where X is a set of variables, and $t \in$ $\left|T_{\Sigma}(X)\right|_{s}$ is a term

Satisfaction relation
partial Σ-algebra A satisfies $\forall X . t \stackrel{s}{=} t^{\prime}$

$$
A \models \forall X . t \stackrel{s}{=} t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]$ is defined iff $t_{A}^{\prime}[v]$ is defined, and then $t_{A}[v]=$ $t_{A}^{\prime}[v]$
partial Σ-algebra A satisfies $\forall X$.def t

$$
A \models \forall X . \operatorname{def} t
$$

when for all $v: X \rightarrow|A|, t_{A}[v]$ is defined

An alternative

- (Existence) equation:

$$
\forall X . t \stackrel{e}{=} t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.

An alternative

- (Existence) equation:

$$
\forall X . t \stackrel{e}{=} t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.
- Satisfaction relation: Σ-algebra A satisfies $\forall X . t \stackrel{e}{=} t^{\prime}$

$$
A \models \forall X . t \stackrel{e}{=} t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]=t_{A}^{\prime}[v]-$ both sides are defined and equal.

An alternative

- (Existence) equation:

$$
\forall X . t \stackrel{e}{=} t^{\prime}
$$

where:

- X is a set of variables, and
$-t, t^{\prime} \in\left|T_{\Sigma}(X)\right|_{s}$ are terms of a common sort.
- Satisfaction relation: Σ-algebra A satisfies $\forall X . t \stackrel{e}{=} t^{\prime}$

$$
A \models \forall X . t \stackrel{e}{=} t^{\prime}
$$

when for all $v: X \rightarrow|A|, t_{A}[v]=t_{A}^{\prime}[v]-$ both sides are defined and equal.

BTW:

- $\forall X . t \stackrel{e}{=} t^{\prime}$ iff $\forall X .\left(t \stackrel{s}{=} t^{\prime} \wedge\right.$ def $\left.t\right)$
- $\forall X . t \stackrel{s}{=} t^{\prime}$ iff $\forall X$. (def $t \Longleftrightarrow$ def $\left.t^{\prime}\right) \wedge\left(\operatorname{def} t \Longrightarrow t \stackrel{e}{=} t^{\prime}\right)$

Further notions and results

To introduce and/or check:

Further notions and results

To introduce and/or check:

- partial equational specifications (trivial)

Further notions and results

To introduce and/or check:

- partial equational specifications (trivial)
- characterization of definable classes of partial algebras (difficult!)

Further notions and results

To introduce and/or check:

- partial equational specifications (trivial)
- characterization of definable classes of partial algebras (difficult!)
- existence of initial models for partial equational specifications (non-trivial for existence equations; difficult for strong equations and definedness formulae)

Further notions and results

To introduce and/or check:

- partial equational specifications (trivial)
- characterization of definable classes of partial algebras (difficult!)
- existence of initial models for partial equational specifications (non-trivial for existence equations; difficult for strong equations and definedness formulae)
- proof systems for partial equational logic (ditto)

Further notions and results

To introduce and/or check:

- partial equational specifications (trivial)
- characterization of definable classes of partial algebras (difficult!)
- existence of initial models for partial equational specifications (non-trivial for existence equations; difficult for strong equations and definedness formulae)
- proof systems for partial equational logic (ditto)
- signature morphisms, translation of formulae, reducts of partial algebras, satisfaction condition; specification morphisms, conservativity, etc. (easy)

Further notions and results

To introduce and/or check:

- partial equational specifications (trivial)
- characterization of definable classes of partial algebras (difficult!)
- existence of initial models for partial equational specifications (non-trivial for existence equations; difficult for strong equations and definedness formulae)
- proof systems for partial equational logic (ditto)
- signature morphisms, translation of formulae, reducts of partial algebras, satisfaction condition; specification morphisms, conservativity, etc. (easy)
- even more general signature morphisms: $\delta: \Sigma \rightarrow \Sigma^{\prime}$ maps sort names to sort names, and operation names $f: s_{1} \times \ldots s_{n} \rightarrow s$ to sequences $\left\langle\varphi_{i}, t_{i}\right\rangle_{i \geq 0}$, where φ_{i} is a Σ^{\prime}-formula and t_{i} is a Σ^{\prime}-term of sort $\delta(s)$, both with variables among $x_{1}: \delta\left(s_{1}\right), \ldots, x_{n}: \delta\left(s_{n}\right)$; syntax does not quite translate, but reducts are well defined. . .

Example

$$
\begin{aligned}
& \text { spec NATPRED }=\text { free }\left\{\begin{array}{c}
\text { sort } \\
\text { ops } 0: N a t ;
\end{array}\right. \\
& \qquad \begin{array}{r}
\text { succ }: N a t \rightarrow N a t ; \\
-+_{-}: N a t \times N a t \rightarrow N a t \\
\text { pred }: N a t \rightarrow ? N a t
\end{array} \\
& \text { axioms } \forall n: N a t \bullet n+0=n ; \\
& \forall n, m: N a t \bullet n+\operatorname{succ}(m)=\operatorname{succ}(n+m) \\
& \forall n: N a t \bullet \operatorname{pred}(\operatorname{succ}(n)) \stackrel{s}{=} n ; \\
& \}
\end{aligned}
$$

Example'

$$
\begin{aligned}
\text { spec } \text { NATPRED }^{\prime}= & \text { free type } N a t::=0 \mid \operatorname{succ}(\text { pred }: ? N a t) \\
& \text { op }+_{+}: N a t \times N a t \rightarrow N a t \\
& \text { axioms } \forall n: N a t \bullet n+0=n ; \\
& \forall n, m: N a t \bullet n+\operatorname{succ}(m)=\operatorname{succ}(n+m)
\end{aligned}
$$

NATPRED \equiv NATPRED ${ }^{\prime}$

