Praca domowa: zwartość

$% \usepackage{amsmath} % \usepackage{amsfonts} % \usepackage{amssymb} % create the definition symbol \def\bydef{\stackrel{\text{def}}{=}} \newcommand{\qed}{\mbox{ } \Box} \newcommand{\set}[1]{\{#1\}} \newcommand{\eps}{\varepsilon} \newcommand{\NN}{\mathbb N} \newcommand{\Nat}{\mathbb N} \newcommand{\RR}{\mathbb R} \newcommand{\Aa}{\mathcal A} \newcommand{\Bb}{\mathcal B} \newcommand{\Cc}{\mathcal C} \newcommand{\Dd}{\mathcal D} \newcommand{\Ll}{\mathcal L} \newcommand{\str}[1]{\mathbb {#1}} \renewcommand{\implies}{\rightarrow} \newcommand{\lor}{\vee} \newcommand{\land}{\wedge} \renewcommand{\phi}{\varphi} \renewcommand{\subset}{\subseteq} \newcommand{\models}{\vDash} \DeclareMathOperator{\dom}{Dom} \DeclareMathOperator{\ifp}{ifp} \DeclareMathOperator{\lfp}{lfp} \DeclareMathOperator{\gfp}{gfp} \DeclareMathOperator{\tcl}{tcl} \DeclareMathOperator{\ln}{ln} $

Poniżej jest praca domowa na piątek 23-ego maja, oraz jedno zadanie gwiazdkowe, do 10 czerwca.

Continue reading Praca domowa: zwartość

Wzór Taylora

$% \usepackage{amsmath} % \usepackage{amsfonts} % \usepackage{amssymb} % create the definition symbol \def\bydef{\stackrel{\text{def}}{=}} \newcommand{\qed}{\mbox{ } \Box} \newcommand{\set}[1]{\{#1\}} \newcommand{\eps}{\varepsilon} \newcommand{\NN}{\mathbb N} \newcommand{\Nat}{\mathbb N} \newcommand{\RR}{\mathbb R} \newcommand{\Aa}{\mathcal A} \newcommand{\Bb}{\mathcal B} \newcommand{\Cc}{\mathcal C} \newcommand{\Dd}{\mathcal D} \newcommand{\Ll}{\mathcal L} \newcommand{\str}[1]{\mathbb {#1}} \renewcommand{\implies}{\rightarrow} \newcommand{\lor}{\vee} \newcommand{\land}{\wedge} \renewcommand{\phi}{\varphi} \renewcommand{\subset}{\subseteq} \newcommand{\models}{\vDash} \DeclareMathOperator{\dom}{Dom} \DeclareMathOperator{\ifp}{ifp} \DeclareMathOperator{\lfp}{lfp} \DeclareMathOperator{\gfp}{gfp} \DeclareMathOperator{\tcl}{tcl} \DeclareMathOperator{\ln}{ln} $

Wielomiany Taylora są wygodnym narzędziem do przybliżania funkcji $f$ w otoczeniu punktu $x_0$ za pomocą wielomianu.

Continue reading Wzór Taylora

Nierówność Jensena

$% \usepackage{amsmath} % \usepackage{amsfonts} % \usepackage{amssymb} % create the definition symbol \def\bydef{\stackrel{\text{def}}{=}} \newcommand{\qed}{\mbox{ } \Box} \newcommand{\set}[1]{\{#1\}} \newcommand{\eps}{\varepsilon} \newcommand{\NN}{\mathbb N} \newcommand{\Nat}{\mathbb N} \newcommand{\RR}{\mathbb R} \newcommand{\Aa}{\mathcal A} \newcommand{\Bb}{\mathcal B} \newcommand{\Cc}{\mathcal C} \newcommand{\Dd}{\mathcal D} \newcommand{\Ll}{\mathcal L} \newcommand{\str}[1]{\mathbb {#1}} \renewcommand{\implies}{\rightarrow} \newcommand{\lor}{\vee} \newcommand{\land}{\wedge} \renewcommand{\phi}{\varphi} \renewcommand{\subset}{\subseteq} \newcommand{\models}{\vDash} \DeclareMathOperator{\dom}{Dom} \DeclareMathOperator{\ifp}{ifp} \DeclareMathOperator{\lfp}{lfp} \DeclareMathOperator{\gfp}{gfp} \DeclareMathOperator{\tcl}{tcl} \DeclareMathOperator{\ln}{ln} $

Nierówność Jensena mówi, że jeżeli $f$ jest funkcją wypukłą na przedziale $I$ oraz $x_1,\ldots,x_n\in I$, to

$$f\left(\frac 1 n\sum_{i=1}x_i\right)\le \frac 1 n\sum_{i=1}^n f(x_i).$$

Continue reading Nierówność Jensena

Liczba pierwiastków funkcji

$% \usepackage{amsmath} % \usepackage{amsfonts} % \usepackage{amssymb} % create the definition symbol \def\bydef{\stackrel{\text{def}}{=}} \newcommand{\qed}{\mbox{ } \Box} \newcommand{\set}[1]{\{#1\}} \newcommand{\eps}{\varepsilon} \newcommand{\NN}{\mathbb N} \newcommand{\Nat}{\mathbb N} \newcommand{\RR}{\mathbb R} \newcommand{\Aa}{\mathcal A} \newcommand{\Bb}{\mathcal B} \newcommand{\Cc}{\mathcal C} \newcommand{\Dd}{\mathcal D} \newcommand{\Ll}{\mathcal L} \newcommand{\str}[1]{\mathbb {#1}} \renewcommand{\implies}{\rightarrow} \newcommand{\lor}{\vee} \newcommand{\land}{\wedge} \renewcommand{\phi}{\varphi} \renewcommand{\subset}{\subseteq} \newcommand{\models}{\vDash} \DeclareMathOperator{\dom}{Dom} \DeclareMathOperator{\ifp}{ifp} \DeclareMathOperator{\lfp}{lfp} \DeclareMathOperator{\gfp}{gfp} \DeclareMathOperator{\tcl}{tcl} \DeclareMathOperator{\ln}{ln} $

Znajdziemy liczbę rozwiązań równania $$e^x=6 \ln (x^2+1).$$

Continue reading Liczba pierwiastków funkcji