Lectures on Finite Model Theory

Szymon Toruticzyk

Lectures on Finite Model Theory

(©SzyMON TORUNCZYK, JANUARY 9, 2022

Contents

1 Querview 1

2 Preliminaries 3

2.1 Structures 3
2.2 First-order logic 5

2.3 Basics of model theory ¢

2.4 Proof of the compactness theorem™ 13
2.5 Second-order logic 16
3 Evaluation 19

3.1 Representing finite structures 20

3.2 First-order logic 20

3.3 Second-order logic 21

Satisfiability 23

4.1 Trakhtenbrot’s theorem 23

Types 29
5.1 Atomic types 29

5.2 Types of higher rank 32

Pebble games 43

6.1 Ehrenfeucht-Fraissé games of infinite duration
6.2 Bounded variable fragment 45

6.3 Counting extension™ 49

Quantifier Elimination 53

7.1 Tarski Arithmetic* 56
7.2 Relational structures 61
7.3 Random graphs 64

7.4 Fraissé limits* 68

43

10

11

Compositionality 71

8.1 Treewidth 77
8.2 Cliquewidth 82

Locality 85

9.1 Model-checking on graphs of bounded degree

9.2 Bounded local treewidth 97

Descriptive complexity 101
10.1 Fagin’s theorem 101
10.2 Fixpoint logics 106

10.3 Fixpoint logic with counting 113

10.4 Graph isomorphism, canonisation, and capturing poly-

nomial time 124

Outlook 129

Automata on Words and Trees 133

A.1 Monadic second-order logic 133

96

A.2 Words 134
A.3 Ranked trees 138
A.4 Unranked trees 144

Interpretations 149

B.1 Cliquewidth and MSO-interpretations of trees

151

1

Overview

Classical model theory mostly focuses on first-order logic, although other logics
have also been extensively studied. The main focus there is on theories, or sets
of sentences. An important goal is to understand the models of a given theory,
that is, the structures which satisfy all the sentences of the theory. For example,
there is a sentence expressing that a given structure equipped with a binary
operation + is an abelian group where every element is its own inverse, i.e.
x4+ x = 0 for all x. The models of this sentence can be easily classified: every
model is a vector space over the two-element field and is therefore determined
— up to isomorphism — by its dimension, or by its cardinality. Furthermore,
for each model, its subsets which are definable by a first-order formula can be
analysed and understood — they are Boolean combinations of vector subspaces.
Model theory tries to achieve a similar level of understanding not just for specific
theories, but for entire classes of theories. A typical question studied in model
theory is for example: characterize all theories which have exactly one model
— up to isomorphism — in any given infinite cardinality, and understand those
models and the definable sets in those models.

In finite model theory, one of the aims is to understand the expressive power
of various logics on finite structures, especially by comparing those logics with
various complexity classes. For example, what is the computational complexity
of deciding whether a given first-order sentence ¢ holds in a given finite struc-

2 OVERVIEW

ture A? It is not difficult to see that this problem is PsPACE-complete when both
@ and A are given on input. What is the complexity when ¢ comes from a more
expressive logic? Or when ¢ is fixed? What is it, when A is assumed to come
from a specific class of structures, such as the class of all planar graphs? Can a
certain computational problem be defined by a sentence of a considered logic?

Satisfiability and model checking

We will see in Chapter 4 that it is undecidable whether a given first-order sen-
tence is satisfiable in some finite structure, or in any structure. This may change
when considering other logics, or other classes of structures. For instance, when
restricting to trees, the satisfiability problem becomes decidable.

In this lecture, we will discuss the following topics, whose goal is to under-
stand the expressive power of various logics on finite structures:

- Develop tools for proving that a certain property cannot be expressed in a
given logic. One of the main tools will be variants of games, tailored for
to the considered logic.

+ Is it decidable whether a given sentence is satisfiable in some finite struc-
ture? What if we consider finite structures of specific forms, like trees?

+ Understand the complexity of evaluating a fixed sentence on a given struc-
ture.

+ In particular, a formula of a given logic defines a property of finite struc-
tures. What is the computational complexity of this property? Is there a
polynomial time algorithm deciding the property? Is there a linear time
algorithm?

+ Conversely, can every polynomial-time property be defined by a formula
of a given logic? Find logics which correspond precisely to known com-
plexity classes.

2
Preliminaries

2.1 Structures

A signature, or vocabulary, or language is a set ¥ of symbols, where each symbol
is either declared a relation symbol or a function symbol and comes with a
specified arity, which is a natural number. A structure A over a signature %, or a
X-structure, consists of a domain A together with:

- arelation Rp C A’ for each relation symbol R € X of arity 7,
- afunction fp: A" — A for each function symbol R € X of arity r.

A will be often identified with its domain, so for example we can say that
a is an element of A. Also, usually the subscript A from the relations Rp and
functions fa will be omitted, when A is clear from the context and no confusion
may arise by mistaking the relations and functions for symbols in X.

Relations are sometimes called predicates. Unary/binary/ternary etc. refers
to the arity of a relation or function. A function of arity 0 is a constant. Binary
relations are sometimes written in infix notation: aRb instead of (a,b) € R or
R(a,b).

Example 2.1. + a directed graph can be viewed as a structure over the signa-
ture consisting of one binary relation —;

4 PRELIMINARIES

,,<,>_,,,_/,,_,,,_,,,

embedding

—> binary relation
signature

@ @ unary relations

Figure 2.1: Two structures over a signature with two unary relations and one
binary relation, and an embedding between them.

+ a totally ordered set can be viewed as a structure over the signature con-
sisting of one binary relation <;

-+ a group can be viewed as a structure over the signature consisting of one

binary function - ;

+ avector space over a field K can be viewed as a structure with a binary +
and unary functions c, for each ¢ € KK, which multiply a given vector by
the scalar c. This has an infinite signature if K is infinite.

Substructures, isomorphisms, embeddings. Let B be a X-structure and let A C B
be a subset of its domain which is closed under all the functions of B, that is,
fB(ai,...,ar) € A for every function symbol f € X of arity k and ay,...,a5 €
A. Then the substructure of B induced by A is the structure A with domain A4,
together with the relations and functions restricted from B, that is fao = fp | 4«
and Rp = Rp N AF, for every function symbol f € ¥ and relation symbol R € &

FIRST-ORDER LOGIC 5

of arity k. An induced substructure of B is a substructure A induced by some set
A as above.

An isomorphism between two structures A and B is a bijection i: A — B
which preserves all the functions, relations, and their negations. Namely, for all
ke Nand ay,...,a;, € A,

- i(fa(ay,...,ar)) = fe(i(a1),...,i(ax)) for every function symbol f € X of
arity k, and

- (a1,...,ar) € Rp < (i(a1),...,i(ax)) € Rp for every relation symbol R €
2 of arity k.

If we just require that i is injective, rather than bijective, we obtain the notion
of an embedding of A into B. Equivalently, an embedding from A into B is an
injective mapping e: A — B such that e is an isomorphism between A and some
induced substructure of B. An automorphism of A is an isomorphism between
A and itself.

2.2 First-order logic

Syntax. Fix a signature X. Also, fix a countably infinite set of variables, denoted
x,Y,z, etc. A first-order formula over X is built recursively using the following
constructs:

1L, VY, -, Txe, R(t,....t), t1=t

where ¢ and 1 are simpler formulas, x is a variable, R is a relation symbol in X
of arity k and ¢#y, ..., t; are terms built out of function symbols and variables. We
use standard syntactic sugar, see Fig. 2.2.

An atomic formula is a formula of the form R(fy,...,#) or iy = f, where
t1,...,t; are terms and R is a relation symbol. A literal is an atomic formula or
a negation of an atomic formula. A quantifier-free formula is a formula without
quantifiers, that is, a Boolean combination of atomic formulas. For a formula ¢
its free variables are defined inductively:

6 PRELIMINARIES

notation definition meaning
T -1l true
PAY —(me V) conjunction
Alx.p(x) Txp(x) A (VXp(x') = (x = %)) exists exactly one
Vx.¢ —Jx.—g ‘for all’” quantifier
Jx Fxp .. T if T ={xq,..., 2} existential quantification of tuples
v Vxp...Vapif & ={xy,...,x,} universal quantification of tuples
X#y X =y unequal
Q=Y VY implication
QP (p=>P)A (Y — @) equivalence
Vier @i @i V-V if I ={iy, ..., 0} finite disjunction
Niel @i Qi NN if T ={iy,..., 0} finite conjunction

Figure 2.2: Syntactic sugar

if ¢ is atomic its free variables are all the variables appearing in it;

« if ¢ is a Boolean combination of formulas ¢1, ..., ¢y then the set of free
variables of ¢ is the union of the sets of free variables of ¢;, and

+ if ¢ = Ix.¢ then the free variables of ¢ are the free variables of i without x.

A sentence is a formula with no free variables.

Valuations. We denote sets of variables by X,7, etc. Let A be a set and X be a
set of variables. A waluation of X in A is a function a: ¥ — A. An ¥-tuple is a
valuation of ¥ in some set. The set of all valuations of ¥ in A is denoted A*. If
% has an implicit enumeration ¥ = {x1,...,x;} then A* may be identified with
AF, the k-fold Cartesian product of A. If A is a structure with domain A then
A is the same as A¥.

If ¥ and j are two disjoint sets of variables then ¥ U is written X/, or Xy in
the case when 7 = {y} is a singleton. If 2 € A™ and b € A7 for disjoint £ and 7,
then ab € AV is the unique valuation extending and b.

FIRST-ORDER LOGIC 7/

term ¢(%) semantics tp: AY — A
y a— a(y)
FH(R), ... 5(x) a— fa(th(@),... t5(a))

formula ¢(x) semantics pp C A*
1)
—(%) AT —p
a(x) vV B(x) apUpBa
Fy-p(xy) {alz|aeya}
x=y {aent|a(x)=a(y)}

R(1(%), ..., (%)) {a € AT|(tY(a),...,t (a)) € RA}

Figure 2.3: Semantics of terms ¢(¥) and of first-order formulas ¢(x). Each term
and formula above comes with a distinguished set of variables containing the
free variables, which is understood from the context.

If 2 € A¥ and a € A, then aa denotes the valuation extending the valuation
a € A™ to a variable x not occurring in X which maps x to 4. For unambiguity,
it is convenient to assume that x is the first variable not occurring among ¥ with
respect to an enumeration of all variables, which is fixed once and for all. We
will sometimes denote the tuple Xx for x as above by ¥ 4 1, and by extension, for
I € IN denote by x + I the tuple ¥ extended by the first [variables not occurring
in . In particular, ¥+ (I+1) = (¥ +[)+1and ¥ + | = |X]| + .

Semantics. The semantics of a first-order formula is defined by induction on the
formula. Fix a signature £ and a X-structure A. If ¥ is a set of variables then we
may write ¢ (%) to signify that the free variables of ¢ are contained in X. Formally,
¢(%) is a pair of a formula and a set of variables but, abusing language, we say
that ¢(x) is a formula. In a given structure A, the formula ¢(%) defines a set
¢a C A¥, defined by induction on ¢(), as in Fig. 2.3.

We say that a tuple a € A” satisfies ¢(x) in A if @ € ¢ . This is also denoted

8 PRELIMINARIES

A, = ¢(x) or A = ¢(a). If ¢ is a sentence, then we just say that A satisfies ¢,
or that A is a model of ¢, if A = ¢.

Say that two X-formulas ¢(X) and ¢(X) are equivalent over a class of struc-
tures Cif pp = P for every X-structure A € €. When € is not mentioned, then
we implicitly mean the class of all X-structures.

Example 2.2. The following sentence expresses that the relation < is a total order:

Yoy (xsy)Vy<x) A Yy <yay<x) = (x=y) A
Vy,y,z.(x <y) A (y <z) = (x < 2z2).

When talking about partial orders, we use the syntactic sugar x < y to denote
(x < y) A (x # y). The following formula succ(x,y) defines the property that x
is a (immediate) successor of y:

succ(x,y) = (x >y) A ~Fz.(x <z) A (z <y).
The sentence Vx.3y. succ(x,y) is equivalent to —=3x.(x = x) on the class of finite
total orders, but not on the class of all (finite or infinite) total orders.
Example 2.3. Let ¥ consist of a single binary relation E. The following sentence
expresses that a X-structure is a simple (undirected) graph:

Vx.(mE(x,x)) A Vx,y.(E(x,y) < E(y,x)).

In other words, simple graphs are precisely those X-structures which satisfy the
above sentence.
Example 2.4. Fix d € IN. The following sentence expresses that there is a path
between two elements x, y consisting of d edges:

ag = Ix13xp. .. 3xg 1. E(x,x9) A ANE(X4_1,Y)

where for d = 0 we put ag = (x = y) and for d = 1 we put a; = E(x,).

Fix a graph G. Let R; C G x G consist of all pairs (4, b) such that the distance
from a to b in G is at most d. Then ¢; = \/fl:O a4(x,y) defines the relation Ry
in G.

BASICS OF MODEL THEORY 9

Observe that R;(a,b) if and only if there some c such that R|;/5/(a,¢) and
R{4/2(c,b). Using this, we may inductively define a formula ,(x,y) with
log,(d) quantifiers, such that i; defines R; in G. Hence, §; is equivalent to
@4 on the class of simple undirected graphs.

2.3 Basics of model theory

Elementary equivalence. Say that two structures A and B over the same sig-
nature X are elementarily equivalent if they satisfy exactly the same first-order
sentences over X.

Example 2.5. If A and B are isomorphic, then they are elementarily equivalent.
Formally, this is proved by showing more generally that if f: A — B is an
isomorphism and ¢(x1, ..., xx) is any first-order formula, then A |= ¢(ay, ..., ax)
holds if and only if B |= ¢(f(a1),..., f(ax)), forallay,...,a; € A. This is proved
by a straightforward induction on the structure of the formula ¢. Informally, the
semantics of first-order logic is invariant under isomorphisms. This also applies
to all other reasonable logics.

Two non-isomorphic structures may still be elementarily equivalent.

Example 2.6. The structures A = (IN,=) and B = (R, =) are elementarily
equivalent, but are non-isomorphic. Again, we may prove by induction on
the structure of ¢(xq,...,x;) that if ny,...,n € N then A = ¢(ny...,ny) if
and only if B = ¢(ny,...,n;), where now ny,...,n; are treated as real num-
bers. In the inductive step, the least trivial case is when ¢(xy,...,xi) is of the
form Jy.p(xq,...,x,y) and we want to prove that if B |= ¢(ny,...,n;) holds
then also A = ¢(ny,...,n;). By assumption, there is some r € R such that
B = ¢(ny,..., 1, 1) holds. Now observe that there is an automorphism f of
B = (IR, =) that fixes each of the elements ny, ..., 1, and maps r to some natural
number m. Indeed, the automorphisms of BB are just the bijections f: R — RR,
so we may take f to be the identity if » € IN, and otherwise, we may take f to
be the bijection which exchanges r with any number m € N — {ny,...,n;}, and
fixes all reals numbers other than r and m.

10 PRELIMINARIES

Since f is an automorphism, B |= ¢/(f(n1),..., f(ng), f(r)) holds, thus B |=
Y(ny,...,ng,m). By inductive assumption, A = ¢(ny,...,ng,m) and therefore
A= @(ny, ..., ng).

Example 2.7. The structures (IN, <) and (R, <) are not elementarily equivalent,
as the sentence expressing that there is a least element is satisfied in only one of
them. However, by a similar argument as above, one can show that the structures
(R, <) and (Q, <) are elementarily equivalent. The key observation here is that
for any fixed rationals a1, ...,q; and real r € R there is an automorphism f of
(R, <), that is, an increasing bijection, such that f fixes each of the numbers
ai,...,ax, and maps r to a rational number.

Example 2.8. We now show two countable total orders A and B that are elemen-
tarily equivalent, but non-isomorphic.

Namely, A = (Z, <), whereas B consists of two copies of Z, one following
the other. Formally, the elements of B are pairs (o, n) with o € {1,2} and n € Z,
and those pairs are ordered by < lexicographically: (¢, m) < (7,n) if and only if
oc<Ttoroc=Tand m < n.

One can prove that A and B are elementarily equivalent. This is done us-
ing Ehrenfeucht-Fraissé games, which will be developed in Chapter 5 (see Exer-
cise 5.18).

Compactness. Fix a signature X. A first-order theory is a set of first-order sen-
tences over X. Note that if the cardinality of X is at most some infinite cardi-
nal «x, then so is the cardinality of T. In other words, T has cardinality at most
max(|X],Ng), so if X is countable then so is T. A model of a theory T is a structure
which satisfies all the sentences in the theory. Conversely, if A is a X-structure,
then the theory of A is the set of all (first-order) X-sentences ¢ such that A = ¢.
Thus, two structures A and B are elementarily equivalent if and only if their
theories are equal.

Note that if T is a theory then it may have models that are not elementarily
equivalent.

The most fundamental result of model theory is the compactness theorem:

BASICS OF MODEL THEORY 11

Theorem 2.9 (Compactness of first-order logic). A first-order theory T has a model
if and only if every its finite subset S C T has a model. In this case, T also has a model
of cardinality at most max(Xo, |Z|).

The first part in the above statement is the more essential part of the compact-
ness theorem, and this part alone is sometimes called the compactness theorem.
It follows easily from Gddel’s completeness theorem. This theorem states that if a
theory T has no model then there is a proof (in some formal system) deriving the
contradiction L from T. As a proof can only invoke a finite number of sentences
from T, this shows that there is some finite subset S C T from which a contradic-
tion can already be obtained, and, in particular, S has no model. Another proof
(without invoking proof systems) is presented in Section 2.4.

The second part in the above statement is the so-called downward Lowenheim-
Skolem theorem: if a theory T has a model then it has a model of cardinality at
most max (R, |X|). This part also follows from the proof of Godel’s complete-
ness theorem. Equivalently, the downward Lowenheim-Skolem states that ev-
ery structure is elementarily equivalent to some structure of cardinality at most
max(Rp, |Z|). In particular, if X is a countable signature then every X-structure
is elementarily equivalent to a countable structure. For instance, the structure
(R, +,-) is elementarily equivalent to a countable structure. Indeed, one can
prove that the set A C R of algebraic numbers (roots of non-zero polynomials
with integer coefficients) is closed under + and -, and (A, +,-) is elementarily
equivalent to (R, +, -) (see Exercise 7.8).

Another formulation of the compactness theorem is as follows. For sim-
plicity, we state it for countable signatures £ only. A sequence of structures
A1, Ay, ... converges elementarily to a structure A if for every first-order sentence
@, ¢ holds in A if and only if ¢ holds in all but finitely many elements of the
sequence A1, Ay,

Theorem 2.10 (Compactness, restated). Every infinite sequence of structures over
a countable signature contains an infinite subsequence which converges elementarily to
some countable structure.

12 PRELIMINARIES

A proof of Theorem 2.10, without the downward Léwenheim-Skolem theo-
rem, is presented in Section 2.4.

To prove the equivalence of the two statements, the following lemma is use-
ful.

Lemma 2.11. Let A1, Ay, ... be a sequence of structures over a countable signature x.
Then there is a subsequence A;,, A;,, . .. such that for every sentence ¢, either A;, = ¢
holds for all but finitely many n € IN, or A;, = —¢ holds for all but finitely many
n € N.

Exercise 2.12. Prove Lemma 2.11. Hint: use the fact that there are countably many
sentences.

Exercise 2.13. Prove the equivalence of the two statements of the compactness
theorem, for countable signatures.

As a very simple application, we show that graph connectedness cannot be
expressed by any theory.

Example 2.14. We show that there is no theory whose models are precisely the
connected graphs.

Consider the sequence Py, P, ..., where P, is the path with n vertices. By
Theorem 2.10, some subsequence converges elementarily to a structure G. Then
G is a graph with exactly two vertices of degree 1 and the remaining vertices
of degree 2, and has at least n vertices, for all n € IN (since all these properties
hold for almost all the structures in the sequence Pj, P, ...). Moreover, if con-
nectedness were expressible by a set T of first-order sentences, then G would
also be a model of T (as all the graphs P; are connected) and therefore G would
be connected. This is a contradiction, since there is no connected graph G with
the above properties.

Exercise 2.15. Prove that every theory T that has an infinite model also has a
model of cardinality larger than any given cardinal.

Hint: extend the signature by adding as many constant symbols as the size of the cardi-
nal.

Exercise 2.16. Prove that there is a countable structure that is elementarily equiv-
alent to (Z,<), but non-isomorphic with it. An explicit example is given in

PROOF OF THE COMPACTNESS THEOREM* 13

Example 2.8, but such a structure can be also obtained using compactness.
Hint: extend the signature with two constant symbols c,d, and consider the theory T
of (Z,<) together with sentences ¢, for n € IN, where ¢, = 3x1,...,xp.c < X1 <
< xy < d.

Exercise 2.17. Let T be the first-order theory of (N, +,-), that is, T is the set of
all sentences ¢ over the signature consisting of two binary function symbols +
and - that are true in the structure (N, +, -). Prove that there exists a countable
model of T that is not isomorphic to (N, +, -).

Exercise 2.18. Prove that for each n € IN there is a formula d,,(x, y) of size O(log n)
expressing that the distance between x and y in a graph is at most n. The size of
a formula ¢ is the size of its parse tree. In particular, if the same subformula
occurs in ¢ twice, then it contributes twice to its size.

2.4 Proof of the compactness theorem™

We prove the compactness theorem, in the formulation from Theorem 2.10. We
start with defining the notion of an ultrafilter.

An ultrafilter on N is a function y: P(IN) — {0,1} which is a Boolean algebra
homomorphism, that is, (@) = 0, p(XUY) = u(X) Vu(Y) and p(N — X) =
1 — u(X). In other words, u is a 0, 1-valued, finitely additive measure on the
set of all subsets of IN, that is, (X UY) = u(X) + u(Y) whenever X and Y are
disjoint and u(IN) = 1.

An example ultrafilter is the ultrafilter yy such that ui(X) = 1 if and only if
k € X, where k € IN is some fixed number. Ultrafilters of this form are called
principal. An ultrafilter u is not principal if and only if u(X) = 0 for every finite
set X (see Exercise 2.22). It follows from the axiom of choice that there exist
ultrafilters that are not principal.

Lemma 2.19. There exists a non-principal ultrafilter on IN.

Proof. See Exercise 2.23.]

*omitted in the lectures

14 PRELIMINARIES

In the following, fix any non-principal ultrafilter . Call a set X C IN large
if u(X) =1 and small otherwise. Note that the union of two small sets is small,
and dually, the intersection of two large sets is large.

Let A1, Ay, ... be a sequence of sets. Write [],cn An for their product, that
is, the set of all sequences ay,ay,... with a, € A, for n € IN. Such a sequence is
denoted a, € [],en An. Now, define an equivalence relation ~ on [],,cy An, SO
that @, ~ by, if and only if the set {n € N|a, = by} is large. This is indeed an
equivalence relation, where transitivity follows from the fact that the intersection
of large sets is large. Write [], Ay for the set of ~-equivalence classes; this set is
called the ultraproduct of the sets Ay, Ay,

We now proceed to proving Theorem 2.10.

Fix a signature X. For simplicity, assume that ¥ contains only relation sym-
bols, as functions can be represented as relations (a function f: A" — A is rep-
resented by its graph I'y C A"1). Moreover, to simplify the proof, we assume
that X is countable. The proof in the general case proceeds similarly.

Let A1, Ay, ... be a sequence of Z-structures, and let A, denote the domain
of A,. Without loss of generality, by using Lemma 2.11 and replacing the se-
quence Aj, Ay, ... by its subsequence, we may assume that for every sentence
¢, the set {n € N | A, |= ¢} is either finite, or its complement (in IN) is finite.

Let A = HV Ay, be the ultraproduct of the sets Aq, Ay, Define a new X-
structure A with domain A and relations defined as follows. For each realation
symbol R € ¥ of arity k, let R consist of all k-tuples ([al]~,...,[ak]~) € A of
~-equivalence classes of sequences ap,, . ..,a% € [T,en An such that R(al,, ..., ak)
holds for all n € IN. The structure A is called the ultraproduct of the structures
Al , Az g

Lemma 2.20. For every first-order formula ¢(x1,...,x;) and sequences ah, . ..,a% in

[T.en An, the following conditions are equivalent:
° A |: q)([ail’l}’v//[ﬁlifl]”)’
the set of all n € N such that A |= ¢(al, ..., a%) is large.

Proof. By induction on the structure of ¢. In the base case, ¢ is an atomic formula
R(x1,...,x;), for some R € X. This case follows by definition of Ra. In the

PROOF OF THE COMPACTNESS THEOREM* 15

inductive step we consider three cases. The case when ¢ is of the form —
follows from the fact that the complement of a large set is small, and vice-versa.
The case when ¢ is of the form ¢1 V ¢, follows from the fact that the union of
two sets is large if and only if at least one of them is large. Finally, the case when
@ is of the form Jy.¢ is straightforward.]

From this we obtain the following.

Corollary 2.21. Let ¢ be a sentence. Then A = ¢ if and only if the set {n € N | A, = ¢}
is large.

Recall that for every sentence ¢ the set {n € IN| A, = ¢} is either finite, or
its complement is finite. Moreover, every finite subset of IN is small, and its
complement is large. It follows from Corollary 2.21 that {n € N| A, = ¢} is
a complement of a finite set if and only if A = ¢. Therefore, the sequence
A1, Ay, ... converges elementarily to A. This finishes the proof of Theorem 2.10
(without the downward Lowenheim-Skolem theorem).

Exercise 2.22. Prove that an ultrafilter y is not principal if and only if u(X) =0
for every finite set X C IN.

Exercise 2.23. An ideal is a family J C P(IN) that is downward-closed with respect
to inclusion (X C Y and Y € J implies X € J) and closed under unions (X,Y € J
implies XUY € J). A maximal ideal is an ideal J # P(IN) such that for every ideal
J withJ C 7, either I =7 or I/ = P(N).

1. Using the Kuratowski-Zorn lemma, show that every ideal other than P(IN)
is included in a maximal ideal.

2. Prove that if J is a maximal ideal then y: P(IN) — {0,1} defined as u(X) =
0 for X € Jand u(X) =1 for X ¢ J is an ultrafilter.

3. Derive Lemma 2.19, by extending the ideal of finite subsets of IN to a
maximal ideal.

16 PRELIMINARIES

2.5 Second-order logic

Second-order logic is an extension of first-order logic that allows quantification
over sets of elements (denoted X, Y, ...), and more generally, relations (denoted
R,S,...) on the domain, rather than just over single elements of the domain
(denoted x,y,...). The arity d of a relation R is assumed to be fixed, and may be
indicated by using a superscript, e.g. R(?).

For example, the formula

p(x,y) = IXV. [X(x) A =X(y) AV2VEX(2) AE(z,) = X(1)]

evaluated in a graph G, expresses that x and y are not in the same connected
component. The sentence

P = HR(z).Vx.‘v’y.(R(x,y) V R(y,x)) AVz.(R(x,y) AR(y,z) — R(x,2))

expresses that there exists a binary relation R which is a total preorder on the
domain.

The syntax of second-order logic is obtained by extending that of first-order
logic as follows:

+ apart from the usual first-order variables, denoted x,y, ..., a countable set
of second-order variables, denoted X,Y,...,R,S,... is fixed. Each second-
order variable has a specified arity, which may be indicated in a super-
script e.g. R(). If the arity is not indicated, we assume the arity is 1.
Relation and function symbols from the signature X (as well as =) may
only be applied to first-order variables;

- asecond-order quantifier 3X.¢ is added, binding a set variable X;

« for each second-order variable R of arity k and first-order variables x, ..., xy,
R(x1,...,xx) is an atomic formula.

A formula may now have free variables which are either first-order variables or
second-order variables. A valuation v in a structure A maps each first-order
variable x to an element v(x) of A, while each second-order variable R is

SECOND-ORDER LOGIC 17

mapped to a relation R, C A on the domain of A. The semantics of the
predicate R(xy,...,xx) is defined in the expected way: a valuation v satisfies
R(x1,...,x¢) if (v(x1),...,0(x¢)) € Ry.

Monadic second-order logic (MSO for short) is the fragment of second-order
logic in which only second-order variables of arity 1 are allowed. The formula
¢(x,y) above is an MSO formula, while the sentence ¢ is not.

Exercise 2.24. Show that the compactness theorem fails for monadic second-order
logic.

3
Evaluation

Fix a logic £, for example, first-order logic, monadic second-order logic, or
second-order logic. The evaluation, or model-checking problem for £ is the prob-
lem of determining whether a given structure A satisfies a given sentence ¢
of the logic £. There are three variants of the problem, depending on what is
considered fixed:

Combined complexity: Both A and ¢ are given on input.

Data complexity: The sentence ¢ is considered fixed, and only A is given on
input. So this is a family of problems, one for each sentence ¢.

Query complexity: The structure A is considered fixed, and only ¢ is given on
input. So this is a family of problems, one for each structure A.

In each case, we may study the computational complexity of the resulting prob-
lem or family of problems. Most of our focus will be on data complexity. In this
case, we can for example ask: is the evaluation problem for £ in p, for every
fixed ¢? If this is the case, we may write that £ C .

In the first and second problem, we need to specify how the structure is
represented. In the third problem, as A is fixed, it is not given on input. In fact,
this problem makes sense even for infinite structures A, such as the field of reals
(R, +,-).

20 EVALUATION

3.1 Representing finite structures

For fixed numbers r,n € IN, the lexicographic order <jey of {0,1,...,n —1}" is
defined as follows. Given two distinct tuples 4,b € {0,1,...,n — 1}, leti €
{1,...,r} be the least such that a[i] # bli]. Then @ <o, b if a[i] < bl[i].

Fix a finite relational signature ¥ = {Rj,...,Rx}. Let A be a X-structure
with domain {0, ...,n — 1}, for some n € IN. The adjacency matrix encoding of A
is the following word over the alphabet {0, 1}:

L -10[Ri]. . [Ry]
n
where for each relation symbol R; of arity r, [R;] is the flattening of the r-
dimensional n X - - - X n array representing the relation R;, that is the o-1 word of
length n” whose jth letter is 1 if and only if the jth tuple in {0,...,n —1}" (with
respect to the lexicographic order) belongs to R;.
As every finite X-structure is isomorphic to a structure with domain {0, ...,n —

1}, when considering algorithms, we may assume that the inputs are restricted
to such structures only. Note that fixing an isomorphism between a finite struc-
ture A and a structure with domain {0,...,n — 1} amounts to picking a total
order on the domain of A, and in principle can be done in n! ways. However,
there seems to be no simple way of encoding an arbitrary finite structure by a
word without imposing an order of its elements, at least if we require that the
encoding can be produced in time polynomial from the encoding just described.

Exercise 3.1. Construct an encoding of finite graphs that is order-invariant, so
that two graphs are isomorphic if and only if they have identical encodings. The
encoding may take exponential time to produce, given a structure represented
in the adjacency matrix encoding as described above.

3.2 First-order logic

The naive algorithm for model checking first-order logic yields the following:

Proposition 3.2. There is an algorithm which given a L-structure A and a first-order
Y-sentence ¢ of quantifier rank r decides whether A satisfies ¢ in time O(|@||A|").

SECOND-ORDER LOGIC 21

Exercise 3.3. Define the width of a formula to be the maximal number of free
variables in any of its subformulas. Show that a formula ¢ of width k can be
rewritten in polynomial time into a formula which uses only variables x1, . .., xk
(potentially, reusing variables). Show that Proposition 3.2 can be improved by
replacing the exponent r by the width of ¢.

The evaluation problem for first-order logic has the following complexity:

.« combined complexity: PSPACE-complete,

- query complexity: PSPACE-complete for any A with |A| > 2, in P other-
wise,
. data complexity: in L, actually, in uniform ac®. So: FO C uniform ac’.

Exercise 3.4. Prove the above.

3.3 Second-order logic
The naive algorithm for model checking second-order logic yields the following;:

Proposition 3.5. There is an algorithm which given a X-structure A and a first-order
X-sentence ¢ of quantifier rank r decides whether A satisfies ¢ in time O(|¢| - 2lollaly,
where k > 1 is the maximal arity of a second-order variable in ¢.

The evaluation problem for monadic second-order logic (MSO) has the fol-
lowing complexity:

« combined complexity: still PsPACE-complete (note that we assume here
that all relations in ¢ have arity 1).

- query complexity: PsPACE-complete for any A with |A| > 1, in P other-
wise,

+ data complexity: in the polynomial hierachy: SO C ra. Contains complete
problems for each level of the hierarchy, as explained below.

22 EVALUATION

Lemma 3.6. There is a sentence ¢ of MSO such that for every SAT instance a one can
compute in time polynomial in |«| a structure A, such that:

Ay = ¢ & « is satisfiable.

More generally, fix k € IN. A complete problem for the kth level of the
polynomial hierarchy (for the class %) is the problem of deciding validity of a
given QBF instance of the form

a= T'VI. B,
—
k—1 alternations

where f is a propositional formula.

Lemma 3.7. There is a sentence of ¢y of MSO such that for every QBF instance « as
above one can compute in time polynomial in |«| a structure A, such that:

Ay = ok & a holds.

Exercise 3.8. Prove the above statements above the evaluation of MSO. When « is
a SAT instance, then A, can be the directed acyclic graph representing «, whose
nodes are the subformulas of &, together with unary predicates marking their
types (A, V, 7, input gate).

4
Satisfiability

The satisfiability problem is the following decision problem:

Problem: SATISFIABILITY
Input: a sentence ¢
Decide: is there some structure A which satisfies ¢?

Actually, there are multiple variants of the problem, depending on the con-
sidered logic and class of structures. So for example, we may consider the finite
satisfiability problem for first-order logic. This means that we require the struc-
ture A to be finite. In the general satisfiability problem we allow A to be an
arbitrary structure. Also, we may fix a signature X, or let it be arbitrary (given
on input together with the formula ¢). Finally, instead of first-order logic, we
could consider other logics.

In this chapter we will study some instances of the satisfiability problem.

4.1 Trakhtenbrot’s theorem

We show that there is a finite signature X such that the finite satisfiability prob-
lem for first-order logic is undecidable.
First, let us note that for some signatures X, the problem is decidable.

24 SATISFIABILITY

Example 4.1. Let X be a signature consisting only of unary relation symbols.
Then the problem of deciding whether a given X-sentence is satisfied in some
Y-structure is decidable.

It follows easily from Theorem 5.8 that if A and B are two X-structures then
A =" B if A and B have the same numbers of elements of any given atomic
type, counting only up to the threshold k. In this case, an atomic type of an
element 4 is just the set of unary predicates that it satisfies. Hence, up to the
equivalence =¥, there are only finitely many structures A. Given a sentence ¢
of quantifier rank k, it is therefore enough to test whether or not ¢ holds in one
of those finitely many structures.

Theorem 4.2. There is a finite signature ¥ consisting of unary and binary relational
symbols such that the finite satisfiability problem is undecidable for X-formulas.

Note that by Proposition 3.2, the finite satisfiability problem is recursively
enumerable, as for a given sentence ¢, it suffices to check whether each finite
Z-structure A is a model of ¢.

Proof. Let L C {0,1}* be an undecidable problem which is recognized by a
Turing machine M. For example, M could be the universal Turing machine,
accepting exactly encodings of those Turing machines, which halt on the empty
word.

Given a word w € {0,1}* we show how to effectively construct a sentence ¢,
such that ¢, is satisfied in a finite structure if and only if w € L. The signature
% of ¢y will depend only on M, and will consist of unary and binary relations.
Hence, this will prove undecidability of finite satisfiability for £-formulas.

The idea is that the sentence ¢, axiomatizes that a given X-structure is a
colored grid representing an accepting run of M on w.

For two numbers m,n € IN, an m x n grid is the finite structure G with
domain {1,...,m} x {1,...,n}, equipped with two binary relations, — and T,
as depicted in Fig. 4.1. We would like to write a sentence whose finite mod-
els are exactly all the grids. This, however, is impossible, as can be seen by
an Ehrenfeucht-Fraissé argument (see Chapter 5). However, we may achieve a
weaker condition, which will turn out to be sufficient.

TRAKHTENBROT’S THEOREM 25

Figure 4.1: A grid. The blue arrows mark the relation — and the green arrows
mark the relation 7.

Let X be the signature consisting of the binary relations — and 1. A grid
may be seen as a Xy-structure.

Given a Zy-structure G, denote by < the inverse of — and by | the inverse
of 1. For a binary relation R, say that b is an R-successor of a if aRb holds.

We define four types of corners in G. For each H € {«—,—} and V € {1,]},
an HV-corner is an element which has no H-successor and no V-successor. For
each R € {«+,—,1,}}, an R-boundary node is an element which has no R-
SUCCessor.

Let ¢o be the sentence expressing the following:

- for each R € {«,—,1,1]}, every element v has at most one R-successor,

and this successor is not v;

- foreach H € {<-,—} and V € {1,]}, the relations H and V commute:
HoV =VoH,

+ there is a unique <—|-corner, a unique < f-corner, a unique —|-corner
and a unique —1-corner.

Clearly, every grid is a model of ¢g. The converse need not hold: consider
for example the disjoint union of a grid with a cylinder obtained from another

26 SATISFIABILITY

grid by identifying its lower and upper boundaries. However, the connected
component of a lower-left corner is always isomorphic to a grid.

The connected component of an element v in G is the substructure of G induced
by the set of all nodes v’ such that v = vgRov1R; ...v,_1R,_10, = v’ for some
vo,-..,0n € G with vg = v, v, = v’ and some Ry, ..., R, 1 € {+,—, 1,1}

Lemma 4.3. Every finite model of ¢g has a unique <—|-corner v, and the connected
component of v is isomorphic to some grid.

Proof. Exercise. u

a Turing machine an accepting run

O space
initial accepting
states Bl o o
o o — L] L[] L]
(e] . ° (]
L] L] [+] (-]
—_— \ °
input blank
symbols symbol
)
work alphabet g o e o o o
T S T i (-] L] L] L] °
L . L] L]]
! b D L ° L] [] L]
8 ° ©| L3 e o o o
L * . ° ° °
L4 . ° L] ° .
L] Q.)
~—_—
transitions input word

Figure 4.2: A Turing machine and its accepting run.

Finite runs of M may be represented as grids expanded with unary predi-
cates, as shown in Fig. 4.2. There is one unary predicate for each state of the

TRAKHTENBROT’S THEOREM 27

machine and one unary predicate for each symbol of the work alphabet. It is not
difficult to write, for each input word w, a sentence 1, which holds in a m x n
grid expanded with unary predicates if and only if it is a proper encoding of an
accepting run of M on w. It expresses the following properties:

« the first row represents the input word w padded with blank symbols;
. the lower-left node carries the initial state, and no other node does;
+ exactly one node carries the accepting state;

« for every node which carries a non-accepting state and its -successor v,
either the <—-successor of v, or the —-successor of v carries a state;

- for every node which carries a state and is not in the first row, if v is its |-
successor, then either the <—-successor of v, or the —-successor of v carries
a state;

- if a node v carries a state which is not accepting then its 1-successor v’
exists, and either the «—-successor or the —-sucessor of v’ carries a state;

« every 2 x 2 subgrid is colored consistently with the transition function
of M.

In particular, in every model of ¢g A ¢, the accepting state must occur in
the connected component of the lower-left corner v: by tracing the movement
of the head upwards, starting from v, we must eventually arrive at an accepting
state.

It follows that the sentence ¢y A ¢, has a finite model if and only if M has
an accepting run on w. [|

Exercise 4.4. Prove Lemma 4.3.
Exercise 4.5. Show that for some Turing machine M which does not halt on w,
the sentence ¢o A ¢, constructed in the proof may have an infinite model.

Exercise 4.6. Prove that the general satisfiability problem — does a given X-sentence
have any model - is also undecidable. Using Goédel’s completeness theorem,
show that the complement of this problem is recursively enumerable.

>
Types

Fix numbers r and I € N and a signature X. Two /-tuples in a Z-structure A
have the same type of quantifier rank r if they satisfy exactly the same formulas
of quantifier rank r. This induces an equivalence relation =" on [-tuples.

For simplicity, in this section we assume that ¥ is a finite and relational
signatuer, that is, has no function symbols. We now define types and study their
properties.

We first analyze types of quantifier rank 0, and then move to types of higher
rank.

5.1 Atomic types

An atomic type with variables ¥ is a conjunction 7(%) of literals such that for
every atomic formula «(%), either & or —a appears as a conjunct in 7. Atomic
types are also called quantifier-free types. Note that a tuple @ € A* may satisfy
at most one atomic type with variables %. In fact, it satisfies exactly one atomic
type. Namely, 7 € A* induces an atomic type, called the atomic type of a, denoted
atp 5 (@), which is the conjunction of all literals a(%) or —a(X) which are satisfied
by ain A.

Here is an example of an atomic type over the signature X with one binary

30 TYPES

relation E, and with variables x, y:

(x #y) AN—E(x,x) NE(x,y) A —E(y,x) A =E(y,y).

Above and in the future, we may omit writing some of the conjuncts in an atomic
type if they are implied by the remaining conjuncts. For example, we always
omit conjuncts x = x, and if x = y is a conjunct, then ¥y = x may be omitted.
Also, if x = y and E(x, z) are conjuncts, then E(y,z) may be omitted, etc.

An atomic type may be unsatisfiable. For example, over the empty signature,
the types x # x and (x = y) A (y = z) A (x # z) are unsatisfiable, and (x =
y) N E(x,z) A —E(y,z) cannot be extended to a satisfiable type.

Lemma 5.1. Let A and B be structures. For every two tuples a € A* and b € B, the
following conditions are equivalent:

1. there is an atomic type T(X) such that a € tp and b € Tp,

2. for every quantifier-free formula ¢(%), @ € @p if and only if b € @p,

3. the atomic type of @ is equal to the atomic type of b, that is, atp 5 (@) = atpg (b).
Proof. Immediate.]

Exercise 5.2. Up to equivalence, how many satisfiable types with variables x, y
are there over the signature with one binary relation? Give an effective charac-
terization of satisfiable atomic types.

A satisfiable atomic type 7(¥) can be represented by a X-structure A, whose
elements are the parts of the partition of ¥ such that two variables x, y are equiv-
alent if and only if x = y is a conjunct of T (cf. Fig. 5.1). The relations of A; are
defined in the unique way so that R([x1],..., [xx]) holds in A, where [x;] is the
part of x;, if and only if R(x1,...,x;) is a conjunct of 7.

Exercise 5.3. Show that the structure A above is well-defined and unique.

Exercise 5.4. Show that up to equivalence, there are at most

B, - 2=

ATOMIC TYPES 31

Xy

Figure 5.1: An atomic type with variables x,y, z, t over a signature with a binary
relation —.

satisfiable atomic types with [variables over a signature X consisting of relation
symbols of arity at most m. Here, B; is the /th Bell number, counting the number
of distinct partitions of the set {1,...,1}, and is at most I!.

Exercise 5.5. Show that every quantifier-free formula ¢(%) is equivalent to a dis-
junction of satisfiable atomic types, in a unique way. In other words, the sat-
isfiable atomic types form the atoms of the Boolean algebra of quantifier-free
formulas with variables %.

Example 5.6. Let X be a relational signature. We characterize when two tuples
have equal atomic types. Let @ € A! and b € B and let A be the set of elements
in 7 and B be the set of elements in b. Then atp, () = atpg(b) if and only if
there is a bijection f: A — B such that:

« fmapsato b componentwise,

- f is an isomorphism from the substructure of A induced by A to the
substructure of B induced by B. More explicitly, for every relation symbol
R € T of arity k and tuple (uy,...,u;) € AX, we have (uy,...,u;) € Rp if
and only if (f(u1),..., f(ux)) € Rp.

32 TYPES

5.2 Types of higher rank

Given a Z-structure A and a tuple of elements 7 € A7, the type of quantifier rank
r of @ in A is the set of all formulas ¢(X) of quantifier rank r such that € gp.

Example 5.7. Two tuples @ € A¥ and b € BY have equal types of quantifier rank
0 if and only if they have equal atomic types, by definition.

As in general, types are infinite objects, to understand them, it is useful to
study the equivalence relation of having the same type. It can be characterized
in terms of games, as follows.

Fix r and I. Let A,B be structures and @ = (ay,...,a;) € Al and b =
(by,...,b;) € Bl. We consider a game played on (A,) and (B, b) between two
players, spoiler and duplicator. Each of the players has a set of | + r pebbles, which
will be placed on the elements of A and B (cf. Fig. 5.2).

Initially, the first | pebbles of spoiler are placed on the elements ay,...,4,
and the first [pebbles of duplicator are placed on the elements by, ..., b;.

A B
O

>

_
o« e+« pebbles

Figure 5.2: The Ehrenfeucht-Fraissé game. Spoiler places a pebble on one of the
structures A or B and duplicator places a corresponding pebble on the other
structure. The correspondence between the pebbles on A and B must be a
partial isomorphism in order for duplicator not to lose.

TYPES OF HIGHER RANK 33

The game then proceeds in r rounds, where in each round, spoiler places a
pebble on some element in A or BB, and duplicator responds by placing a pebble
on some element of the other structure.

After r rounds, if the substructures of A and B induced by the I 4- r pebbles
are identical, then duplicator wins, and loses otherwise. More precisely, for
i=1,...,r, let aj; be the element of A that was pebbled in the ith round, and
by, ; be the element of B that was pebbled in the ith round. Duplicator wins if

atpp (a1,...,a14,) = atpg(b1,..., b4y

For two tuples @ € A! and b € B/ in structures A and BB, respectively, write
a ~" b if duplicator has a winning strategy in the r-round game on (A,) and
(B, D).

Instead of defining the notion of a winning strategy precisely, it is easier to
formally define the equivalence ~" by induction on r, as follows. Let 7 € AY
and b € B¥ be tuples of elements of structures A and B, respectively. Then:

- a~PDpifatpy(a) = atpg(bh)

« forr>0,a~"bif for every a € A there is some b € B with aa ~"=1 pp,
and conversely, for every b € B there is some a € A with aa ~"~1 bb.

Theorem 5.8 (Ehrenfeucht-Fraissé Theorem). Fix a relational signature ¥ and a
number r € N. Let a € A* and b € B* be tuples of elements of structures A and B,
respectively. Then @ =" b if and only if a ~" b.

Example 5.9. Let G be a path and H be a cycle. The following sentence, expressing
that there is a node of degree 1, distinguishes G from H:

IxVyVz.E(y, x) NE(z,x) — (y = z).

Correspondingly, spoiler wins in the three-round pebble game between G and
H: in the first round, he places a pebble on one of the vertices of G of degree
1; duplicator replies by placing his pebble on some vertex b of H. In the next
two rounds, spoiler places two pebbles on the two neigbhours of b in H, and
duplicator is doomed.

34 TYPES

It may be illuminating to check that spoiler has a winning strategy in the
r-round game on any path with at most 2" — 2 vertices and any other path.

Proof of the Ehrenfeucht-Fraissé theorem

Let X be a finite set of variables and » € IN.

Representing games by trees. Fix a number r € IN, corresponding to the quantifier
rank. With each tuple 2 € A* in a structure A we associate a finite tree which
represents all possible moves of either of the players in the Ehrenfeucht-Fraissé
game, starting from the structure A with the tuple 4. In the Ehrenfeucht-Fraissé
game on (A, a) and (BB, b) in each of the r rounds, one of the two players chooses
to extend 7 in A by a single element, while the other player extends the tuple b
in B, and the game continues with the extended tuples. Consider the tree T"(a)
of possible extensions of @ in A for r rounds (cf. Fig. 5.3). It has depth r, and a
node at depth i is a tuple extending @ by i elements of A. The leaves are tuples
in A", and are labelled by their atomic types.

ab

C
] ° o o
label is the — '\\i/
atomic type
ab A

of the tuple

a
all possible extensions of a tuple

Figure 5.3: Tree of possible extensions of a tuple 2 by up to 2 elements.

The Ehrenfeucht-Fraissé game on the pair (A,) and (B, b) may be viewed as

a game on the trees T"(a) and T"(b). The game starts with a pebble being placed

on the root of T"(4) and another pebble being placed on the root of T"(b). In

TYPES OF HIGHER RANK 35

each round, spoiler moves the pebble in one of the trees along an edge (i.e., to
one of the children of the current node), and duplicator moves the pebble in the
other tree along an edge. Once the two pebbles arrive at leaves, duplicator wins
if their labels are equal.

The tree T" (@) has size |A|" which is potentially unbounded in terms of |A],
or even infinite if A is infinite. However, if two sibling subtrees are isomorphic
(as labeled trees), then removing one of them does not affect the game. Hence,
we may prune the tree, by removing all isomorphic sibling trees. This amounts
to looking at a tree as a set of subtrees, rather than a multiset of subtrees.

This leads to the following, modified definition of a tree, denoted tree’, (a):

- tree)\ (@) is the atomic type atpp (7) of 7 € AT;

. treely (@), for r > 0, is {treexl(ﬁa) la e A}, the set (with no duplicates)
of all trees of depth r — 1 for all possible extensions of 2 by one node.

Hence, tree, (@) € P"(A(X+ 1)), where A(X +r) is the set of satisfiable atomic
types of (% + r)-tuples of elements over the signature X and P" is the r-fold
powerset: PY(A) = A and P"F1(A) = P(P"(A)). In particular, the number of
such trees can be bounded in terms of r only (independently of |A|) by

=
22

2 (5.1)

where k = |A(X + r)| can be bounded as in Exercise 5.4.

It is not difficult to see that tree’ (7) = tree}; (D) if and only if 7 ~" b. Indeed,
suppose tree’, () = treef;(b). Then in the game played on the (pruned) trees,
duplicator can win, by maintaining the invariant that the subtrees induced by
the two pebbled nodes are identical. Conversely, if the two trees are distinct,
then spoiler can always move one of the pebbles in the direction of a subtree
which occurs only in one of the two trees, and will eventually force duplicator
to place his pebble on a leaf with the wrong label. This yields:

36 TYPES

Lemma 5.10. Fix r € N and let @ € A* and b € BT be two tuples of elements in
structures A and B, respectively. Then tree'y (i) = treel (b) if and only if a ~" b.

Proof. We turn the argument above into a more formal proof. Both implications
are similar, so we only show the left-to-right implication.
The proof is by induction on r. The base case is immediate. Pick a € A

(spoiler’s move). As tree, (@) = treef;(b), there is b € B (duplicator’s response)
such that tree’y ' (aa) = tree}; ! (bb). By inductive assumption, aa ~"~! bb (dupli-
cator wins). Symmetrically, for each b € B there is a € A such that aa ~"~! bb.

This proves a ~" b. [

The fact that a given tuple @ € A* defines a specific tree ¢ can be defined
using a formula, as follows.

Lemma 5.11. Fix r € IN and a set of variables X. For every tree t € P"(A(X +r)) there
is a formula t(%) of quantifier rank r such that for every structure A and tuple a € A¥,
the tuple a satisfies t in A if and only if treely (a) = t.

Proof. By induction on r. The base case is trivial. In the inductive step, write

Hx) = A Jys(zy) A A\ —Tys(xy),

set sét

where y is a variable not occurring in %, S(%y) is obtained by induction, and in
the second conjunction, s ranges over all trees in P"(A(x +r)) — t. It is easy to
check that (%) satisfies the required condition. [|

Proof of the Ehrenfeucht-Fraissé Theorem. Theorem 5.8 is implied by the following.

Proposition 5.12. Fix r € N and let € A¥ and b € BT be two tuples of elements of
two structures A and B, respectively. The following conditions are equivalent:

1. a="Dh,

2. tree, () = treefy (b),

" b.

1

3.4

TYPES OF HIGHER RANK 37

Proof. (1)—(2) follows by Lemma 5.11, since if t = tree’, (@) then a satisfies tand
so b satisfies f by assumption, proving that t = treel; (b).

(2)—(3) is by Lemma 5.10.

(3)—(1). Assume a ~" b. We show that no formula ¢(%) of quantifier rank
r distinguishes 4 and b, that is, @ € ¢p if and only if b € ¢@p. The proof is
by induction on r. The base case is immediate, so assume r > 0 and that the
statement holds for » — 1.

Recall that ¢ is a Boolean combination of formulas of the form Jy.ip(%y),
where ¢ has quantifier rank » — 1. It is enough to consider the case when ¢ is
of the form Jy.y, since if no such formula can distinguish 7 from b then neither
can a Boolean combination of such formulas.

Suppose @ € gp; we show that b € ¢p. As ¢ = Jy.ip, there is a € A such
that aa € Y. Since a ~" b, there is some b € B such that aa ~"~! bb. By
inductive assumption, {(%y) cannot distinguish 4a and bb. Hence, bb € ¥,
proving b € ¢, as required. L]

As there are finitely many trees in P"(A(X + 7)), we get:

Corollary 5.13. Fix v € IN and %. There are finitely many types of quantifier rank r of
x-tuples.

By the equivalence (1)++(2) above, defining the same tree of rank r is equiv-
alent to having the same type of rank r. It follows that if 2 € A¥ is a tuple,
t = tree/, (a) is its tree and #(¥) is the formula from Lemma 5.11, then #(%) de-
termines tp’, (7), meaning that for every ¢(%) of quantifier rank r such that a
satisfies ¢ in A, the implication #(X) — @(%) is a tautology. Put in another way,
for any tuple b € B* satisfying (%), the equivalence 2 =" b holds.

Corollary 5.14. For every tuple a € A* there is a formula T(%) of quantifier rank r
which determines tp' (a).

The above corollary allows to represent each type of quantifier rank r with
variables ¥ by a single formula 7(X) which determines tp, (7). By abuse of
language, call any such formula T(%) the type of a of quantifier rank r. Any such
formula is equivalent to (), for a unique t € P'. In particular:

38 TYPES

Corollary 5.15. Every formula ¢(%) of quantifier rank r is equivalent to a disjunction
of types T(X) of quantifier rank r.

Proof. For each structure A and each tuple 4 which satisfies ¢ in A, let 7;(%) be
the type of 4 of quantifier rank r. Up to equivalence, there are only finitely many
formulas of the form 7;(%), as there are only finitely many types. Then ¢(X) is
equivalent to the disjunction of all such formulas. u

More generally, we have the following:

Corollary 5.16. Let P be a property of pairs (A,a), where A is a X-structure and
a € A%, such that P only depends on the type of a of quantifier rank r. Then P is
definable by some first-order formula ¢ (%) of quantifier rank r, so that (A, a) satisfies P

ifand only if 4 € @p.
Proof. Same as in Corollary 5.15.]

The proof of Corollary 5.15 is non-constructive. We give an alternative, con-
structive proof below.

Lemma 5.17. There is an algorithm which inputs a formula and outputs an equivalent
formula which is a disjunction of formulas of the same quantifier rank which are either
types or are unsatisfiable.

Proof. By induction on r we show that any given formula ¢(%) of quantifier
rank 7 is effectively equivalent to a disjunction of formulas of the form (%), for
te Pr(A(x+7)).

The base case is Exercise 5.5. Suppose the statement holds for » — 1, we show
show it for r.

The formula ¢(%) is a Boolean combination of formulas of the form Jy.¢(xy),
where ¢ has quantifier rank r — 1. By inductive assumption, we may assume that
 is a disjunction of formulas #(%y) for t € P""1(A(% +r)). As disjunctions com-
mute with existential quantification, ¢ (%) is effectively equivalent to a Boolean
combination of formulas of the form Jy.£(%y) as above.

We now show that ¢ is effectively equivalent to a formula

YP=yY1V...V

TYPES OF HIGHER RANK 39

where each disjunct is of the form

= A Hyi),
tePr=1(A(x+r))
where 4+ means the conjunct 3y.f may be negated. Note that the formula ;
above is equal to §(%), where s € P"(A(Xx+7r)) is the set of those trees t €
P=1(A(x +r)) which occur in y; positively. Hence, ¥ is of the required form.

It therefore remains to convert any Boolean combination ¢(%) of formulas of
the form Jy.f into a disjunction ¢ as above. This can be reduced to the case of
atomic formulas, as follows. For each tree t € P"~1(A(% + 1)) introduce a new
relation symbol R; of arity |X|, and denote the signature consisting of all those
symbols by ¥

Suppose ¥ = {x1,...,x}. Replace each formula Jy.{(Xy) occurring in ¢(%)
by the atom R¢(xq,...,x;). This yields a quantifier-free formula ¢’(%) over the
signature ¥’. By the quantifier-free case, ¢'(X) is equivalent to a formula ¢’ (x)
which is a disjunction of atomic types over ¥’. Rewrite ¢’ into a E-formula by
replacing each atom R;(%) back by 3y.t(#y), yielding a formula ¢ of the required
form.]

Exercise 5.18. Show that the two structures from Example 2.8 are elementarily
equivalent.

Exercise 5.19. Let T and T’ be two countable trees (connected acyclic graphs)
defined as follows. The tree T has a root L to which one path of each finite
length n € N is attached. Formally, T has vertices L and (n,i) for i,n € N with
i <n,and edges L-(0,n) and (i,n)-(i 4+ 1,n) for i,n € N with i < n.

The tree T’ is obtained from T by additionally attaching one infinite path to
the root L. Formally, T’ has the same vertices and edges as T, and additionally
has vertices (w, i) for i € N, and edges L-(0,w) and (i, w)-(i + 1, w) for i € N.

Prove that T and T’ are elementarily equivalent.

Exercise 5.20. Show that there is a finite relational signature ¥ for which it is
undecidable, given ¥ € N and t € P"(A(% +7r)), whether (%) is satisfiable.
Conclude that Lemma 5.17 cannot be improved by removing the unsatisfiable
disjuncts from the output.

40 TYPES

Exercise 5.21. Fix ¥ € IN and a set of variables . Then formulas ¢ (%) of quantifier

rank r, up to equivalence, form a boolean algebra under V, A, -, which we denote
B’ (%).

atoms e

0

Figure 5.4: A Boolean algebra with 2¢ elements and 4 atoms. Only the Hasse
diagram of — is presented, that is, a set of edges whose transitive closure is —.

Recall that a Boolean algebra B is a set equipped with operations V, A, = and
constants 0 and 1, satisfying the well-known identities, such as commutativity
of V and A, distributivity of V over A, x V1 =1and x A0 = 0, and de Morgan’s
law —(x Vy) = —x A —y. Every finite Boolean algebra is isomorphic to a Boolean
algebra of the form (P(X),U, N, (—)¢, @, X), denoted P(X) below.

Every Boolean algebra comes with a partial order —, where x — y iff
—xVy =1 (cf. Fig. 5.4). Nonzero elements of B which are minimal under —
are called atoms of B. As an example, in P(X), the order — is just C, and the
atoms are the singletons {x} for x € X.

In a finite Boolean algebra B, every element x € B is equal to the disjunction
of all the atoms y with y — x. From this it follows that B is isomorphic to
P(Atoms(B)), via the mapping which maps an element x € B to the set of
atoms y with y — x.

TYPES OF HIGHER RANK 41

Show that the atoms of the Boolean algebra B"(%) are exactly all types
7(%) of quantifier rank r, or, equivalently, all satisfiable formulas (%) for t €
P"(A(x +7)). In particular, every formula ¢(x) of quantifier rank r is equivalent
to a unique disjunction of types T(%).

Exercise 5.22. Design a variant of the Ehrenfeucht-Fraissé game for MSO, and
prove an analogue of Theorem 5.8 for MSO formulas of quantifier rank g. Give
an upper bound on the number of types of quantifier rank g corresponding

to (5.1).

6
Pebble games

We have seen that Ehrenfeucht-Fraissé games can be used to determine whether
or not two tuples satisfy exactly the same formulas of a given quantifier rank.
First-order formulas can be also stratified by other natural parameters, such as
number of variables. Those will be useful in further chapters. We will describe
games characterizing when two tuples satisfy the same formulas for which those
parameters are bounded.

6.1 Ehrenfeucht-Fraissé games of infinite duration

In the previous section, we defined Ehrenfeucht-Fraissé g-round games in such
a way that we only determine the winner in the last round of the game: if the
two obtained tuples have equal atomic types, then Duplicator wins, otherwise,
Spoiler wins. We could modify the game slightly so that the equality of the
atomic types is verified after each move of Duplicator. This would not affect the
winner of the game, since if after the ith round the obtained tuples do not have
equal atomic types, then the same will hold after the gth round, for g > i, no
matter how Duplicator plays.

The advantage of this reformulation of the game is that now we can also play
the game for an infinite number of rounds. In fact, we could also consider games
whose number of rounds is specified by any ordinal number «, but for simplicity,
let us consider games with w-rounds only. Thus, in this game on A and B, there

44 PEBBLE GAMES

are rounds 0,1,2,..., and in the ith round we have elements a4, ...,a; in A and
b1, ...,b;in B, and Spoiler extends one of those tuples by an element a; 1 or b; 1,
respectively, and Duplicator extends the other tuple by the other element b;,; or
ai41. Duplicator loses if atp, (a1, ...,ai41) # atpg(by,...,biy1), and otherwise,
the game procedes to round i + 1. Duplicator wins if she does not lose in any of
the rounds 0,1, 2,.. ..

Given two structures A and B we may now consider two conditions:

1. for every g € IN, Duplicator wins the g-round Ehrenfeucht-Fraissé game
on A and B,

2. Duplicator wins the w-round Ehrenfeucht-Fraissé game on A and IB.

Clearly, the second condition implies the first one. What about the reverse im-
plication?

Note that the first condition is equivalent to stating that A and B are ele-
mentarily equivalent (see Section 2.3), that is, they satisfy the same first-order
sentences. Indeed, this follows by Theorem 5.8, since every first-order sentence
has some finite quantifier rank.

On the other hand, condition (2) rather corresponds to isomorphism, at least
for countable structures:

Lemma 6.1. Let A and B be countable relational structures. Then Duplicator wins the
w-round Ehrenfeucht-Fraissé game on A and B if and only if A = B.

Proof. We show the left-to-right implication, the other one being obvious. There-
fore, we construct an isomorphism between A and B. This construction is called
the back-and-forth method.

Fix an arbitrary enumeration of the domain of A and of B. Construct an
increasing chain

fCHREACACHRCS. .. (6.1)

of finite partial isomorphisms between A and B as follows. Let f; be the isomor-
phism with empty domain. Let i 2> 0 and assume that f; is already constructed.

BOUNDED VARIABLE FRAGMENT 45

Let a € A be the first element in the enumeration of A which is not in the do-
main of f;. By Proposition 7.9 (3), the partial isomorphism f;: A — BB extends to
a partial isomorphism f/: A — B, which is defined on a. Let b € B be the first
element in the enumeration of B which is not in the image of f/. By a symmetric
argument, f/ extends to a partial isomorphism f;11: A — B, such that b is in
the image of f;;1. Repeat.

This ends the construction of the chain (6.1). By construction, every element
ina € A is in the domain of some f;, and every element b € B is in the image of
some f;. For each a € A, define g(a) as f;(a), for any i such that f;(a) is defined.
Then g: A — B is an isomorphism.]

To show that the conditions (1) and (2) considered earlier are not equivalent,
it is therefore sufficient to show two countable structures A and B such that
A and B are elementarily equivalent, but non-isomorphic. Such examples were
given in Exercises 2.16, 2.17, 5.18, and 5.19.

6.2 Bounded variable fragment

Fix a number k and k variables x1, ..., x;. The k-variable fragment of first-order
logic, denoted FOK is the set of formulas which only use variables {x1,...,x;}.

The key feature of FO" is that it allows reusing the same variable multiple
times.

Example 6.2. For every n € IN there is a sentence with 3 variables expressing that
a given structure is a total order of size at least n.

Note that every formula with ! free variables and of quantifier rank at most
k is equivalent to a formula with k 4 | variables. However, formulas with at
most k variables can be of arbitrarily large quantifier rank, as the example above
demonstrates.

Let A, B be structures, € Al and b € B’ be two tuples of elements of the
same length | < k. Write a =rok b to denote

AEg¢@) < BlEgb) forevery ¢(xy,...,x) € FOF,

46 PEBBLE GAMES

Note that contrary to the equivalence =F, the equivalence =0« has infinitely
many equivalence classes on ! tuples, for a fixed | < k. Indeed, in a total order,
the ith smallest element and the jth smallest element are not equivalent with
respect to =g, unless i = j.

Pebble games. The equivalence = can be characterized in terms of games
analogous to Ehrenfeucht-Fraissé games. Note that the number of rounds in
the Ehrenfeucht-Fraissé game corresponds to the quantifier rank of the formula.
Hence, as FOF may have unbounded quantifier rank, intuitively, our games
should have an unbounded number of rounds. On the other hand, we should
still bound the number of pebbled positions, as those correspond to the variables
of a subformula. This leads to the k-pebble game, which is played in the same way
as the Ehrenfeucht-Fraissé game, but with the difference that each of the players
has only k pebbles (numbered 1, ..., k) at disposal. However, those pebbles can
be moved during the game.

A more precise definition is as follows. Let A and B be two structures. A
position of the game consists of two tuples @ € AY and b € BY, where 7 C
{Xl,. . .,xl}.

Fix a position (@,b). Consider the relation which relates a(y) € A to b(y) €
B, for y € 7. If this relation is not the graph of a partial isomorphism from A to IB
then duplicator loses the game. Otherwise, spoiler picks a variable x € ¥ and one
of the structures A and B. Suppose spoiler picks A, the other case is analogous.
Spoiler picks an element ¢ € A and duplicator picks an element d € B. The
game continues from the position (d[x/c|,b[x/d]), where d[x/c] € AV is the
tuple obtained from a by setting the coordinate x to ¢, and b[x/d] is analogous.

The game continues until duplicator loses, or continues indefinitely; in this
case, duplicator wins.

Example 6.3. Let A = B be the directed path of length 1000 and let a, b be two
distinct elements. Then spoiler wins the 2-pebble game starting from position
(a,b), by using the following strategy: in round i, place pebble number i mod 2
at the successor of the element on which pebble number (i +1) mod 2 is placed.

Example 6.4. Let A and B be sets of size 10 and 11, respectively, and let 2 € A

BOUNDED VARIABLE FRAGMENT 47

and b € B. Then duplicator wins the 2-pebble game starting from position (a, b).

Theorem 6.5. Fix a finite set of variables ¥ = {x1,...,x;}. Let A, B be finite struc-
tures, a € AY,b € BY be tuples with §j C x. The following conditions are equivalent:

1. 4

rot b
2. duplicator has a winning strategy in the k-pebble game starting from position
(a,b).
The implication (2)—(1) holds for arbitrary (not necessarily finite) A and B.

We will prove the following, stronger statement. Say that a formula ¢(X)
distiniguishes a € AY from b € BY (where § C %) if A = ¢(a) and B = —¢(b).

Lemma 6.6. Let A, B, %, a,b be as in the theorem and q € IN. The following conditions
are equivalent:

1. there is a formula with variables X and of quantifier rank q that distinguishes a

from b,

2. spoiler has a strategy in the k-pebble game starting from position (a,b) that wins
in at most q rounds.

The implication (1)—(2) holds for arbitrary (not necessarily finite) A and B.

Lemma 6.6 immediately yields Theorem 6.5, by contrapositive. So we now
prove the lemma.

Proof. (1)—(2) We proceed by induction on g. Suppose there is a formula ¢(7) €
FO" of quantifier rank g which distinguishes a from b.

The formula ¢(7) is equivalent to a Boolean combination of formulas ¢’(x)
of the form 3x.1 where ¢ € FO has quantifier rank smaller than g, or of atomic
formulas. As ¢ distinguishes 4 from b, there must be a formula ¢'(¥) of one of
those forms such that ¢(x) or —¢(%) distinguishes @ from b. If an atomic formula
distinguishes @ from b then spoiler wins immediately, that is, in 0 rounds. So
assume Jx.y distinguishes a from b for some formula ¢ € FOX (otherwise we

48 PEBBLE GAMES

replace the roles of 4 and b). Then a satisfies Jx.1p so there is a ¢ € A such that
a[x/c] satisfies ¢ and for every d € B, b[x/d] does not satisfy 1.

Now spoiler picks the structure A and the variable x, and places the pebble
x on the element ¢ of A. From the above, whatever response d € B duplicator
picks, the formula ¢ € FO* distinguishes the resulting tuples, namely a[x/c]
and b[x/d]. Since ¥ has quantifier rank smaller than g, by inductive assumption,
spoiler has a winning strategy that wins in less than g rounds from the new
configuration.

(2)— (1) We proceed by induction on 4. The base case g = 0 is immediate.

In the inductive step, suppose spoiler wins in g rounds by placing pebble
x € X on the vertex ¢ € A in the structure A. In particular, for every d € B,
spoiler wins from the position (a[x/c],b[x/d]) in ¢ — 1 rounds. By inductive
assumption, for each d € B there is some formula ;(7x) in FO* of quantifier
rank at most g — 1, which is satisfied by a[x/c] and not by b[x/d]. Then a satisfies
the formula

x. N\ ga(ix),

deB

which is a finite formula as B is finite, and belongs to FO¥, and has quantifier
rank at most g — 1. On the other hand, b does not satisfy this formula in B. =

Exercise 6.7. Show that the equivalence in Theorem 6.5 fails if A and B are
potentially infinite. For the equivalence to work, one can extend FO* to the
infinitary logic allowing infinite conjunctions and disjunctions, but still restricted
to k variables, and formulas of finite quantifier rank.

Exercise 6.8. Fix the signature with one binary relation symbol <. Prove that
there is no sentence ¢ with 2 variables such that for every structure A, the
sentence ¢ holds in A if and only if < defines a partial order in A.

Exercise 6.9. Does the statement of the previous exercise still hold if we restrict
attention only to finite structures A?

COUNTING EXTENSION* 49

6.3 Counting extension™

We consider an extension of first-order logic by counting quantifiers 3>'x.¢, for
all i € IN, expressing that there are at least i elements satisfying a given formula.
More precisely, a tuple @ € AY satisfies the formula 3%x.¢(7x), where ¢(7x) is
a formula and i € IN is fixed, if and only if there are at least i distinct elements
¢ € A such that a[x/c] satisfies the formula ¢(7x).

It is not difficult to see that first-order logic extended with counting quanti-
fiers is no more expressive than first-order logic, since 3%x.¢ is equivalent to a
first-order formula. However, this conversion introduces i quantifiers and vari-
ables, so increases both the quantifier rank of the formula, as well as the total
number of used variables.

Fix k € N and a set of k variables ¥ = {x1,...,x}. Let C* be the set
of formulas with counting quantifiers which only use variables in ¥. For two
tuples 7 € AY and b € BY where j C &, write a =k b if a and b satisfy exactly
the same formulas ¢(77) € CF.

We now give a game characterization of the equivalence The game is

Eck.
called the bijective k-pebble game. It is played as the k-pebble game, where the
round at position (7,b) with @ € AY and b € BY has the following form:

1. spoiler picks a variable x € %,
2. duplicator picks a bijection f between (the domains of) A and B,
3. spoiler picks a pair (c,d) € A x B of elements related by f,

4. the game continues from the position (a[x/c|, b[x/d]).

Our goal is to prove that @ =« b if and only if duplicator has a winning
strategy in the bijective k-pebble game starting from position (a,b). To prove
this, it will be convenient to define yet another characterisation of this condition.
As a byproduct, we will obtain a simple polynomial-time algorithm deciding

Eck.

*omitted in the lectures

50 PEBBLE GAMES

Weisfeiler-Leman algorithm

We now describe an algorithm deciding whether two k-tuples 2 € AX,b € BF
satisfy 2 = b.

The k-dimensional Weisfeiler-Leman algorithm (k-WL) is run on a single struc-
ture A, and proceeds by coloring tuples in AX. For i € {1,...,k} say that two
tuples a,a’ are i-neighbors if a(j) = a'(j) forall j € {1,...,k} — {i}.

Initially, two tuples 4,b € A* get the same color if and only if there is a
partial isomorphism from A to A mapping a to b (that is, @ and b have equal
atomic types). In each round, the coloring is refined by assigning different colors
to tuples 4 and b if there is i € {1,...,k} and a color ¢ such that @ and b have a
different number of i-neighbors of color c. The algorithm stops when the parti-
tion of A* into color classes is the same partition as in the one from the previous
step (indeed, performing further steps would not lead to any new refinements).
The resulting coloring is called the stable coloring of A. Note that the stable
coloring is reached after at most O(|A|¥) steps.

Given two structures A and B and tuples 2 € A and b € B we may also
run k-WL simultaneously on both structures, in each step maintaining a corre-
spondence between the color classes in A and the corresponding color classes
in BX. Equivalently, one could consider running k-WL on the disjoint union of
A and B, but disregarding “mixed” tuples which contain vertices both from A
and from B.

Say that k-WL does not distinguish @ € A* and b € B if they have the same
colors in the stable coloring. More generally, if # € Al and b € B/ are two tuples
of length I < k, then say that k-WL distinguishes @ and b if in the stable coloring
of A* and BF there is some color class C such that the number of extensions of a
to a tuple in C is different than the number of extensions of b to a tuple in C. In
particular, taking | = 0, k-WL distinguishes the two structures A, B if in the stable
coloring, for some color class c the structures A and B have a different number
of tuples of color c. Say that k-WL identifies a structure A if it distinguishes A
from every structure not isomorphic to A.

Example 6.10. 2-WL is known as the color refinement algorithm. It does not distin-
guish two d-regular graphs with the same number of vertices. It identifies all

COUNTING EXTENSION* 51

trees.

We are now ready to formulate the equivalence between bijective k-pebble
games, counting logic equivalence and k-WL equivalence.

Theorem 6.11. Fix k € IN, let A, B be finite structures, and a € Ak, b e BFbe tuples.
The following conditions are equivalent:

1. 4

Ck E/
2. k-WL does not distinguish a and b,

3. duplicator has a winning strategy in the bijective k-pebble game starting from the
position (a,b).

Corollary 6.12. k-WL does not distinguish A and B if and only if A =« B.
Proof of Theorem 6.11. We prove (1) — (2) — (3) — (1).

(1) — (2). By induction on the number r of rounds we show that in the
coloring reached in the rth round, for each color class C there is a formula ¢¢(%)
of C* which holds exactly at those tuples which have color C. The induction
base is trivial, as the colors correspond to atomic types with variables %. In the
inductive step, each color class C is defined as a color class C' from the previous
step intersected with conditions of the form “the number of i-neighbors in color
class D is equal to p” for some i € {1,...,k},p € IN and color classes C’ and D
which we can define using formulas of C* by inductive assumption. This yields
a formula ¢¢ defining the color class C, finishing the inductive step.

In particular, for every color class C in the stable coloring we have a formula
@c. Hence, if a has color C then A = ¢c (@) and by (1), also B = ¢c(b), so b
also has color C, proving (2).

(2)—(3). Duplicator maintains the strategy that at any position (a,b) in the
game, 7 and b have the same colors in the stable coloring. At the initial position
(a,b) this holds by the assumption (2). In the inductive step, suppose spoiler
declares he will move pebble x € *.

As and b have the same colors in the stable coloring, in particular, they
have equal numbers of x-neighbors in each color class. It follows that there is

52 PEBBLE GAMES

a bijection f: A — B such that for every ¢ € A, a[x/c] and b[x/f(c)] have the
same colors in the stable coloring. In particular, a[x/c] and b[x/ f(c)] have the
same atomic types, as the coloring refines the partition into atomic types. Hence,
such a bijection will not be losing for duplicator, and will maintain the invariant.

(3)—(1). This implication is proved analogously as the implication (2)—(1)
in Theorem 6.5, so we omit the proof. u

7
Quantifier Elimination

In order to analyze the expressive power of a logic in a given structure A, a
basic method used both in model theory and in finite model theory is to prove
that it has quantifier elimination: every formula ¢ (%) is equivalent in A to some
quantifier-free formula (%).

Example 7.1. + (IN,=) has quantifier elimination. Here’s a sketch of an ar-
gument. Pick for example (IN, =) and a formula ¢(x,y,z) with three free
variables; we want to show that ¢ is equivalent to some quantifier-free
formula. Let’s look at all the triples of elements of (IN,=). There are 4
atomic types of triples, namely:

(xAy#z#0,(x=y A2, (x=2£y),(y=z #%).

Now, observe that for every two triples @, b with the same atomic type,
there is some bijection f: N — N mapping a to b componentwise. For
example, for the triples @ = (1,2,5) and b = (2,12,1500), there is even
such a bijection f which is the identity on N — {1,2,5,12,1500}. As ev-
ery bijection from IN to IN is an automorphism of (N,=), f is an au-
tomorphism mapping 4 to b. It follows that A = ¢(a) if and only if
A E ¢(b) (see Example 2.5). Hence, the truth value of ¢ is constant on
each of the 4 atomic types: for each atomic type 7(x,y,z), either ¢ holds
for all triples satisfying T, or ¢ holds for no triples satisfying 7, that is,

54

QUANTIFIER ELIMINATION

A= ¢ —tor A= ¢ — —T. Hence, ¢(x,y,z) is equivalent (in A) to the
disjuction \/, 7(x,y, z) ranging over those atomic types T(x,y, z) such that
A = ¢ — 7. As there are only four atomic types of triples, this is a finite
disjunction, and hence a quantifier-free formula.

The same argument works for a formula with k free variables, as we have
that for any two k tuples with the same atomic there is an automorphism
of (N, =) mapping one tuple to the other.

The same argument as above works for the structure (Q,<). Here, the
automorphisms are the increasing bijections from Q to Q. It remains to
verify that for any two k tuples with the same atomic type there is an
automorphism of (Q, <) mapping one tuple to the other.

More generally, suppose that A is a structure over a finite relational sig-
nature. If for every tuples 7 and b in A with the same length and atomic
type there is an automorphism of A mapping 4 to b componentwise, then
A has quantifier elimination. The converse implication also holds, if A is
countable (see Lemma 7.19).

(N, <) does not have quantifier elimination, since the formula ¢(x) =
Jy.y < x expressing that x is larger than 0 is not expressible by a quantifier-
free formula. However, the structure (IN, <, 0,s), where s: N — IN is the
successor function, has quantifier elimination.

(R, +, -, <) has quantifier elimination — this is a result of Alfred Tarski,
and is proved in Section 7.1 below,

(C, +,) has quantifier elimination — again a result of Tarski,

(Z,+,<) does not have quantifier elimination, since the property div, of
being divisible by a fixed integer n can be expressed by a first-order for-
mula (e.g. div, is definable by Jy.y + y = x), but not by a quantifier-free
formula. However, (Z, +, <, (div,),>2) has quantifier elimination. This is
a result of Mojzesz Presburger, Tarski’s student.

55

As we see above, it is often the case that the structure needs first to be ex-
panded with some definable relations or functions in order to get quantifier
elimination. This is for example the case in the structure (R, +,). The relation
< is definable by

x<y=3dzy=x+z-z

but there is no quantifier-free formula using only + and - defining <. However,
once the relation < is added to the structure, we get quantifier elimination.

More generally, we call any result of the form: over a class of structures C,
every first-order formula is equivalent to a formula of a specific shape a quantifier
elimination result.

Exercise 7.2. Show that every quantifier-free formula ¢(x) using equality =, +, -
and arbitrary constants from IR defines a subset of R which is finite, or whose
complement is finite. Conclude that < cannot be defined by a quantifier-free
formula using +, -, = and constants only.

The following lemma gives a simple criterion for quantifier elimination. It
says that it is enough to eliminate quantifiers from formulas with a single exis-
tential quantifier.

Lemma 7.3. Let A be a structure over a signature X.. Then A has quantifier elimination
if and only if every formula of the form y.x(Xy), where a is a conjunction of literals, is
equivalent to a quantifier-free formula in A.

Proof. Given a formula ¢ (%) we eliminate the quantifiers from inside out. More
formally, we proceed by induction on the structure of the formula ¢. In the base
case, @ is an atomic formula and there is nothing to prove. In the inductive step,
¢ is of the form —a, or of the form a V B, or is of the form Jy.p(xy), for some
formula 1. In the first two cases, « and § may be assumed to be quantifier-free
by inductive assumption, and we are done. So consider the third case, and by
inductive assumption, we may assume that (%y) is a quantifier-free formula.
Rewrite ¢(Xy) into disjunctive normal form, as a disjunction of formulas ¥;(Xy),
each of which is a conjunction of literals. Now, Jy.i(%y) is equivalent to the
disjunction of Jy.1p;(%y) which, by assumption, is equivalent to a quantifier-free
formula.]

56 QUANTIFIER ELIMINATION

7.1 Tarski Arithmetic*

In this section we prove the result of Tarski.

Theorem 7.4 (Tarski, 1931). The ordered field of reals (R,+,-, <) has quantifier-
elimination. Moreover, there is an algorithm that, given a formula @(x1,...,x;) com-
putes a quantifier-free formula ¢’ (x1, . . ., xi) equivalent to ¢(xq,...,xx) in (R, +, -, <).

Let us briefly discuss some consequences of the theorem. Consider the for-
mula ¢,(a,b,c) = 3x.ax® + bx + ¢ = 0 with free variables a,b,c. The theorem
implies that this formula is equivalent to a quantifier-free formula, and indeed,
we know well that ¢,(a, b, c) is equivalent to the formula b?> — 4ac > 0. We may

k=i and Tarski’s theorem

consider a similar formula ¢ (ao, ..., a;) = Ix. Zi'{:o a;x
in particular tells us that there is some quantifier-free formula a(ao, . .., ax) that
is equivalent to @;. So we may think of the formula &y a generalized form of the
discriminant, for an arbitrary degree k. This formula allows us, in particular, to
determine whether or not a given polynomial of degree k has a real root, using
a constant number of arithmetic operations and comparisons using >. Tarski’s
theorem also implies that we can determine the number of real roots of a given
polynomial of degree k. Indeed, to determine whether a polynomial p(x) has at
least k roots, determine whether or not the sentence Jxy,...,x;.(x] < x2 < ... <
xp) A (p(xp) = ... = p(xx) = 0) holds in (R, +,-,<). It follows from Tarski’s
result that this can be done effectively. Furthermore, for any j,k € IN we may
compute a quantifier-free formula a{((ao, ...,) that holds of a tuple (ay, ..., ax)
if and only if the polynomial Jx. Zi‘(:o a;x*~" has at least (or exactly) j distinct
roots.

Before proving the theorem, we formulate and prove a key lemma under-
lying it. On the face of it, it does not concern logic, but solutions to systems
of polynomial equations and inequalities with one variable. The lemma states
roughly that if we are given a finite set of polynomials P with one free variable
then we can find, in a finite number of steps, a finite partition P of R into inter-
vals and singletons such that in each part of the partition, each polynomial in P
has constant sign. This is formalized as follows.

*omitted in the lectures

TARSKI ARITHMETIC* 57

Let P be a finite family P of polynomials p = p(x) with one free variable,
denoted x, and with real coefficients. An analysis of P is a partition P of R
into finitely many open intervals (possibly unbounded) and singletons, together
with a function A: P x P — {—,0, +} such that for every U € P and polynomial
p(x) € P,

- if A(U,p) =+ then p(x) >0 forall x € U,
- if A(U,p) = —then p(x) <Oforall x € U,
- if A(U,p) =0then p(x) =0forall x € U.

An analysis is simply denoted A, and its size is the size of |P|. Note that if P
is a family of k polynomials of degree at most d each, then P has an analysis
A of size at most 2k - d + 1. Indeed, the set Z that is the union of the set of
real roots of all polynomials p(x) in P has size at most k - d, and the partition P
partitions IR by cutting at each element of Z, that is, P consists of all singletons
{z} for z € Z and all intervals (u,v) where u, v are two consecutive elements of
{—00, +00} U Z, ordered naturally.

Note that if P C Q are two sets of polynomials then any analysis of Q
induces an analysis of P, of the same size. An analysis is irredundant if for every
singleton {c} occuring in P, there is some p € P such that p(c) = 0.

We now describe an algorithm that, for any given family P of polynomi-
als p(x) with real coefficients computes an (irredundant) analysis A of P. The
algorithm performs a number of steps bounded in terms of the number of poly-
nomials in P and their maximum degree. We will not go into the details of the
computation model in which the algorithm is performed. We assume that it is
a program that can access the coefficients of the polynomials in P, can manip-
ulate real numbers with infinite precision and perform the operations + and -
on them, as well as test if a given number is > 0, < 0 or = 0. The point is
that the run of the algoritm on any given family P of polynomials (given as a
|P| x d-matrix of coefficients whose (i, j) entry is the coefficient at x/ of the ith
polynomial in P) can be described as a branching decision diagram of bounded
(in terms of |P| and d) size, whose inner nodes are labeled by comparisons of

58 QUANTIFIER ELIMINATION

the form E > 0, where E is an expression using +, —, - and the coefficients in P,
and leaf nodes are labeled by the output analysis A.

An output analysis A is represented symbolically (without explicitly repre-
senting the endpoints of the intervals in P), by specifying:

+ the size m of the partition P underlying A,
. afunction A: {1,...,m} x P — {—,0,+},

such that A(i,p) = A(U;, p) where U; is the ith smallest interval/singleton in
the partition P = {Uj,..., Uy} (ordered naturally), for i = 1,...,m. Note that
U; is an interval if 7 is odd and is a singleton if i is even, and that m is odd.

Lemma 7.5. For every fixed k (number of polynomials) and d (maximum degree) there
is an algorithm as above that inputs a family P of k polynomials of degree at most d, and
outputs an analysis of P. The number of steps performed by the algorithm is bounded in
terms of k, | P| and d.

Proof. We give a rought sketch of the algorithm and leave to the reader the
verification that this algorithm can indeed be carried out using a algorithm ma-
nipulating real numbers, as described above.

Let P be given on input. Close the set P under taking derivatives: if p € P
then p’ € P. Next, close the set P under taking remainders under polynomial
division: if p,q are two polynomials in P then there is a polynomial » € P such
that p = g5+ r for some polynomial s. To close P under taking remainders
we perform the Euclidean algorithm for division of polynomials; this can be
computed in our computation model, given 4. Repeat those two steps until
obtaining a set of polynomials P that is closed both under taking derivatives
and remainders. Note that the number of steps can be bounded in terms of k
and d, since closing under remainders and derivatives only adds polynomials of
lower degree.

Hence, after performing a bounded number of steps, we may assume that P
is closed under taking derivatives and remainders. We are now ready to compute
an analysis of P.

TARSKI ARITHMETIC* 59

Let p1, p2, ..., pm be the polynomials in P, sorted according to their degree,
so that p; has the lowest degree and p;, has the highest degree.

Fori =1,...,m we compute an (irredundant) analysis of {p1,...,pi11}, as
follows. Suppose we have already computed an analysis A of {py,...,p;} for
some i > 0, which will be now used to compute an analysis A’ of {p1,...,pi+1}
Let P be the underlying partition of R (represented symbolically, by its length).
Denote p = p;;1. Suppose that p is non-constant, since otherwise the analysis
A’ is trivial to obtain, by checking the sign of the constant appearing in p. Note
that p’(x) has lower degree than p(x), so p’ is among py, ..., p;.

We create a new partition P’ and analysis A’ basing on P and A. Initially,
P = P. We will then refine the partition ?’. Note that if P’ is a refinement of
P then the value A'(U,q), for g € {p1,...,pi} and U € ¥, is determined easily
from the value A(V,q), where V € P is unique such that U C V. Hence, it will
only be necessary to determine the values A’ (U, p) for p = p;11 and all U € P'.

For each interval U € P perform the following. Let u,uy be the endpoints
of U (possibly infinite). Since A is irredundant, there is a polynomial 4; €
{p1,...,pi} which has a root at uj, and similarly, there is a polynomial g, €
{p1,...,pi} that has a root at uy. Let r; be the remainder of the division of p
by q1. Then r; has lower degree than p, so is among py,...,p;. Also, p(x) =
s(x) - g1(x) + r1(x) for some polynomial s(x). Since g1(u1) = 0 we have that
p(u1) = r1(u1). Hence, the sign of p(u) is the same as the sign of r1(u1), and
therefore is determined uniquely by the analysis A. Similarly, we can determine
the sign of p(uy). This way, we determine the values A’ ({u1}, p) and A’ ({uz}, p).

We now need to figure out the behaviour of p inside the interval U = (uq, uy).
First observe that there is no root of p’(x) inside the interval U, since p’ is among
pP1,---, Pi, so such a root c would imply that {c} belongs to P, which cannot occur
since P is a partition and ¢ € U € P. As p’ has no root in U, this implies that
p(x) has no local extremum in U.

We now consider two cases.

Case 1: p(uy) and p(uy) do not have opposite signs. Suppose this sign is nonnega-
tive both for p(u) and for p(uy). Then p(x) > 0 for all x € U, since otherwise,
by the extreme value theorem, p would have a local minimum in the interval U.

60 QUANTIFIER ELIMINATION

So we set A'(U,p) to + in this case. Similarly, if p(u1) and p(uy) are both
nonpositive, we set A’(U, p) to —.

Case 2: p(u1) and p(up) have opposite signs. Then p(x) has a root r inside the
interval U, by the intermediate value theorem. Moreover, p(x) cannot have two
roots 11, 7 inside the interval U, since otherwise it would have a local extremum
inside U. Split U = (uy,uy) into three parts (uy,r),{r}, (r,uz). The sign of p
on (uj,r) is the same as the sign of p(uy), the sign of p on (r,uy) is the same
as the sign of p(uy), and p(r) = 0. In the partition P’ split the interval U into
three parts (u1,7),{r}, (r,uz) and for each of those parts V define A’(V,p) as
discussed.

After having performed this operation for each interval U € P, we obtain a
refinement P’ of P, and an analysis A’ based on this refinement. [

Proof. We show that the condition in Lemma 7.3 holds. Let a(jjx) be a conjunc-
tion of literals, that is, of atomic formulas, or their negations. We show that
Jy.a(7x) is equivalent to some quantifier-free formula o' (7).

Note that a(x) is equivalent to a conjunction of formulas of the form

p(yx) >0, p(Fx) =20, or p(yx)=0, (7.1)

where p(7x) is a polynomial with integer coefficients and variables jx.

For a fixed tuple @ € RY let P; denote the set of polynomials p(a, x) such that
one of the conjuncts (7.1) occurs in «(7x). Then P; is a finite set of polynomials
with real coefficients and one variable. Note that if we are given an analysis
Aj; of P; (represented symbolically), then we can easily decide whether or not
Jdx.a(a, x) holds. Namely, it is sufficient to verify the existence of such an x in
each part U of the partition P underlying A;. Note that for each part U € P,
each of the polynomials p(7, x) has constant sign, for all x € U, so in fact either
a(a,x) holds for all x € U, or it holds for no x € U, and which case holds can be
easily determined by looking up the values of Az(U, p), for all p(x) € P,.

Now consider the following algorithm. Given on input the tuple 4, first
compute the family P;. Next, run the algorithm from Lemma 7.5, and finally,

RELATIONAL STRUCTURES 61

given its output analysis Az, output L or T, depending on whether the analysis
implies Jx.a(d, x) or its negation, as described above.

This algorithm can be represented by a branching program of size bounded
in terms of the maximum degree of a polynomial in P and |P|, where each inner
node is labeled by a quantifier-free formula with parameters from a, whereas
each leaf is labeled L or T.

As this branching program has bounded size, it can be also represented as
a quantifier-free formula &’ (7). By construction, &’(7) is equivalent to Jx.a(ix).

|

Exercise 7.6. Prove that every subset of R that is definable in (R, +, -, <) is a finite
union of intervals (possibly unbounded) and single elements.

Exercise 7.7. A real number r € R is algebraic if there is a non-zero polynomial
p(x) with integer coefficients such that p(r) = 0. A real number r € R is
definable if there is a formula ¢(x) in the language of (R,+,-, <) such that
R |= ¢(a) if and only if a = r, for all 2 € R. Prove that a number is algebraic if
and only if it is definable.

Exercise 7.8. Show that the set of algebraic numbers forms a field with respect
to + and -. Moreover, this field, extended with <, has the same theory as
(]R/ +/ 'y g)

7.2 Relational structures

In this section, we consider structures over a finite relational signature. In this
case, the criterion given by Lemma 7.3 can be further simplified to the case when
a(Xy) is an atomic formula, which in turn can be characterized combinatorially.
This yields the following characterization.

Proposition 7.9. Let A be a structure over a finite relational signature 2. The following
conditions are equivalent:

1. A has quantifier elimination;

62 QUANTIFIER ELIMINATION

2. every formula of the form Jy.a(Xy), where a is an atomic type, is equivalent to a
quantifier-free formula in A;

3. For every finite structure B which embeds into A and its induced substructure
B with |B| — |B| = 1, every embedding f: B — A extends to an embedding
f: B — A.

Proof. We show (2)— (1), the other direction being obvious.

By Lemma 7.3, it suffices to eliminate quantifiers from formulas of the form
Jy.¢(%y) where ¢ is quantifier-free. Any such formula is equivalent to a finite
disjunction of atomic types V/; T; (cf. Exercise 5.5). Then Jy.¢(Xy) is equivalent
to \/; Jy.7;(Xy), where each 7; is an atomic type, so it remains to eliminate quan-
tifiers from the formulas 3y.7(%y) where T is an atomic type. Hence, (2) implies
quantifier elimination, and is clearly also necessary.

We now show (3)—(2). The converse implication is similar.

Let 7(%y) be an atomic type. If T(Xy) is not satisfiable in A then Jy.7(Xy) is
equivalent to L in A and we are done. Otherwise, if y = x is a conjunct of T(Xy)
for some x € ¥ then Jy.7(Xy) is equivalent to the formula obtained from 7(xy)
by substituting x for y, so we are also done. So assume this is not the case.

We show that Jy.7(Xy) is equivalent to the atomic type o(%) obtained by
removing from 7 all the literals involving y. Clearly, Jy.7(fy) — ¢(X) holds in
A; we show the other implication. Suppose that 7 € AY satisfies o(%). Then
condition (3) implies that 4 extends to a tuple aa € A* which satisfies T(xy).
This is explained in detail below.

Consider the structure A; corresponding to the atomic type T (cf. Exer-
cise 5.3). Its domain is a partition of ¥y induced by the equalities appearing in 7.
By assumption, y forms a singleton part. Hence, A, is the induced substructure
of A; obtained by removing the singleton part of y. Since T(Xy) is satisfiable in
A, it follows that A; embeds into A. The tuple 4 € A* induces an embedding
f: Ay — A such that f([x]) = a(x) for every x € & and its part [x] € A,. By
(3), f extends to an embedding f: A; — A. Leta = f([y]). Then aa satisfies T
in A, as required. []

Example 7.10. The following structures have quantifier elimination:

RELATIONAL STRUCTURES 63

* (Q/ <)/
- every structure over a finite signature with unary relations only.

In each case, quantifier elimination can be easily checked by the criterion (3)
from Proposition 7.9.

The following lemma says that each countable structure over a finite rela-
tional signature which eliminates quantifiers is uniquely determined, up to iso-
morphism, by the class of its finite induced substructures.

Lemma 7.11. Let A and B be two countable structures over a finite relational signature
which both admit quantifier elimination, and which embed the same finite structures.
Then A and B are isomorphic.

Proof. We prove that Duplicator wins the w-round Ehrenfeucht-Fraissé game on
A and B. The conclusion then follows from Lemma 6.1.

We show that if a4, ..., a; are elements in A and b, ..., b, are elements in B
such that

atpp(a1,...,ax) = atpg(by, ..., by). (7.2)

then for every a1 € A there is some by, € B such that

atpA(al, e, Ay, ak+1) = atp]B(bl, o, by, bk+1). (7.3)

Indeed, let C be the substructure of A induced by ay,..., 451, let C C C be
the substructure of A induced by a3, ...,a;, and let f: C — B be the function
mapping a; to b;, for i = 1,...,k. Then f is an embedding of C to B, by (7.2).
Since C embeds into A, it is also embeds into B, as A and B embed the same
finite structures.

By condition (3) in Proposition 7.9, there is an embedding fA: C — B extend-
ing f. Let bx 1 = f(ar;1). Then (7.3) holds, as f is an embedding. This yields
the conclusion.

64 QUANTIFIER ELIMINATION

Using this, we see that Duplicator has a winning strategy in the w-round
Ehrenfeucht-Fraissé game on A and B: if in a position (A, ay, ..., ax), (B, by, ..., by)
Spoiler places a pebble on a vertex a1 of A then Duplicator responds by plac-
ing a pebble on the vertex by,1 of B as obtained above, and does not (immedi-
ately) lose by (7.3). If Spoiler places a pebble on a vertex by, of B, the argument
is symmetric. Hence, Duplicator can always play without losing, so in fact she
wins the game with w rounds. By Lemma 6.1, A and B are isomorphic. []

7.3 Random graphs

Fix a set of vertices V. Construct a graph with vertices V randomly, by choosing
randomly for each pair of distinct vertices u,v € V whether to make u and v
adjacent. All the choices are made independently and have equal probabilities
of the two outcomes (connected /not connected). This process describes a random
graph with vertices V. It is not a single graph, but a random variable.

For a property of graphs P, let Pr[R € P] denote the probability that R
satisfies P. If V is finite, then

~ |{G: graph on V satisfying P}|
PriR € F] = {G: graphon V}| '

Denote

Pr[P] = lim Pr[R, € P

n—oo
where R, is the random graph on # vertices.

Example 7.12. Let P be the property of containing a clique on 5 vertices. A
random graph on 5 vertices is a clique with probability 2710. The probability that
a random graph on 57 vertices does not contain a 5-clique is at most (1 —2719)",
which converges to 0 with n — co. Hence, Pr|contains a 5-clique] = 1.

RANDOM GRAPHS 65

Exercise 7.13. Show:

Pr[has an isolated vertex] = 0.

Pr[connected] = 1.

Pr[has an even number of edges] = %

Pr[has an even number of vertices| does not exist.

For the second item, it may be useful to look at the distance between two fixed
vertices.

The main result of this section is the following.

Theorem 7.14. For any first-order sentence ¢, the limit Pr[¢] exists and is either equal
to0or 1.

Theorem 7.14 can be used to show inexpressibility results.

Example 7.15. There is no first-order sentence ¢ such that ¢ holds in a finite
graph G if and only if it has an even number of edges.

Countable random graph. Let R denote the random graph on a fixed countable
set V of vertices. Contrary to the case of finite graphs, with probability 1 the
resulting graph is always the same (up to isomorphism). This justifies calling R
“the” infinite random graph. It is also called the Rado graph, after its inventor.

Proposition 7.16. Let R be the random graph. Then with probability 1, R admits
quantifier elimination and embeds every finite graph. In particular, two independent
copies of R are isomorphic with probability 1.

The second part of the statement follows from the first part and from Lemma 7.11.

Before proving Proposition 7.16 we show that R almost surely satisfies the
so-called extension axioms, as expressed below.

Lemma 7.17. Let A, B C V be two disjoint, finite sets of vertices. Then with probabil-
ity 1 there is a vertex v € V which is adjacent to all vertices in A and non-adjacent to
all vertices in B.

66 QUANTIFIER ELIMINATION

Proof. The probability that a fixed vertex v ¢ A U B has the required property is
¢ :=1/2/A+IBl > 0. The probability that some vertex in a set X C V — (AU B)
of n vertices has the required property is 1 — (1 — ¢)" and converges to 1 when
n — oo. | |

Proof of Proposition 7.16. It is easy to see that the random graph R contains every
finite graph G with probability 1. Indeed, if |V (G)| = n then any fixed n vertices
of R form a graph isomorphic to G with probability at least 2-(). Fix k > 0 and
let Xj,...,Xx € IN be k pairwise disjoint sets of size n. By independence, the
probability that neither of those sets induces a graph isomorphic to G is at most
(1—2"®))k, This is an upper bound on the probability p that R does not contain
a subgraph isomorphic to G, so

p<(1—2"G)5 forallk > 0.

As k is arbitrary and n is fixed, this proves that p = 0. Hence, R contains a
subgraph isomorphic to G.

We now show that the random graph R almost surely (that is, with proba-
bility 1) has quantifier elimination, by proving that condition (3) from Proposi-
tion 7.9 holds almost surely in R.

Take any two finite graphs G and G where G extends G by one vertex x and
G embeds into R. Partition G into the set of neighbors and non-neighbors of
xin G. Let f: G — R be an embedding and let A be the image of the set of
neighbors of x and B be the image of the set of non-neighbors of x. Let v be as
in Lemma 7.17. Then the extension fof f mapping x to v is an embedding of G
into R.

One needs to be a bit careful before concluding that condition (3) holds.
What we have shown is that for any triple (G, G, f) such that G is a finite graph,
G is its subgraph with one vertex removed, and f is an embedding of G into R,
the function f can be extended to an embedding of G with probability 1. This is
not the same as saying that with probability 1, for all (G, @, f), f can be extended
to an embedding of G into R. However, the latter holds as well, since there are
only countably many events to consider. This is formalized as follows.

RANDOM GRAPHS 67

For a triple (G, G, f), where G is a finite graph, G is its subgraph with one
vertex removed, and f is a fixed injection from V(G) into IN, define the event
€ce £ as the set of all graphs R with vertices IN such that the following impli-
cation holds: If f is an embedding from G to R, then there exists an extension
j?: G— R

By the argument presented above, the event & & f has probability 1. More-
over, there are only countably many events & & f (we may consider only finite

graphs G with vertices 1,...,n for some n € IN). Now, the intersection of a
countable family of events of probability 1 is itself an event of probability 1 (by
complementation, this is equivalent to saying that a union of countably many
sets of measure zero has measure zero). Hence,

PriRe () €qefl=1,
GG f

where the intersection is over all (countably many) triples (G,G, f) as above.

This means that with probability 1, the random graph R satisfies condition (3).
Now, Lemma 7.11 implies that two copies of the random graph are almost

surely isomorphic. []

Finite random graphs. We will now see that finite random graphs behave much
like the infinite random graph, at least when first-order sentences are considered.

For each 1, let R, be a random graph on n vertices, where each edge is drawn
independently at random with probability 1/2.

Theorem 7.18. For every sentence a, limy, . Pr[R, |= «] exists and is 1 if the infinite
random graph satisfies a, and is 0 otherwise.

Proof. Let a be a sentence such that lim,_,. Pr[R, = a] does not exist or is
smaller than 1. We show that the random graph R satisfies —a.

Consider the set T of sentences ¢ such that lim, . Pr[R, = ¢] = 1. The
same proof as in Lemma 7.17 shows that T includes, for each m, the sentence v,
“for every two disjoint sets A, B with |A|, |B| < m there is a vertex v adjacent to
A and non-adjacent to B”.

68 QUANTIFIER ELIMINATION

By compactness T U {—a} has a model. Indeed, pick any finite set of sen-
tences in T. Clearly their conjunction ¢ is also in T. By definition of T and the
assumption about «, there is a finite graph satisfying ¢ A —a. By compactness,
T U {—a} has a countable model G.

It follows from the proof of Proposition 7.16 that every countable graph sat-
isfying the sentences {7 |m € N} is isomorphic to the random graph R. In
particular, R satisfies —a.

This proves that if R satisfies « then lim, .o Pr[R, = a] = 1. Conversely,
if R satisfies —a then lim,_,o Pr[R, = —a] = 1, and therefore lim,_ Pr[R, &
a] =0. [

7.4 Fraissé limits*

A partial isomorphism between A and B is an embedding f: A’ — B of a finite
induced substructure A’ C A into B. Say that a partial isomorphism is finite
if its domain is finite. A structure A such that every finite partial isomorphism
between A and A extends to an automorphism of A is called homogeneous.

Lemma 7.19. Let A be a countable structure over a finite relational signature X.. Then
A is homogeneous if and only if A has quantifier elimination.

Exercise 7.20. Prove Lemma 7.19.

By Lemma 7.11, for any class € of finite X-structures (where X is finite re-
lational) such that € is closed under taking embeddings, if there is a countable
homogeneous structure A such that € is the class of finite structures which em-
bed into A, then A is unique, up to isomorphism. The structure A is then called
the Fraissé limit of C.

Example 7.21. « The Fraissé limit of the class of finite sets, as structures over
the signature with equality only, is (N, =),

« The Fraissé limit of the class of finite total orders is (Q, <),

*omitted in the lectures

FRAISSE LIMITS* 69

« The Fraissé limit of the class of finite graphs is the (countable) random
graph.

Classes C of finite structures which have a Fraissé limit can be described
purely combinatorially, as follows. Say that C has the amalgamation property if for
every A,Bq,B; € €C and embeddings f1: A — B; and f,: A — B; there exists
C € € and embeddings g1: By — C and gp: By — C such that g1 0 fj = g2 0 fo,
that is, the following diagram commutes:

f A f:
1 2
]Bl/ \B2
o\ o
C

Exercise 7.22. Show that the following classes have the amalgamation property:
. the class of all finite total orders,
- the class of all finite graphs,
« the class of all finite posets,
« the class of all finite triangle-free graphs.

Theorem 7.23. Let X be a finite relational signature without relations of arity 0 and let
C be a class of finite structures which is closed under embeddings. Then the following
conditions are equivalent:

« there exists a countable homogeneous structure A such that C is the class of finite
structures which embed into A,

+ C has the amalgamation property.
Moreover, the structure A as above is unique, up to isomorphism.

Exercise 7.24. Prove the top-down implication in Theorem 7.23.

70 QUANTIFIER ELIMINATION

Proof sketch. We sketch the bottom-up implication. The aim is to construct a
countable structure A satisfying the following property (x):

for every B € @ and its induced substructure B with |B| = |B| 4 1, every
embedding f: B — A extends to an embedding f: B — A.

The property (x) implies that every structure B € € embeds into A, as we
can pick a sequence of structures By C B; C ... C B, = B where By is empty
and each structure is an induced substructure of the next structure, with one
element removed. Repeatedly applying the property () leads to an embedding
of B into A, proving that every structure in € embeds into A. The structure
A constructed below will also have the property that every its finite induced
substructure belongs to €. By Proposition 7.9, then property (x) implies that
A has quantifier elimination. Also, Lemma 7.11 proves that A is unique, up to
isomorphism.

The structure A is constructed in stages, as a union of a chain of finite struc-
tures belonging to C:

AgC A CAC... (7-4)

The structure Ay is the empty structure. For n > 0, the structure A, € Cis
constructed inductively as follows.

Consider all triples (B, B, f) where B and B is as in () and f: B — A,_;
is an embedding. Up to isomorphism, there are only finitely many such triples
(B, B, f). Arrange those triples in a finite sequence arbitrarily. Let A = A,_;
and process the triples sequentially. For the ith triple (B, B, f), using amalgama-
tion, construct a structure Al, € C containing A1 as an induced substructure,
and such that f extends to an embedding of B into Al. After all triples have
been processed, let A, be the last constructed structure A;.

This ends the description of the sequence (7.4). By construction, the union
U, Ay, satisfies (x), finishing the proof. [|

8
Compositionality

In this chapter, we study an important feature of first-order logic, but also of
the more powerful monadic second-order logic. Compositionality essentially says
that the type of the disjoint union A W B of two structures A and B depends
only on the types of A and of B. There are two equivalent formalizations of the
notion “depends only on”:

1. for any structures Aj, Ay, B1, By, the conjunction of the first two equiva-
lences below implies the third:

Al =" Az
]Bl =" IBZ

Alﬂ'JIBl ErAz&J]BZ

2. there is a function F,: A, x A, — A, where A, is the set of types of quan-
tifier rank r, such that tp”" (A WB) = F(tp"(A), tp" (B)).

It is easy to check that the two conditions above are equivalent.

We say that tp”(A W B) effectively depends on tp”(A) and on tp”(B) if the
function F,: A, X A, — A, as in the second condition above is uniformly com-
putable in r: there is an algorithm which inputs ¥ € IN and two types 7,0 € A,
(represented as trees in P(A(r))) and outputs F.(7,0) (if o or 7 is not satisfiable,
the result may be arbitrary).

72 COMPOSITIONALITY

Theorem 8.1. Fix v € IN and a relational signature X.. For any two structures A and
B the type tp” (A W B) effectively depends only on the types tp” (A) and tp" (B).

Proof. We first exhibit the dependence, and then argue that it is in fact effective.

Let Ay, Ay, By, By be structures such that A; =" A, and B; =" B;. We
prove that A; WB; =" Ay W Bs.

By assumption, duplicator has a winning strategy in the r-round game on
A1 and A;. She also has a winning strategy in the r-round game on A, and Bs.
Now, duplicator can combine these strategies to a winning strategy in the game
on A1 WB; and A, WIB,. See Fig. 8.1. This proves that tp” (A W B) depends only
on tp’(A) and tp"(B).

We now briefly argue that this dependency is effective. To this end, we
show that tree’ (A W B) can be computed given tree’(A) and tree’(B). Recall
that the trees represent all possible sequences of moves of either player in the
considered structure of length at most r, and each such sequence is labelled by
the substructure induced by the pebbled positions. A sequences of moves in
tree” (A W B) is an interleaving of moves in A and in B, and thus yields two
sequences of moves, in A and in B. The label of such a sequence is uniquely
(and effectively) determined by the labels of the two subsequences. This allows
to effectively combine the trees tree” (A) and tree”(B) into tree’ (A W B). [|

Corollary 8.2. Let ¢ be a sentence. There is k € IN and sentences w1, B1, . .., &k, Br
effectively computable from @, such that for any two structures A and B,

AYB = ¢ & AE=w; and B = B; forsomei e {1,...,k}.

Proof. Let A, be the (finite) set of all types of quantifier rank r with no free
variables. By Theorem 8, there is a function F,: A, X A, — A, such that tp” (A ¥

73

A4 Ar
= <.
s W
Ve B
B, B>

Figure 8.1: The Ehrenfeucht-Fraissé game on A; & B; and Aj W B,. Whenever
spoiler plays on A or A, duplicator replies according to a strategy in the
smaller game on A and Aj. Whenever spoiler plays on By or By, duplicator
replies according to a strategy in the smaller game on B; and B,. If duplicator
can win in the two smaller games, she wins in the combined game. The reason is
that the substructure induced by the pebbles in A1 & B; is the disjoint union of
the substructure induced by the pebbles in A; and the substructure induced by
the pebbles in B1, and similarly for A, and B,. Hence, the partial isomorphism
between A; and A; induced by the pebbles therein, and the partial isomorphism
between By and B, induced by the remaining pebbles, together yield a partial
isomorphism between A; W B; and A, ¥ B, between the pebble positions.

B) = F(tp"(A), tp"(B)). Then we have the following equivalences:

AWUB ¢ <
¢ etp (AWB) <
¢ € E(tp"(A),tp"(B)) +
V (A =1)A{tp'B)=0)+ \/ (AETA(BED),

T,0€N, T,0€A,
¢€F(1,0) peF(1,0)

where T denotes a sentence of quantifier rank r characterizing the type 7, as
given by Corollary 5.14. As A, is finite, this yields the conclusion. Effectivity

74 COMPOSITIONALITY

follows from the uniform computability of the functions F,: A, x A, — Ay [|

Theorem can be proved more generally for the logic MSO. Let tplq\/[SO(A)
denote the set of MSO sentences of quantifier rank g that hold in A.

Theorem 8.3. Fix r € IN and a relational signature X.. For any two structures A
and B the type tp},qo (A WIB) effectively depends only on the types tpygo(A) and

tplso (B)-
We leave the proof as Exercise 8.6.
Exercise 8.4. Deduce Theorem 8 from Corollary 8.2.

Exercise 8.5. Provide a purely syntactic proof of Corollary 8.2, by extending the
logic by two types of quantifiers, 3x € A and Jx € B, where in a structure of
the form A W B, the first quantifier only ranges over the elements of A, while
the second quantifier only ranges over the elements of B. Then replace each
quantifier 3x.y in ¢ by a disjuction Ix € A.yp vV Ix € B.y.

Exercise 8.6. Prove Theorem 8.3, using a variant of Ehrenfeucht-Fraissé games
for MSO (see Exercise 5.22).

Model checking and satisfiablity of MSO over trees. As an application of composi-
tionality of MSO, we prove that the problem of deciding whether a given MSO
formula is satisfiable in some (labeled) tree is decidable. We also show that every
MSO formula ¢ can be evaluated on a given input (labeled) tree T in time linear
in the size of T.

A signature of labeled forests is a signature consisting of a binary relation
symbol parent and of finitely many unary relation symbols, called the Ilabels,
and a distinguished unary relation root. Fix such a signature X in what fol-
lows. A rooted labeled forest is a X-structure F such that every root v of F has
no parent (that is, ~3x, y.root(x) A parent(y, x)), every non-root element v of F
has exactly one parent and moreover there is some d € IN and a finite sequence
vo,V1,02,...,04 such that v = vy, v;;1 is the parent of v; for 0 < i < d, and such
that v; is a root. Elements of a forest are called nodes. A tree is a forest with
exactly one root. Removing the root r from a tree T results in a forest T’, defined

75

as the substructure of T induced by V(T) — {r}, with all the children of 7 in T
marked as roots.

Lemma 8.7. Fix g € IN. Let T be a tree and let T' be the forest obtained from T by
removing the root r. Then tp}s(T) depends only on tpl,oo(T') and on atpy(r).

Theorem 8.8. Let ¢ be a sentence of monadic second-order logic. There is an algorithm
which given a finite rooted labeled tree T decides in time O, (|T|) whether T satisfies ¢.

Proof. Fix a number g € IN, and let
Ay = {tpKASO(A) | Aisa Z-structure} .

Then A, is finite, by Corollary 5.13. Let fu: Ay X Ay — Ay be such that for every
two E-structures A and B, tpl;co(AWB) = fu(tplso(A), tpliso(B)). Such
a function fiy exists by Theorem 8.3. For every atomic type 7(x) with one free
variable let fr: A; — A, be such that for every finite rooted labeled tree T whose
root r satisfies atpp(r) = T, tplo(T) = fr(tpiso(F)), where F is the forest
obtained from T by removing the root r. Such a function exists by Lemma 8.7.

Every forest F is a disjoint union of trees, and every tree T is obtained from
some forest by prepending a root. Thus, we may compute th/ISO (F) by induction
on |F|:

- if [F| = 0 then tp] ;s (F) = tpliso (@), where @ is the empty E-structure,

- if Fis a tree then tp{ ;s (F) = fr(tpl o (F’)), where F' is obtained from F
by removing its root,

- otherwise, F is a disjoint union F; W F, of two nonempty forests, and
tpK/IS()(F) = fu (th/[so(Fl)/tPK/[so(FZ))-

Note that each of the above cases corresponds to applying a function to some
elements of the set A; (in the first case, a constant, in the second case, a unary
function, and in the third case, a binary function). As A, is a fixed, finite set
(depending on ¢, which is fixed), each such function can be computed in con-
stant time. Therefore, this recursion gives a linear time algorithm for comput-
ing T := tpKASO(F) € A4 Having computed 7, output yes or no depending

76 COMPOSITIONALITY

on whether or not ¢ € 7 (this bit is hard-coded into the algorithm, for every
T € Ay). []

A few words regarding the effectiveness of the above algorithm are in place.
We have obtained a non-uniform algorithm for model-checking: for every MSO
formula ¢, we provided a separate algorithm for model-checking ¢ on forests.
In the uniform version, ¢ is not fixed, and is given on input. It is not difficult to
prove the following, uniform strengthening of Theorem :

Theorem 8.9. There is an algorithm which, given an MSO-sentence ¢ of quantifier
rank q over a signature X. of rooted labeled trees, and a finite rooted labeled tree T, decides
whether T satisfies ¢ in time f(q)(|T|), for some computable function f: N — IN.

Proof. By revisiting the proof of Theorem 8, and verifying that each step is in-
deed effective. This analysis is based on the explicit representation of types as
trees (see the proof of Theorem 5.8), the fact that we can effectively rewrite a
given sentence ¢ into a disjunction of such trees (see Lemma 5.17), and the fact
that the functions fy and f; are computable, once the types are represented as
trees. This follows from the explicit constructions in the proofs of Theorem 8.3
and Lemma 8.7. We omit the details. []

Theorem 8.x10. It is decidable whether a given sentence ¢ of monadic second-order logic
is satisfied in some finite rooted labeled tree.

Proof. Let S; C A, be the set of all MSO-types of quantifier rank g of finite
labeled rooted forests:

Sq= {tpK/ISO(T) | T is a finite labeled rooted forest} .
Then S; C A, is the smallest set with the following properties:
S; contains the MSO-type of quantifier rank g of the empty forest, tpK/ISO(@),

Sy is closed under fy: Ay x Ay — Ay and under fr: Ay — Ay, for every
atomic type 7(x).

TREEWIDTH 77

By the discussion in the proof of Theorem 8.9, those functions can be effectively
represented and computed, given a number g. In particular, the set S; is com-
putable by a fixpoint algorithm, given 4. Next, rewrite ¢ as a disjunction of
types 71 V - - - V Ty (represented as trees, some of which may be unsatisfiable, see
Lemma 5.17). Then ¢ is satisfiable in a finite forest if and only if 7; € S; for some
i=1,...,k [}

8.1 Treewidth

A tree decomposition of a graph G is a (unrooted, unranked) tree T such that the
following conditions hold (cf. Fig. 8.2):

1. each node of T is a set of vertices of G; the nodes of T are also called bags
of the decomposition;

2. for every vertex v of G, the set of nodes of T containing v is a nonempty
connected subtree of T;

3. for every edge uv of G there exists b € V(T) such that u,v € b.

The width of a tree decomposition T is maxycy (r) [b| — 1 and the treewidth of a
graph G is the minimum width of a tree decomposition of G.

Example 8.11. Every tree has a tree decomposition of width 1, as depicted below:

Here, we only depict the tree G and highlight the bags of the decomposition,
each containing 2 vertices of G. The tree decomposition T is just the tree G

78 COMPOSITIONALITY

nodes node: {© @@}

{roe}
G T

Figure 8.2: A graph G and its tree decomposition T of width k = 2. A node
t € T is a set of at most k + 1 vertices of G. The set of nodes of T whose bag
contains a given vertex v € V(G) forms a connected subtree of T, marked with
the matching color. For every edge uv € E(G) there is some node t € T with
u,v et

itself, where the bag of a node v consists of v and its parent (if it exists) with
respect to an arbitrarily chosen root. Every forest also has a tree decomposition
of width 1, as a forest is a subgraph of a tree, and in general, if H C G then
treewidth(H) < treewidth(G).

A cycle C has treewidth at most 2, as depicted below:

TREEWIDTH 79

Exercise 8.12. Show that a cycle of length 3 or more has no tree decomposition of
width 1. It follows that the graphs of treewidth 1 are precisely all forests. More
generally, show that the treewidth of the t-clique is t — 1.

Game characterisation. Treewidth can be seen as a game on a graph, although
the proof of the equivalence is far from trivial. The players of the game are called
cops and the robber. The game is parameterized by an integer k, the number of
cops. The graph G is again the arena of the game. At every step of the game,
the robber occupies a vertex r € V(G) and cops occupy a set C C V(G) of size
at most k of vertices (every cop occupies a vertex). The game ends immediately
with a win of the cops if some cop is at the same vertex as the robber, that is, if
reC.

Initially, first the cop player places k cops at vertices of the graph (chooses
the initial set C) and then the robber player places the robber at one vertex of the
graph (chooses the initial vertex r). At every round:

« the cop player declares, for every cop, whether the cop stays at the current
vertex or moves to another vertex (in other words, declares the new set
C’ C V(G) where the cops will be placed at the end of the round);

- the cops that are supposed to move to another vertex leave their vertices
(i.e., now only the vertices of C N C’ are occupied by cops);

- the robber moves to any vertex r’ by traversing edges and vertices that
are not occupied by cops (i.e., the robber chooses the next vertex ' as
any vertex of the connected component of G — (C N C’) that contains the
current vertex r);

+ the cops that are supposed to move arrive at their target vertices (i.e., now
cops occupy the vertex set C’).

If the robber is able to indefinitely avoid being caught, then the robber player
wins.

It can be proved that the minimum number of cops needed to catch the
robber is exactly one more than the treewidth of G. The easier direction of this

80 COMPOSITIONALITY

statement is that any (in particular, an optimum-width) treewidth decomposition
can be interpreted as a strategy for the cops that move bag-by-bag in the direc-
tion of the robber. The strategy for the robber in case of smaller-than-necessary
number of cops is given by the notion of a bramble, which is beyond the scope of
this book.

Algebraic characterisation. The following yields an operational description of
graphs of bounded treewidth. A graph with k ports is a graph G together with a
labeling of its vertices with numbers from 1, ..., k, so that every vertex is labeled
by at most one number, and every number appears as a label of at most one
vertex.

Let G, H be two graphs with k ports. Write G Uy H to denote the graph
obtained by first taking the disjoint union of G and H, and then identifying
pairs of vertices which have the same label in G and H. When identifying a
pair of vertices u and v we obtain a vertex {u,v} which is adjacent both to the
original neighbors of 1 and to the neighbors of v. The obtained graph G Uy H is
a graph with k ports, where the labels are inherited from the labels in G and in
H.

Say that a graph G with k ports is k-constructible if G can be constructed by
recursively using the following operations:

1. Construct a graph G with a single vertex v, which is labeled i, for some
ie{l,...,k},

2. Given a graph G with k ports, erase a label i € {1,...,k},

3. Given two graphs G, H with k ports, produce the graph G Uy H with k
ports.

These operations can be seen as k constants, one for each i = 1,...,k (defining
a graph with a single bertex labeled i), a unary operation, for eachi = 1,...,k
(forgetting the label i), and a binary operation ;. A treewidth-k term is a term
producing a graph G with k ports using those operations.

TREEWIDTH 81

Proposition 8.13. Fix k € IN. A graph G has treewidth at most k — 1 if and only if
it is k + 1-constructible. Moreover, there is a linear-time algorithm that, given a tree
decomposition of G of width k, outputs a treewidth-k term producing G, and vice-versa.

Exercise 8.14. Prove Proposition 8.13.

Complexity. It is NP-complete to decide whether a given graph G has treewidth
bounded by a given number k. However, if k is considered fixed, then this can
be decided in time linear in the size of G:

Theorem 8.15. There is a computable function f: N — IN and an algorithm which
inputs a graph G and a number k and in time f(k) - |G| either computes a tree decom-
position of G of width at most k, or declares that no such decomposition exists.

MSO satisfiability and model checking. The following lemma is an generalizes
Lemma 8.7 to the case of graphs of operations that are pertinent to bounded
treewidth, as described in Proposition 8.13.

For two graphs G, H with not necessarily disjoint domains let G U H denote
their union.

Lemma 8.16. Fix 4 € IN. Let G and H be two graphs with V(G) N V(H)
{s1,...,5c}. Then tpl,c(G U H,5) depends only on tpl,so(G,3) and tpl,eo(H, 5

).

Proof. We leave the proof as Exercise 8.17.]

Exercise 8.17. Prove Lemma 8.16.

Let T; denote the class of finite graphs of treewidth at most k. We consider
the satisfiability problem for monadic second-order logic over T, where we are
given a sentence ¢ of MSO and a number k € IN, and the task is to decide
whether ¢ is satisfied in some graph G € T.

Theorem 8.18. Satisfiability of monadic second-order logic is decidable over Ty.

Proof. Analogous to Theorem 8.10, using Lemma 8.16, and the recursive descrip-
tion of graphs of treewidth k given by Proposition 8.13.]

82 COMPOSITIONALITY

Proposition 8.19. There is a computable function f: IN x IN — IN and an algorithm
which inputs a sentence ¢ of monadic second-order logic and a graph G together with
its tree decomposition T of width k, and decides if G satisfies ¢ in time f(k, |¢|)(|G|).

Proof. Analogous to Theorem 8.9, using Proposition 8.13. u
Together with Theorem 8.15, this yields the following result:

Theorem 8.20 (Courcelle). There is a computable function f: IN x N — IN and an
algorithm which inputs a sentence ¢ of monadic second-order logic and a graph G of
treewidth at most k, and decides if G satisfies ¢ in time f(k, |¢|)(|G|).

8.2 Cliquewidth

Graphs of bounded treewidth are sparse: a graph with n vertices of treewidth
k has at most Ok (n) edges. In particular, the class of all cliques does not have
bounded treewidth; yet those graphs are simply complements of edgeless graphs.
The aim now is to generalize the notion of treewidth to yield a notion which is
invariant under edge complementation.

Fix a finite set of colors C. A C-colored graph is a graph G in which each
vertex has a color from C assigned to it. We define the following operations on
C-colored graphs:

constant for eachi € C, the graph with one vertex colored i is a C-colored graph,
denoted c;;

recolor for every function f: C — C there is an operation recolor; which inputs
a C-colored graph G and outputs the C-colored graph obtained from G by
replacing the color i of a vertex by the color f(i);

join for every set M C {{i,j}|i,j € C} there is an operation join,,; which inputs
two C-colored graphs G and H, and outputs the disjoint union of G and
H (with each vertex retaining its color) extended by the edges connecting
each vertex v of color i of G with each vertex of color j of H if and only if
{i,j} e M.

CLIQUEWIDTH 83

A cligue decomposition with colors C is a term t without free variables built out of
the above operations. It therefore defines a C-colored graph, which we denote
[t]. Formally, [t] is the graph whose vertices are the leaves of t, and is defined
inductively, as expected. The width of a clique decomposition is |C|. A graph G
has cliquewidth k if there is a clique decomposition t of width k which produces
a graph isomorphic to G together with some coloring.

Example 8.21. Every clique has cliquewidth 1. Every biclique has cliquewidth 2.
Every cograph has cliquewidth 2. Every graph of treewidth k has cliquewidth
0(25).

The term t can be viewed as a ranked tree whose leaves are labeled with c;,
for i € C, and inner nodes have either rank 1 and have label recolorf, for f: C —
C, or have rank 2 and have label join,,, for M C {{i,j} |i,j € C}. Observe that
the order of children does not matter in the tree, since the join operation is
commutative.

We will use the following result, which implies that for every class of bounded
clique-width there is an algorithm that computes a clique decomposition of
bounded width, in cubic time.

Theorem 8.22 (Courcelle, Oum). There is a computable function f: N — IN and
an algorithm which inputs a graph G and a number k and in time f(k) - |G|? either
computes a clique decomposition of G of width at most k, or declares that no such de-
composition exists.

A clique decomposition with colors C can be seen either as a ranked tree
over a ranked alphabet

Ac ={c;lieC}U {recolorf|f: C— c} U {joiny | M C {{i,j} |i,j € C}},

or as a relational structure equipped with the child relation, and unary predi-
cates corresponding to the labels in Ac.

Corollary 8.23. Satisfiability of monadic second-order logic is decidable over C.

Corollary 8.24. There is an algorithm which inputs a sentence ¢ of monadic second-
order logic and a graph G together with its clique decomposition t of width k, and decides
if G satisfies @ in time O 4 ([t]).

84 COMPOSITIONALITY

Together with Theorem 8.22, this yields:

Theorem 8.25. There is an algorithm which inputs a sentence ¢ of monadic second-
order logic and a graph G of cliquewidth at most k, and decides if G satisfies ¢ in time
Op(IGP).

We finish with the following, logical characterisation of classes with bounded
clique-width. A rooted tree T vertex-colored with k colors is modelled as a
structure with a binary parent relation E and k unary relations, one per each
color. Let ¢(x,y) be a formula in this language, and T be such a rooted tree.
By ¢(T) denote the graph G whose vertices are the leaves of T, and where two
distinct leaves u, v of T are adjacent in G if and only if T |= ¢(u,v) V ¢(v, u).

Theorem 8.26. Let C be a class of graphs. The following conditions are equivalent:
C has bounded clique-width,

« there is a number k and an MSO-formula ¢(x,y) in the language of rooted trees
vertex-colored with k colors, such that every G € C is of the form ¢(T) for some
rooted tree T, vertex-colored with k colors.

See Appendix B.1 for a proof. We remark that the same holds for first-
order formulas instead of MSO-formulas, but now a rooted tree T needs to be
viewed as a structure over a richer language, containing additionally the ancestor
relation <, which may be used in the first-order formula ¢(x,y).

9
Locality

In this chapter we study a feature that is specific to first-order logic (and some
other logics), namely locality.

While for every fixed number d we can write down a first-order formula
dist(x,y) < d stating that x and y are at distance at most d, to express that
two vertices lie in the same component of a graph we intuitively require an un-
bounded number of quantifiers. This intuition that first-order logic can express
only local properties turns out to be true and can be formalized in several ways,
for example by the locality theorems of Hanf and Gaifman. In this chapter we
are going to study Gaifman’s Locality Theorem, which forms the basis for an ef-
ficient model-checking algorithm for first-order formulas on graphs of bounded
degree, and other graph classes. The locality results imply, in particular, that
whether or not a tuple o € G* of vertices of a graph G satisfies a fixed formula
¢(%), depends only on a neighborhood of 7 in G of radius depending on ¢ only.

Example 9.1. Consider a directed path P, with n vertices. We would like to argue
that there is no formula ¢(x,y) expressing that x lies before y on the path. More
formally, there is no ¢(x,y) such that for every n € IN and elements a,b € Py,
Py = ¢(a,b) if and only if b is reachable from a by a directed path.

This can be proved using an Ehrenfeucht-Fraissé argument, however, in this
chapter we would like to obtain a more general understanding of this type of
phenomena.

86 LocALITY

The intuition that will be made formal is that a formula ¢(a,b) can only see
a local neighborhood around a and b, and if a and b are far enough (with respect
to the quantifier rank of ¢), then the formula won't be able to tell apart the two
situations depicted below:

a b

[4)

Gaifman graph

First we define the notion of a neighboorhood in an arbitrary relational structure.

Fix a relational signature X. The Gaifman graph of a L-structure A is the
(simple, undirected) graph whose vertices are the elements of A, and in which
two distinct elements a,b are adjacent if there is a relation R € ¥ and tuple
@ € Rp which contains both 4 and b. For a structure A and tuple ab of its
elements, write dist(a,b) < r to denote that b is within distance at most r from
one of the vertices in @ in the Gaifman graph of A. Denote

N,(a) = {b € A|dist(a,b) <r},

and let A[N,(a)] denote the substructure of A induced by N, ().

Local types

One way of formalizing the intuition presented above is by using the following
notion.

Definition 1. Let A and B be structures and @ € A* and b € B be tuples of
the same length. The local r-round EF game on (A,a) and (BB, D) is defined the
same way as the usual EF game, starting with pebbles on and b, but in the
ith round of the game, Spoiler can play only within distance (in the Gaifman
graph) at most 2"~/ from the vertices pebbled so far. In each move, Duplicator

must guarantee the atomic type of the tuple (ay, ..., ax) of vertices pebbled in A
and the tuple (by, ..., by) of vertices B pebbled in B are equal, and moreover, for
every 1 <i,j <k, a; and 4; are adjacent in the Gaifman graph of A if and only
if b; and b; are adjacent in the Gaifman graph of B.

A more formal definition is as follows. Define the relation a :lq"c b, where a
and b are tuples of elements of the same length belonging to two structures A
and B, respectively, inductively as follows:

- For r = 0, write @ ~I° b if atp , (7) = atpy(b) and atpg, (a) = atpg, (b),
where Gp and Gp are the Gaifman graphs of A and B, respectively.

. Forr > 1, write @ ~!°¢ b if for every vertex v within distance at most 27 -1
from either of the vertices in a there is a vertex w such that av zlr‘fl bw
and conversely, for every vertex w within distance at most 2" from either
of the vertices in b there is a vertex v such that 70 ~1°¢, bw.

The ~I-equivalence class of a tuple a is called its local type of rank r, and is
denoted ltp’ (a).

Note that in the local game, we impose a restriction on the moves of Spoiler —
he needs to place a pebble y on a vertex w within distance at most 2/~ of a vertex
w already occupied by a pebble x — but Duplicator is unconstrained. However, it
turns out that Duplicator needs to place her pebble y on some vertex w’ whose
distance from the vertex v’ with pebble x satisfies dist(v/,w’) = dist(v, w), or
otherwise she will lose. This is implied by the following lemma. For 7,k € IN let
[k]; € {0,...,r} denote min(k,r).

Lemma 9.2. Let ay,a, € A and by, by € B be such that [dist(ay, ap)]r # [dist(by, ba)]or.
Then (al, ﬂz) ;ﬁgfoc (bl, bz)

Proof. We proceed by induction on r. The base case follows by definition, since
(a1,a2) =~ (by, by) implies in particular that a; is adjacent to a; in the Gaifman
graph of A if and only if by is adjacent in b, in the Gaifman graph of IB.
Suppose the statement holds for r; we prove it for r + 1. By symmetry, we
may assume that dist(a;,a,) < dist(by,bp). It follows that dist(a;,ap) < 271
Then there is some a € A such that dist(a,a;) + dist(a,ap) = dist(ay,42) and

88 LocaLiTY

dist(a,a1) < 2" and dist(a,ap) < 2". Since dist(by,bp) > dist(ay,a;), there is no
b € B such that dist(b,b;) < dist(a,a1) and dist(b,bp) < dist(a,az). In partic-
ular, for every b € B, either [dist(b,b1)]or # [dist(a,ay)]or, or [dist(b,by)]or #
[dist(a,a3)]>r. By inductive assumption, in the first case we have (aj,a) £
(b1,b), and in the second case, (a,4) #1¢ (hy, b). In any case, (a1,4az,4) ploc
(b1,by,b). Hence, there is some a € A (Spoiler’s move) such that for every

b € B (Duplicator’s response) (a1,a,a) ilroc (b1,by,b) (Duplicator loses in r

loc
r+1

tive proof.]

rounds). By definition, this means that (a1,a,) %.°5, (b1, by), finishing the induc-

Lemma 9.3. Fix v,k € IN. There are finitely many equivalence classes of the equivalence
relation ~1°¢ on all k-tuples of elements of arbitrary structures.

Proof. Easy induction on r. u

Lemma 9.4. Let a and b be two elements of the same structure A, such that their
distance in the Gaifman graph is larger than 21, for some q > 0. If ltpy (a) = ltpy (b)
then tp'y (ab) = tp'\ (ba). In particular, tp'y (a) = tpl (b).

Proof. Fix duplicator’s strategy in the g-round local game for a and b. We use
this strategy to play the usual, global g-round EF game on (A, ab) and (A, ba).

Let x and y be the names of the first two pebbles, corresponding to the
elements a and b in the first structure, and to the elements b and a in the second
structure.

Throughout the game, some pebbles will be marked as x-local (close to the
initial pebble x), some as y-local (close to the initial pebble y) and the rest as
distant. Initially, x is x-local and y is y-local. The invariant is that after the ith
round of the game, we arrive at structures (A, a) and (A, a'), where a,a’ € A*
and X is a collection of pebbles, such that:

« for any x-local pebble x” and y-local pebble /, dist(a(x’),a(y’)) > 29~ and
dist(a'(x'),a'(y')) > 2771, and

- forany two pebbles x” and v/, [dist(a(x’),a(y"))]pe—i = [dist(@'(x"), @ (y'))]5q-i-

89

Initially (after the Oth round) this holds by assumption.

If Spoiler plays pebble x; in round i on a vertex w within distance at most
27~ from a vertex v carrying an x-local pebble z in the first or the second struc-
ture, then the pebble x; is marked as x-local, and Duplicator responds using the
local strategy in the other structure, placing her pebble x; on a vertex w'. By
Lemma 9.2, this satisfies the second part of the invariant. The first part of the in-
variant follows. We proceed similarly if spoiler plays near a vertex with a y-local
pebble.

By the invariant, at most of those cases occurs. If neither of those cases
occurs, the vertex v pebbled by Spoiler is marked as distant, and Duplicator
responds by putting her pebble at the same vertex v.

It is easy to check that this preserves the invariant. In particular, Duplicator
wins. |

Exercise 9.5. Show that the distance assumption in Lemma 9.4 cannot be dropped,
already for g = 1.

Lemma 9.6. For every q,k,d € IN there is a number N € IN and an algorithm that
given a graph G with maximum degree d together with a k-tuple © € V(G)¥ of vertices,
computes in time Oyx4(|G|) a set R C V(G) of size at most N such that for every
a € V(G) there is some b € R with tp1(G,,a) = tp1(G, 3,b).

Exercise 9.7. Prove Lemma 9.6, by generalizing Lemma 9.4 to graphs with k con-
stants vy, ..., U.

Lemma 9.8. Fix q,k,d > 0 with k < q. There is an algorithm that given a graph
G with maximum degree d together with a k-tuple 6 € V(G)* of vertices and a for-
mula @(x1,...,x;) of quantifier rank q, decides in time Ogyq(|G|) whether G =

¢(v1,...,0¢).

Proof. By induction on g. The base case 4 = 0 is immediate. Assume the state-
ment holds for g, and we prove it for ¢ +1. Given a graph G and vertices
v1,...,V, compute the set R as in Lemma 9.6, in time linear in |G|. Let ¢ be a
formula of quantifier rank g 4 1. Then ¢ is a boolean combination of formulas

90 LOCALITY

of the form Jy.¢(x1,...,xx,y), where ¢ has quantifier-rank g. It is enough to
consider a single formula of this form.
Then the following conditions are equivalent:

¢ G |: 3y~¢(01/---/0k/]/)/
- there is some b € R such that G = ¢(vy,..., v, b).

As R has size Oy ;,4(1) and ¢ has quantifier-rank ¢, the second condition can be
verified in time O,y 4(|G|), by inductive assumption. [|

Gaifman locality

In this section we prove Gaifman’s locality theorem, which informally states that
every formula ¢(X) is equivalent to a boolean combination of formulas of the
following form:

local formulas ¢(x), which depend only on the local properties around the
elements ¥,

global sentences -y, which do not depend on %, but only depend on the
entire structure.

Let us formalize first the notion of local properties.
For a non-negative integer r, a formula (%) is called r-local if for all struc-
tures A and all 7 € A*

AN (@)] = 9(a) <= A = p(a).

We now describe in greater detail the form of the global sentences 7 men-
tioned above. They will be of a very specific form. A sentence is basic local with
parameters r and s if it has the form

Frp. 3 (A (dist(x;, xj) > 2r) A A w(x),

1<i<j<s 1<i<s

where (x) is an r-local first-order formula, and dist(x, y) refers to the distance
in the Gaifman graph of the underlying structure.

91

A basic local sentence hence says that there is an r-scattered set R of size s
such that all elements v € R satisfy the local formula . It is not difficult to see
that dist(x,y) < r is expressible by a first-order formula J,(x, y) in the signature
of A, so a basic local sentence can be in fact written in the vocabulary of A.

We can now state Gaifman’s Locality Theorem.

Theorem 9.9. Every first-order formula ¢(X) of quantifier rank k can be effectively
translated into an equivalent formula (%), which is a Boolean combination of r-local
formulas and basic local sentences with parameters r < 7% and s < k + |%|.

Corollary 9.10. Every first-order sentence can be translated into an equivalent Boolean
combination of basic local sentences.

As another corollary we get that the satisfaction of a fixed first-order prop-

erty in a fixed structure by a tuple of elements only depends on its local neigh-
borhood.

Corollary 9.11. For every first-order formula ¢(%) there is a radius r € N such that
for every structure A and tuples a,b € A*, if A[N,(a)] and A[N(b)] are isomorphic
via an isomorphism which maps a to b, then

A=) < A ¢(b).

Example 9.12. We show that the property considered in Example 9.1, that y is
reachable by a directed path from x, is not definable by any first-order formula
o(x,y).

Consider a formula ¢(x,y) and let r € N be as in Corollary 9.11. Let A be
the directed path with 5r vertices and consider any two vertices a,b € A whose
r-neighborhoods in A are pairwise disjoint, and do not contain the endpoints
of A. Then A[N;(a,b)] and A[N,(b,a)] are both disjoint unions of directed
paths of length 2r, and are isomorphic via an isomorphism mapping a to b and
b to a. Hence, A |= ¢(a,b) if and only if A |= ¢(b,a), so ¢(x,y) cannot express
that a is before b.

Exercise 9.13. Show that graph planarity is not expressible in first-order logic.

92 LOCALITY

Example 9.14. Consider a set A equipped with a unary predicate U, and the
formula ¢(xq,...,x;) expressing that there is some element in U that is different
from x1,...,x;. Then ¢(ay,...,a;) holds for a given tuple ay,...,a; € A if and
only if [U| > |UN{ay,...,a;}|. Since [UN{ay,...,a;}| <, this is equivalent to
the existence of a number s < I 4 1 such that [U| > s and [UN{ay,...,a;}| <s.
Now observe that for any fixed s < I + 1, the condition |U| > s can be expressed
by a basic local sentence 7, (with parameters ¥ = 0 and s) and the condition
[UNA{ay,...,a;}| < s can be expressed by a 0-local formula 9s(x1, ..., x;).

Example 9.15. This example extends the previous one, and illustrates the core
machanics of the proof of Theorem 9.9. Consider graphs equipped with a unary
predicate U, and let ¢(x1,...,x;) express that there is some vertex y satisfying
U whose distance to either of xy, ..., x; is larger than 1:

(%) = Jy. U(y) A (dist(y,x1) > 1) A--- A (dist(y, x;) > 1).

Note that ¢(%) is not an r-local formula, for any fixed number r. We will show
that ¢(%) is equivalent to a boolean combination of r-local formulas ¥ (%) and
basic local sentences 7, for some .

Fix a graph G with a distinguished set U C V(G), and a tuple aj,...,a; of
vertices. We want to determine whether ¢(aj, ..., a;) holds basing only on some
local properties around aj,...,a;, as well as some global properties of (G, U),
independent of a4, ..., 4.

The first idea that could come to mind is to compare the number n := |U]|
with the number n’ := Nj(a) N U, where Nj(a) is the set of vertices at distance
at most 1 from either of ay,...,4; in G. Then ¢(a) is equivalent to saying that
n < n’ (at least in finite graphs). However, using a fixed first-order formula we
may count only up to a fixed threshold k, and the numbers n and n’ may be
arbitrarily large (or even infinite, in infinite graphs).

Instead of counting all vertices in U N Ny (a), let us now only look at vertices
that are far apart. More precisely, a set of vertices S C U is scattered (in G) if the
mutual distance between any two elements of S is greater than 2 in G.

The key observation is that, although Nj(a) N U may be arbitrarily large,
every scattered set contained in it has at most / elements. Indeed, if S C Nj(a)

93

is scattered then S C Ule Ny (a;) and moreover, no two elements of S belong to
the same ball Ny (a;), since otherwise their distance would be at most 2.

Now, we compare the maximal size m of a scattered set contained in U with
the maximal size m’ of a scattered set contained in U N Ny (). We show that for
all a,...,a; € V(G), the following conditions are equivalent:

1. There is some b € U such that dist(b,a) > 1 (thatis, G = ¢(a)),
2. At least one of two conditions holds:

(a) there is some b € U such that 1 < dist(b,a) < 3, or

(b) the maximal size m of a scattered subset of U is strictly larger than
the maximal size m’ of a scattered subset of U N Ny (a).

We first prove (1)—(2). Suppose there is some b € U such that dist(b,a) > 1.
Let S be a scattered subset of U N Np(a) of maximal size. If dist(b,a) < 3 then
(2a) holds. Otherwise, dist(b,c) > 2 for all ¢ € S, since dist(b,¢) < 2 would
imply dist(b,a;) < 3 for some i. Therefore, SU {b} is a scattered set of size
|S| + 1, so (2b) holds.

We now prove (2)—(1). Clearly, (2a) implies (1), so assume (2b) holds. Let
M C V(G) be a scattered subset of U of maximal size. Then S := M N Ny(a) is
also scattered. By (2b), S # M, so there is some b € U — Ny (), proving (1).

This proves the equivalence of (1) and (2). We now use (2) to rewrite ¢ into
a boolean combination of r-local formulas and basic local sentences, for some r.
Clearly, condition (2a) can be expressed using a 3-local formula. We now turn
to condition (2b), and recall that every scattered subset of Nj(a) N U has size at
most [. Therefore, condition (2b) is equivalent to a disjunction, over 0 < s <[+1,
of conjunctions of two formulas:

« asentence s expressing that U contains a scattered set of size s,

- aformula ¢s(xq,...,x;) expressing that U N Ny ({ay,...,a;}) does not con-
tain a scattered set of size s.

94 LOCALITY

The sentence 7; is in fact a basic local sentence with parameters * = 1 and s,
whereas the formula 9s(xq, ..., x;) is 1-local.

Summing up, ¢(x1,...,x;) is equivalent to a boolean combination of 3-local
formulas and basic local sentences with parameters r =1 and s =1+ 1.

We now prove Theorem 9.9 in general.

Proof of Theorem 9.9. The proof proceeds by induction on the structure of the for-
mula. In the induction base, ¢(X) is an atomic formula, and is therefore 0-local.
In the inductive step, the case of Boolean combinations is trivial. The nontrival
case is that of existential quantification, that is, when considering a formula of
the form Jy.¢(%,y). By inductive assumption, we may assume that ¢(%,y) is
r-local (the basic local sentences may be pushed outside of the quantifier).

We now aim to translate the formula Jy.¢ again into a local formula, possibly
with a larger locality radius. Clearly, Jy.¢ is equivalent to the disjunction of the
following two formulas:

Jy. (dist(x,y) <2r+1) A (%, y)
Jy. (dist(x,y) > 2r +1) A @(X,). (9.1)

The first disjunct is a (37 + 1)-local formula, as desired. For the second disjunct,
we use the following.

Lemma 9.16. There is a finite set A of pairs of r-local formulas («(%), B(y)) such that
the following conditions are equivalent for any structure A and tuple ab € A™Y with
dist(a,b) > 2r 4+ 1:

. A E g(ab)
A = a(a) A B(b) for some (a, B) € A.
Proof. See Exercise 9.17.]

By Lemma 9.16, the disjunct (9.1) is equivalent to a finite disjunction of for-
mulas

Jy. (dist(%,y) > 2r +1) Aa(x) AB(y),

95

where «(%) and B(y) are r-local, which in turn is equivalent to
a(xX) A Jy. (dist(x,y) > 2r+1) A B(y).
So it remains to show that the formula

YE) = Ty (dist(5y) > 2r + 1) AB(Y) 9:2)

is equivalent to a Boolean combination of local formulas and basic local sen-
tences.

The formula (9.2) is very similar to the formula considered in Example 9.15.
We may formally reduce the formula (9.2) to the formula considered in the exam-
ple, by considering the relation E(x, y) defined by the relation dist(x,y) < 2r+1,
and the unary predicate U(x) defined by the formula B(x). The formula (%)
obtained in Example 9.15 is a boolean combination of formulas of one of three
forms:

- a formula a(X) expressing that there is some y satisfying B(y) with 1 <
diste(%,y) < 3. Here distg, is the distance measured with respect to E,
and therefore, in the Gaifman graph of the original structure we have
dist(x,y) = (2r +1) - distg(x,y). Therefore, a(%x) is #’-local with ' =
(6r +3) +r = 7r + 3, where the additional r comes from the fact that
B is r-local.

- a sentence expressing that there is a set S of s elements satisfying B(y)
such that dist(x,y) > 2(2r+1) for all x,y € S, where s < |x| + 1,

- formulas expressing that Ny, 1 (%) does not contain a set S of s elements
satisfying B(y) such that dist(x,y) > 2(2r +1) for all x,y € S, where
s < |x]+ 1.

All this is a boolean combination of r’-local formulas and basic local sentences
with parameters ' = 7r + 3 and s < |x| + 1.

This ends the inductive proof. A straightforward analysis of the proof leads
to a bound on the end locality radius which is slightly worse than 77, where
q is the quantifier rank of the original formula. However, a refinement of this
analysis yields the bound 77. We omit the details.]

96 LOCALITY

Exercise 9.17. Prove Lemma 9.16, using Corollary 8.2.

9.1 Model-checking on graphs of bounded degree

As an application of Gaifman’s theorem we get an algorithm for model-checking
first-order logic which runs in linear time on graphs of bounded degree.

Theorem 9.18 (Seese). Fix d € IN and a first-order sentence ¢. There is an algorithm
which determines if a given graph G of maximum degree d satisfies ¢ in time Og ,(|G|).

Above |G| denotes the number of vertices of G. We assume that G is repre-
sented by the adjacency list representation, that is, by listing all the edges of G.
Note that the number of edges is at most d - |G| = 04(|G|).

The result above also holds (with the same proof) for relational structures
whose Gaifman graph has maximum degree bounded by a constant d.

Proof. By Theorem 9.9, we may assume that ¢ is a Boolean combination of basic
local sentences. This reduces further to the case when ¢ is a single basic local
sentence, expressing that there is an r-scattered set of size s whose elements
satisfy an r-local formula ¢(x).

In a graph G with maximum degree d, each neighborhood of radius r has
size at most d'"!1 +1 = O, 4(1). Hence, testing whether a given vertex v € G
satisfies the r-local formula ¢ (x) can be done in time Oy, (1) independent of
G (more precisely, in time (d 1)+ D)yl by Proposition 3.2). Therefore, in time
O4,r,4(|G[), we may mark the set R of all the vertices in G which satisfy ¢(x).

It remains to test whether R contains an r-scattered set of size s, in time
od,r,s(|G|)-

Construct the r-scattered set S C R greedily. Start with S = @. Iterate
through all vertices v € R, and add v to S if dist(v,S) > r. Terminate once
|S| = s or all the vertices v € R have been examined.

Testing whether dist(v, S) > r can be done in time d"*! = 0;,(1), by explor-
ing the entire neighborhood of v of radius r. Hence, the above procedure takes
time O4,(|G|), and terminates with one of two outcomes:

BOUNDED LOCAL TREEWIDTH 97

1. an r-scattered set S of size s,
2. aset S with |S| < s such that R C N,(S).

In the first case, we are done. In the second case, R is contained in a set of size
at most s - d"t1 = O4,r,s(1), so the existence of an s-scattered set of size s can be
done in R using brute-force in time Oy, ¢(1).

Altogether, this yields an algorithm which determines the existence of an
r-scattered subset of R of size s in time O ,(|G|). |

9.2 Bounded local treewidth

Say that a graph G has radius at most r if there is a vertex v such that every
w € G is within distance r from v.
The notion of local treewidth is motivated by the following observation.

Theorem 9.19. A connected planar graph of radius r has treewidth at most 3r.

Proof. Consider an embedding of G into the plane. Since the treewidth cannot
decrease while adding an edge, we can assume that G is a triangulation, that is,
the boundary of every face consists of three edges.

As G has radius r, there is a vertex v and a spanning tree T rooted at v in
which every root-to-leaf path has at most r + 1 vertices. The key observation
(cf. Fig. 9.1) is that the faces form a tree in which two faces are adjacent if they
share an edge of G — T. Define the bag of a face f as the set of vertices along
the three paths in T from u to either vertex incident to f in T. This yields a tree
decomposition of G of width at most 3r.]

Let € be a class of graphs which is closed under taking subgraphs. Say that
a class of graphs C has bounded local treewidth if there is a function f: IN — IN
such that for every G € C,

treewidth(G) < f(radius(G)).

98 LocaLiTY

Figure 9.1: A planar graph G with a fixed embedding into the plane and a rooted
spanning tree T (red edges). The faces (including the outer face) form a tree, in
which two faces are adjacent if they share an edge of G — T. Define the bag of a
face f as all the vertices along the paths in T from the root to either of the vertices
adjacent to f. This gives a tree decomposition of G. If T has depth r and G is a
triangulation then each bag has at most 3r + 1 vertices, so treewidth(G) < 3r.

Example 9.20. The class of trees has bounded local treewidth with function f(r) =
1 for r € IN. The class of graphs of treewidth c has bounded local treewidth with
function f(r) = ¢ for r € IN. The class of graphs with maximum degree ¢ has
bounded local treewidth with function f(r) = ¢’*1. The class of planar graphs
has bounded local treewidth with function f(r) = 3r. More generally, for ev-
ery closed surface S, the class of graphs which embed into S has bounded local
treewidth.

BOUNDED LOCAL TREEWIDTH 99

Theorem 9.21. Fix a first-order sentence ¢ and a class C with bounded local treewidth.
There is an algorithm which given a graph G € C decides if G satisfies ¢ in time
0y (IG[?).

Proof. By Gaifman’s locality theorem, Theorem 9.9, we can assume that ¢ ex-
presses the existence of an r-scattered set of size s of elements satisfying an
r-local formula a(x).

For each vertex v of G, color v red if

GIN:(0)] |= (o).

As G[N;(v)] has radius r, we have that G[N;(v)] has treewidth at most f(r),
where f is the function witnessing that € has bounded local treewidth. Using
Theorem 8.20, the color of a given vertex v can be determined in time O,(|G|).
The total runtime required to color all vertices is then O,(|G|?).

It remains to determine whether G has an r-scattered set consisting of s red
vertices. To this end, we greedily construct a sequence of red vertices vy, vy, ...,
in each step picking any red vertex v, whose distance to each of vy,...,v,_1 is
larger than 2r. If we succeed in constructing the sequence for s steps, then we
are done. Otherwise, we have a set v1,...,v; with k < s such that every red
vertex v is in distance at most 2r from one of vy, ..., V.

Group the vertices v, . .., vy into clusters — the connected components of the
relation of being in distance at most 6r. For each cluster C;, let N; C V(G) denote
the set of vertices in distance at most 27 from a vertex in C;.

Then:

« NjU---UNj contains all the red vertices in G,

« for1<i<j<Iand forevery red v € N; and red w € N;, the distance
between v and w in G is larger than 2r;

+ GI[N;] is a subgraph of G of radius at most 6rs, for each 1 < i < I.

By the first property, an r-scattered set S of red vertices in G is the union of
r-scattered sets SN Ny,...,SN N;. Moreover, by the second property, if S; is

100 LOCALITY

an r-scattered set contained in SNN;, fori = 1,...,[, then S;U---US; is an
r-scattered set.

Hence, whether or not G contains an r-scattered set of s red vertices depends
only on the information, for each i = 1,...,l and s’ = 1,...,s, whether G[Nj]
contains an r-scattered set of s’ red vertices. As G[N;] has radius at most 6rs,
this information can be determined in time O,;(|G|) using Theorem 8.20 once
again. |

Together with Theorem 9.19, we get:

Corollary 9.22. Model-checking first-order logic can be solved in quadratic time in data
complexity on all planar graphs.

The exponent 2 in the running time in Theorem 9.21 can be replaced by any
fixed real larger than 1, but this requires a more involved analysis. For graph
classes which are closed under taking minors, such as the class of planar graphs,
this can be further improved to linear time.

Replacing treewidth with clique-width, we get an analogous result, but where
the exponent 2 is replaced by 4 (and can be further decreased to any real larger
than 3), due to the use of Theorem 8.22. Say that a class of graphs C has bounded
local cliqgue-width if there is a function f: IN — IN such that for every G € C,

clique-width(G) < f(radius(G)).

Theorem 9.23. Fix a first-order sentence ¢ and a class C with bounded local clique-
width. There is an algorithm which given a graph G € C decides if G satisfies ¢ in time
0p(|GI).

10
Descriptive complexity

The aim of descriptive complexity is to describe computational complexity classes
by means of logics, and not by machines and their resources. The archetypal
example of a result in this direction is Fagin’s theorem, which states that every
sentence ¢ of existential second-order logic (ESO) defines a problem which is in
the complexity class Nr, and conversely, every problem in NP concerning rela-
tional structures can be expressed by a sentence of ESO. Hence, NP corresponds
precisely to the logic ESO, and ESO provides a machine-independent charac-
terisation of Nr. Descriptive complexity tries to find characterisations of other
complexity classes by means of other logics, most importantly, for ». One of the
key difficulties lies in the fact that while Turing machines (and other computa-
tion models) have access to a linear order on an input graph (as the graph is
presented in some order), the logics do not.

10.1 Fagin’s theorem

Fix a signature X. A property P of finite structures over X is a class of structures
over this signature that is invariant under isomorphism: if two structures are iso-
morphic, then either both belong to P, or both do not belong to P. To represent a
structure A as a word, we need to fix an ordering < of its domain. When such an
ordering is fixed, then the domain of A can be identified with {0,1,...,|A| — 1}
in increasing order with respect to <. Let enc(A, <) denote the adjacency ma-

102 DESCRIPTIVE COMPLEXITY

trix encoding of the corresponding structure with domain {0,1,..., |A| — 1}, as
described in Section 3.1. Note that a structure A has many encodings, depend-
ing on the chosen order <. We do not fix any particular order, and consider all
possible orderings. Then a property P induces the following language of words:

Lp = {enc(A,<)|A € P, <orderon A}.
The computational complexity of the property P is the computational com-

plexity of the language Lp.

Example 10.1. Consider the graph signature {E}. The property “G is a two-
colorable undirected graph” is in r, while the property “G is a three-colorable
undirected graph” is complete for NP.

Recall that a formula of existential second-order logic (ESO) is a formula of
the form
3R13R2 . aRn.QD,
where Ry, ..., R, are relation symbols and ¢ is a first-order formula which may
use the symbols Ry, ..., R;.

Example 10.2. The following formula holds in a graph G if it is 3-colorable. It
is monadic — the symbols R, G, B are unary.

JR3IG3B.Vx.part(R, G, B) A VxVy.
(xeRAyeR)V(xeGAyeG)V(xeBAy€B))— —E(x,y),
where part(R, G, B) expresses that the predicates R, G, B form a partition of the

universe.
The main result of this chapter is:

Theorem 10.3 (Fagin). Fix a signature ¥.. A property of finite structures is ESO-
definable if and only if it is in NP.

One direction is easy: any ESO-definable property can be decided by a non-
deterministic Turing machine, in polynomial time: first guess the relations —

FAGIN’S THEOREM 103

each of them has polynomial size — and then evaluate the underlying first-order
formula in polynomial time on the expanded structure.

Therefore, it remains to prove that any property which can be decided in NP,
can be defined by an ESO formula.

Example 10.4. We show that the property “G is connected” is definable in ESO.
To this end, observe that G is connected if and only if it has a spanning tree. So
our ESO formula can start by saying “there is a relation T which represents a
spanning tree”. A spanning tree is a directed graph T whose edges are contained
in the edges in G, such that apart from one vertex (the root) every vertex of G
has exactly one incoming edge in T, and whose underlying graph is acyclic. The
first two parts can be expressed by a first-order formula. To express acyclicity of
T, note that it equivalent to the existence of a total order < on its vertices such
that every directed edge leads from a smaller vertex to a larger vertex. So finally,
our formula is:

Vu,v.T(u,v) = ((u < v) NE(u,v))
3<@ 3TN L Iy~ T(y, x)
Vx,y,z.(T(y,x) NT(z,x)) = (y = 2)
Exercise 10.5. Non-connectivity can be expressed in existential monadic second-
order logic. Prove that connectivity cannot.

Before proving Fagin’s theorem, we introduce some useful notation.

Relations and formulas with values in finite sets. We make the following conven-
tion. Let Q be a finite set. If A is a set and k a natural number, then a Q-valued
relation on A is a relation R C A x Q, and can be represented by a tuple
(R; : q € Q) of relations of arity k on A:

R(%,q) = Ry(x).

(There is a more efficient encoding, using O(log(|Q|)) relations, but we will not
need it).

We will therefore allow relational symbols for such Q-valued relations of
arity k (where Q and k are fixed and finite).

104 DESCRIPTIVE COMPLEXITY

In the same way, we may consider Q-valued formulas, which are just Q-
tuples of formulas. We will use the following syntax for a Q-valued formula
with values in Q = {p,q,7,...}:

P @p
qa: ¢q
r. @

The free variables of a Q-valued formula are all the free variables of its con-
stituents. The semantics of a Q-valued formula with k free variables is a Q-
valued relation of arity k. Therefore, if ¢ is a Q-valued formula with free vari-
ables %, then ¢(%, q) is equivalent to ¢4(%).

Observe that the properties that a Q-valued relation R is a function, or a
partial function R : AF — Q, can be expressed by first-order formulas. If f is a
Q valued partial function, then we write f(X) = g for f(%,q) (which in turn is
encoded as f;(X)).

Proof of Theorem 10.3. We prove the “only if” in Fagin’s theorem. Consider any
property P of finite structures which is decidable by a nondeterministic Turing
machine M in polynomial time, so that that the language Lp is decidable in NP.

Let B be the work alphabet and Q be the state space of the machine M.
Suppose that k is a natural number such that an input structure of cardinality
n > 11is accepted by some run of M of length at most n¥. Moreover, we suppose
that k is greater than the arity of the relations in the signature.

We construct an ESO formula which will accept A if and only if for some
linear order < on A, the machine M accepts the encoding of (A, <) by its adja-
cency matrix. The formula will guess:

A binary relation <, intended to represent a linear order,

A relation f of arity 2k with values in BU B x Q, intended to represent an
accepting run on enc(A, <).

FAGIN’S THEOREM 105

Firstly, we use an FO formula to assert that < is a linear ordering of the
universe. For two tuples a,b e AS, when writing 4 <jex b, we mean the lexico-
graphic order on A¥ with respect to <. Observe that for a fixed number s, this
order is definable by a first-order formula using <.

Secondly, we use an FO formula to assert that f is a partial function (with
values in BU B x Q).

Thirdly, we verify that f encodes a run of the Turing machine in the following
way. Let ¥ and i be, respectively, the ith and jth lexicographically smallest tuples
in A¥. Then f(%,) = b is interpreted as:

the tape symbol in the ith configuration, at its jth position is b,
and f(x,7) = (b,q) additionally asserts that
the head of the machine is located at this position in state 4.

Testing that f indeed encodes a run of the machine M can be easily expressed in
first-order logic, since the successor/predecessor of a tuple ¥ € A (with respect
to the lexicographic order) can be defined in first-order logic.

The last thing that remains is to check that the initial configuration of the
run encoded by f corresponds to the encoding of (A, <). This can be done by a
first-order formula, by the following lemma.

Lemma 10.6. Fix k € IN. There is a first-order formula ¢(x1,...,xx) such that for
every linearly ordered structure (A, <) and 1 <i < \A|k, the ith smallest tuple a with
respect to <j,, @ € AK, satisfies (A, <) |= ¢(a) if and only the ith bit of enc(A, <)
is 1.

Proof. Let n = |A|. For tuples a,b € A* and i € N write 2 = b + i to denote
that b is the i-fold successor of @ with respect to the lexicographic order on AX.
Note that for each fixed i < k, there is a formula ¢;(%,7) that holds of a pair
(a,b) € A% if and only if b = a + n'. This is verified by performing addition in
base n of two numbers of length k.

Let X = {Ry,...,R;} where R; has arity r; fori = 1,...,{. Let Z € A¥ be the
lexicographically least tuple. We have:

106 DESCRIPTIVE COMPLEXITY

« —@(z+n)and ¢(a) for all d <o Z + 1;
. fori=1,...,|X| and for each a € {0}"i x A",
pla+n+1+n14+n24...4n'i1) = A = R;(a).
- —¢(a) for all tuples a € A larger than z +n +1+nt + 1’2 + - - 4+ 0",
Each of the above conditions can be verified by a first-order formula. u

To conclude, the ESO expressing that M accepts an encoding of the structure
A is of the form:

< is a linear order
f is a function of arity 2k with values in BUB x Q
J<3f.{f encodesarun of M
whose first configuration is the encoding of (A, <)
an accepting state is reached
This finishes the proof of Fagin’s Theorem. u

Exercise 10.7. Deduce from Fagin’s Theorem the Cook-Levin Theorem, that SAT
is NP-complete.

10.2 Fixpoint logics
In view of Fagin’s Theorem, the following question arises.

The big question: Does there exist a logic £ such that a property of
finite structures is definable in the logic £ if and only if it is in P?

We will see that fixpoint logic offers a partial answer to this question. Before
giving the definitions, let’s see an example.

FIXPOINT LOGICS 107

Example 10.8. Consider the signature of directed graphs. The following formula,
with free variables x, y, says that there is a directed path from x to y:

¢p(x,y) =let R(z) = ifp [(z = x) V Iv.R(v) A E(v,z2)] (©)
in R(y).

The semantics is as follows. Let x, y be vertices of a graph. Start with R being
the empty set of vertices, treated as a unary relation. Repeat indefinitely the
following inflationary step:

Add to R those vertices z which satisfy the subformula of (¢) delimited by
the brackets [].

The formula ¢(x,y) holds for the pair of vertices (x,y) if y belongs to R in
some step of the loop. Observe that the property described above is not first-
order definable.

Fixpoints

Fix a signature ¥ and let R be an additional symbol for a k-ary relation with
values in a finite set Q.

Let ¢ be a formula with values in Q, with k distinguished free variables
%, over the signature ¥ U {R}. Then ¢ defines a mapping of k-ary, Q-valued
relations over A, i.e. a self-mapping of the set P(AF x Q):

Fp(R) ={a e AF: AR = ¢}

A fixpoint of a mapping F : P(A¥ x Q) — P(AF x Q) is a relation R such
that F(R) = R. In general, a mapping may have none or several fixpoints.

Suppose that F is monotone, i.e., R C 8§ — F(R) C F(8) for all relations R, 8.
Then, by the Knaster-Tarski theorem, F has a least fixpoint, denoted Ifp F and a
greatest fixpoint, denoted gfp F. Indeed, for the least fixpoint we consider the
sequence F*(Q) defined by transfinite induction for all ordinals & (as usually:
F* = FoF*1if a > 11is a successor ordinal and F*(R) = Up<a FP(R) if a is
a limit point). If F is monotone, then the sequence is increasing and reaches a
fixpoint for some ordinal «.

108 DESCRIPTIVE COMPLEXITY

Suppose now that F is increasing, i.e., R C F(R) for all R. Then the sequence
F¥(@) is also increasing and reaches a fixpoint (possibly after an infinite ordinal
number of steps). Note that this fixpoint need not be the least fixpoint of F. Even
if G is a mapping which is not necessarily increasing, then the mapping F given
by R = G(R) U R is clearly increasing. We call the fixpoint of the mapping F
the inflationary fixpoint of the mapping G. Warning: it does not need to be a
fixpoint of G.

Observe that if A, Q and k are finite, then an increasing sequence of subsets
of AF x Q reaches a fixpoint after at most |A[¥ - |Q| steps, i.e., polynomially
many in terms of |A| (for fixed Q and k).

Inflationary Fixpoint Logic

Inflationary Fixpoint Logic (IFP) is an extension of first-order logic by a fixpoint
operation whose syntax is the following:

let R(x) = ifp ¢ ()
in,
where:

+ Ris a Q-valued k-ary relation, where Q is some finite set and k is some
finite number;

+ @ is a Q-valued formula, over the signature of A extended by the symbol
R. Recall that formally, ¢ is a tuple (¢;)4cq of formulas;

. X is a finite set of variables.

The free variables of 7 are those free variables of ¢ which do not occur in %,
together with the free variables of the formula .

The semantics is defined so that the formula 7 holds in a structure A, with
given valuations for its free variables, iff the formula ¢ holds in the structure A
extended by the relation ifp F, as the interpretation for the symbol R. Note that

FIXPOINT LOGICS 109

in the fixpoint, the mapping F, may depend on several parameters — those free
variables of ¢ which do not occur in the tuple . Note that the values of those
parameters are fixed when computing the fixpoint.

A formula of IFP may use the above fixpoint operation — possibly in a nested
way — apart from the usual constructs of first-order logic.

The example given earlier demonstrates that the logic IFP is strictly more
expressive than first-order logic, since reachability cannot be expressed in FO. It
turns out that over linearly-ordered structures, IFP is as expressive as polynomial
time Turing machines.

Exercise 10.9. Show that two-colorability can be decided by a formula of IFP, by
simulating the greedy algorithm.

The following proposition follows easily from the fact that a fixpoint must
be reached in a number of steps bounded by a polynomial in the size of the
considered structure.

Proposition 10.10. Let ¢ be a formula of IFP. There is an algorithm which given a finite
structure A decides whether it satisfies ¢ in time polynomial in |A|.

So every property definable in IFP is in . The converse fails for trivial
reasons: there is no formula of IFP which determines the parity of a given set.

Exercise 10.11. Show this.

However, for ordered structures, IFP corresponds precisely to p. This is
stated below.

Theorem 10.12 (Immerman-Vardi). A property of linearly-ordered structures is de-
finable in the logic IFP if and only if this property is in P.

Proof. As usual, one direction is easy: from logic to machines. Indeed, let ¢ be
an IFP formula of linearly ordered structures. Then, for a given description of a
structure A, a Turing machine can evaluate ¢ over A in polynomial time. Since
the mapping R — R’ is monotone (see definition of ifp), it follows that it sta-
bilizes after at most n* steps, where k is the arity of R and # is the size of A.
Therefore, the computation of the least fixpoint can be executed in polynomial

110 DESCRIPTIVE COMPLEXITY

time (the parameter k depends on the formula ¢, but not on the input structure
A).

We show the other implication, by following the idea in the proof of Fagin’s
theorem. Suppose that M is a Turing machine which recognises a property of
linearly-ordered structures in polynomial time. We assume that M expects the
adjacency matrix encoding of a structure (A, <) on input. Let B be the work
alphabet and Q be the state space of the machine M. Assume without loss of
generality that the machine only accepts when in state g, and the current letter
is b € B. Let k be such a number that M works in time at most ¥ for structures
of size n > 2. We will use f as a symbol of a k-ary relation (in fact, a function)
with values in BU B x Q. The formula which holds in (A, <) iff M accepts the
encoding of (A, <) will have the following form:

let f(%,7) = ifp[g1(%,7) V ¢2(%, 7)]
in 3%7.f (%, 7) = (b, qpin)-
We need to explain what the formulas @1 and ¢,. As in the proof of Fagin’s

theorem, f is intended to be a function encoding a run of the Turing machine,
where f(X,7) = b is interpreted as:

« the tape symbol in the [x]th configuration, at its [y]th position is b,

- and f(%,7) = (b,q) additionally asserts that the head of the machine is
located at this position in state 4.

Hence, f(%,7) = (b, q5,) means that an accepting configuration is reached.

The formulas ¢1(%,7) and ¢2(%,7) are BU B x Q-valued formulas. The for-
mula ¢, encodes the structure (A, <) — the existence of such a formula was
argued in the proof of Fagin’s theorem. The formula ¢;(X,7) yields for given
%, 7 the value b or (b, q) depending on the values

f(x1,9-1), f(x19), f(E-1,70),

where Z;; denotes a tuple which encodes the number [Z11] which is the suc-
cessor/predecessor of the number [Z] encoded by Z (see the proof of Fagin’s

FIXPOINT LOGICS 111

theorem). Recall that there are first-order formulas ¢1(Z,) which hold if and
only if @ = Z1. This relies heavily on the given linear order.
The formula ¢, has the form:

(b,q): Pbq ’
where ¢, consists of a prefix

3% 1,7 1,¥571.9- 1% 1) Ao _1(F,7-1) AN p1(F,F41)

followed by a disjunction of formulas of the form

f(E1,71) =cAf(E1,7) =dA f(X1,5-1) =e¢,
where ¢,d,e € BUB x Q.

Least Fixpoint Logic

Another fixpoint logic is the least fixpoint logic (LFP) . Its syntax and semantics
are similar to IFP, but ifp is replaced by lfp. However, there is one additional
syntactic requirement. In order to assure that the mapping F, is monotone (and
hence has a least fixpoint), it is required by the syntax that the symbol R oc-
curs positively in ¢, i.e., under the scope of an even number of negations.

Example 10.13. The formula from the previous example, with ifp replaced by lfp,
becomes a valid formula of LFP logic.

Observe that in the formula constructed in the proof of the theorem, the
symbol f appears positively. Therefore, the above proof also works for the LFP
logic, giving the original formulation of the Immerman-Vardi theorem.

Theorem 10.14 (Immerman-Vardi, original form). A property of linearly ordered struc-
tures is definable in the logic LFP if and only if this property is in P.

112 DESCRIPTIVE COMPLEXITY

The two variants of the theorem together give the following.

Corollary 10.15. Over linearly ordered finite structures, the logics LFP and IFP are
equally expressive.

Note that converting a formula of LFP into an equivalent formula of IFP is
immediate. Indeed, it is enough to substitute lfp by ifp. However, the conversion
in other direction is not at all obvious, since in lfp the predicate needs to occur
positively.

It is a theorem (of Gurevich and Shelah) that over all finite structures, IFP
and LFP are equally expressive. Finally, Kreutzer proved that this also holds
over all (finite and infinite) structures.

Relation to the bounded variable fragment

Fixpoint logics are closely related to the bounded variable fragment of FO. In-
tuitively, in a finite structure A a formula of LFP or IFP can be unravelled to
a first-order formula (by just expanding the definition of the fixpoint operator)
and this will yield a formula using a bounded number of variables, independent
on n. This is expressed more precisely in the following.

Lemma 10.16. Fix a sentence ¢ of LFP or IFP. There is a number k such that for every
number n there is a sentence € FOX such that ¢ and are equivalent on all structures
of size at most n.

We skip the proof, which is rather syntactic.

Corollary 10.17. If A and B are finite and A |= ¢ and B |= —¢ then spoiler wins the
bijective k-pebble game on A and B.

Proof. Pick n larger than |A| and |B| and apply Lemma 10.16 yielding a formula
¢ € FOF such that A = ¢ and B = —¢. By Theorem 6.5, spoiler wins the
k-pebble game on A and B.]

FIXPOINT LOGIC WITH COUNTING 113

10.3 Fixpoint logic with counting

Recall that IFP cannot even express whether a given set has even size, or whether
a given structure is the disjoint union of two cliques of equal size. So IFP fails to
capture P already because of its inability to count.

The logic IFP+C is an extension of the logic IFP which allows to count, up to a
polynomial threshold. For a finite structure S with n elements, let [S] denote the
structure whose universe are the elements 0,1, ...,n — 1, and which is equipped
with two binary predicates: the linear order < and the successor relation succ,
whose symbols are distinct from the symbols used in S. By S + [S] we denote
the two-sorted structure, extending S — whose elements are called nodes — by
the counting sort [S], whose elements are called numbers. If ¢ is a formula and
% = (x1,...,xx) are some of its free variables ranging over nodes and i € IN then
#;X.¢ is the element of the counting sort which is the i-th digit of the number of
tuples ¥ of 5 which satisfy the formula ¢, in the base-n encoding, where # is the
cardinality of 5.

The syntax of IFP+C is defined by extending the syntax of IFP by the count-
ing construct #;X.¢, and also allowing to use the relations < and succ. To inter-
pret such a formula over a structure S means to interpret it over S + [S], where
the interpretation of the counting construct, the linear order and successor rela-
tion are as described above.

Example 10.18. To determine whether a pure set X has even cardinality, we use a
formula ¢ of IFP which holds in a linearly ordered structure if and only if it has
even cardinality. The existence of such a formula follows from the Immerman-
Vardi theorem, since parity is in p. It is also easy to explicitly write such a
formula, by incrementally extending a unary predicate adding every second ele-
ment. With the help of the formula ¢, we may define a formula of IFP+C which
determines whether a pure set has even cardinality — it suffices to relativize ¢ to
elements ranging over the counting sort. Note that the elements of the counting
sort are the only ones that satisfy the relation x < x. We haven’t even used the
counting construct — only the counting sort was used for determining the parity.
Indeed, in case S is a pure set, the counting sort [S] is simply a richer version of
S, endowed additionally with the linear order, so in this case it makes sense to

114 DESCRIPTIVE COMPLEXITY

work directly with [S].

In a similar fashion, one can define any p-computable query of pure sets
using IFP+C.

Example 10.19. We describe an IFP+C formula which computes the radius of a
given graph G, i.e. the minimal value r such that there exists a node v € G
whose r-neighborhood contains all of G. To this end, using IFP we define a
ternary relation D(u,v,r), where u and v range over nodes and r ranges through
numbers, and such that the intended interpretation of D(u,v,r) is d(u,v) < r.
This can be easily done with IFP: we start with D containing all tuples (u,u,0),
where u € G, and in the inflationary step, we add to D tuples (u,7/,7’) such that
there already is a tuple (u,v,7) in D such that v and v’ are connected by an edge
and 7’ is the successor of r. Using the relation D(u, v, 7), we define a formula ¢(r)
as Jv.Yu.D(u,v,r). Finally, we define a formula ¢(r) as ¢(r) A =3 < r.o(r').
Then (r) holds if and only if G has radius r.

The last example still does not even use the counting construct #x.¢; it only
used the counting sort and its linear order.

Exercise 10.20. Define an IFP+C formula which holds in a graph if and only if has
an even number of connected components. Hint: define a formula N(a, b), where
a,b range over numbers, which holds if and only if there are exactly a vertices
whose connected component has cardinality b.

To prove inexpressibility results, it is useful to have a suitable notion of
games, and this is provided by the link between IFP+C and the logic C. Just
as IFP is related to the bounded variable fragment of first-order logic, IFP+C is
related to the bounded variable fragment with counting.

Lemma 10.21. Fix a sentence ¢ of IFP+C. There is a number k such that for every
number n there is a sentence € C such that ¢ and v are equivalent on all structures
of size at most n.

Corollary 10.22. If A and B are finite and A |= ¢ and B |= —¢ then spoiler wins the
bijective k-pebble game on A and B.

FIXPOINT LOGIC WITH COUNTING 115

Proof. Pick n larger than |A| and |B| and apply Lemma ?? yielding a formula
¢ € Cf such that A |= ¢ and B = —¢. By Theorem 6.11, spoiler wins the
bijective k-pebble game on A and B.]

The Cai-Fiirer-Immerman theorem

Because IFP over the counting sort can be simulated in P (since the counting sort
has the same size as the input structure) we have the following.

Proposition 10.23. Let ¢ be a formula of IFP+C. There is an algorithm which given a
finite structure A decides whether it satisfies ¢ in time polynomial in |A|.

Many natural properties of relational structures can be expressed by the logic
IFP+C. For instance, this logic can count the size of a maximal matching in a
graph'. The Cai-Fiirer-Immerman theorem proves that IFP+C does not contain
all of r.

Theorem 10.24 (Cai-Fiirer-Immerman, 1992). There is a class of structures which is
in P but is not definable in IFP+C.

The CFI construction

The CFI construction takes a cubic graph G and replaces each vertex by one of
two gadgets, producing a hypergraph G’ as follows.

A hypergraph is a set of vertices V and a set E of hyperedges ¢ C V. If
v € e then we may say that v and e are incident. A graph is a special case of a
hypergraph in which every hyperedge has exactly two elements. We will also
consider 3-regular hypergraphs, that is hypergraphs where every hyperedge has
exactly three elements.

If 5 and H' are hypergraphs then a homomorphism f: H — H' is a function
mapping the vertices of H to vertices of H’ such that for every hyperedge e of
X, its image f(e) is a hyperedge in 3’ of the same cardinality (that is, fis1—1
on e).

*Anderson, Dawar, Holm, 2013

116 DESCRIPTIVE COMPLEXITY

The dual of a hypergraph (V, E) is the hypergraph obtained by treating edges
as vertices and vice-versa. More precisely, it has vertices E and the hyperedges
are sets of the form {w|w € e}, fore € E.

Example 10.25. A cubic graph is a graph in which every vertex is incident to
three edges. The dual of a cubic graph is a 3-regular hypergraph in which every
vertex belongs to two hyperedges. In the picture below, vertices are depicted by
black dots and hyperedges by blue dots.

dual

Figure 10.1: The even CFI gadget.

The CFI construction takes a hypergraph 3 = (V, E) together with a set X C
E of hyperedges and produces a hypergraph obtained by performing the follow-
ing replacements. Firstly, every vertex v is replaced by a pair of vertices denoted

FIXPOINT LOGIC WITH COUNTING 117

vp and v1. Let V x {0,1} denote the vertices {vg,v; |v € V} of HX. Note that
this does not depend on X.

Next, every hyperedge e = {v!,...,0*} is replaced by a gadget consisting
of 28=1 hyperedges. There are two possible gadgets, the even gadget and the odd
gadget, and e is replaced by the odd gadget if ¢ € X and by the even gadget
otherwise. The even gadget (cf. Fig. 10.1) consists of all 2~! hyperedges of the
form

{v}l,...,vﬁ where iy,...,i € {0,1}, i1+ -+ i is even

and for the odd gadget, the sum should be odd.

Example 10.26. The simple case when J{ is a (graph) cycle with n vertices is
illustrated in Fig. 10.2. The resulting (hyper)graph is either a disjoint union of

Ve———W v w
&L)
-~ </
V]e— oW U1 w1
Vo wo Vo wo

Figure 10.2: The CFI construction in the case of a cycle.

two cycles of length # if | X| is even or a cycle of length 2n if |X] is odd.

118 DESCRIPTIVE COMPLEXITY

The class

From now on, we will consider hypergraphs of the form H*X where is the dual
of a connected cubic graph. We view such a hypergraph as a relational structure
over the signature with a ternary relation T consisting of all triples (a, b, ¢) which
form a hyperedge, and a binary relation ~ denoting the equivalence relation
which relates vy with v, for all v € V.

Let C denote the class of structures isomorphic to H? for some H which is
the dual of a connected cubic graph. The following proposition immediately
yields Theorem 10.24.

Proposition 10.27. The class C is recognizable in polynomial time, and is not definable
by any formula of IFP+C.

The proof of the proposition is split into two parts, corresponding to its two
statements.

Polynomial time algorithm

In what follows, we fix a hypergraph 5 = (V,E) which is the dual of a con-
nected cubic graph. In particular, 3 is 3-regular, connected, and every vertex
belongs precisely to two edges. Here connectedness means that for any pair of
hyperedges ¢, f there is a path 7t connecting ¢ and f.

We first prove the following:

Lemma 10.28. For H = (V,E) as above and X,Y C E, the structures HX and HY are
isomorphic if and only if |X| = |Y| mod 2.

Proof. The key property of the two gadgets is that for any fixed i € {1,...,k},
swapping v}, with v} in a gadget (that is replacing one by the other in each
hyperedge) has the same effect as replacing the even gadget with the odd gadget,
and vice-versa. This is formalized as follows. For a vertex v € V let ¢ be the
permutation of V x {0,1} which is the transposition swapping vy and v;. By the
definition of the gadgets, we get:

Claim 1. Let X C E and v € V be incident to two hyperedges, e, f € E. Then the
permutation 9 is an isomorphism between HX and HX4{ef},

FIXPOINT LOGIC WITH COUNTING 119

A path 7t in H is a sequence

€0,01,€1,-+-,0n—1,€n

where ¢y, ..., e, are hyperedges, vy, ...,v,_1 are vertices such that v; belongs to
e;_1 and e;. For such a path 7, let 7t be the permutation of V x {0, 1} which is the
composition of all the transpositions 9;, fori = 1, ...,n — 1. This does not depend
on order of composing the transpositions. Equivalently, 7 is the composition of
all transpositions @ for v € V with an odd number of occurrences in 7.

From the previous claim we get:

Claim 2. Let X C E and 7t be a path with endpoints e, f € E. Then the permuta-
tion 7 is an isomorphism between HX and HX~{ef},

Finally, this yields:

Claim 3. Let X,Y C E satisfy |X| = |Y| mod 2. Then HX and H" are isomor-
phic.

Proof. Note that XAY has even size. Let ey, f1,..., ¢, fr be all of its elements.
Fori=1,...,k pick a path 7; joining e; with f;. By Claim 2, the composition 7
of all the permutations 7t;, fori = 1,...,k (in any order) is an isomorphism from
HX to HY. u

To prove Lemma 10.28 it remains to show that if 3(X is isomorphic to H?
then X has even size.

Let X = (V,E) be as above and X C E and let p: V x {0,1} — V be the
projection homomorphism from HX to K.

A solution to HX is a homomorphism s: V — V x {0,1} which is a right-
inverse of the projection p. Equivalently, as V corresponds to the set of equiva-
lence classes of ~ on V x {0,1}, a solution to HX is a choice function s picking
one element s(c) € ¢ from each ~-equivalence class ¢ in such a way that if three
equivalence classes c1,cy,c3 span a hyperedge in 3%, then {s(c1),s(c2),s(c3)}
form a hyperedge in 7.

More explicitly, s maps each vertex v of I to one of the vertices vy, v1 in such
a way that for every hyperedge {u,v,w} of H, the vertices s(u) = u;s(v) =

120 DESCRIPTIVE COMPLEXITY

vj,s(w) = w; form a hyperedge in J, that is, i +j + k is even if {u,v,w} ¢ X
and odd otherwise. Restated one last time, a solution s satisfies the following
equations, for each hyperedge e = {a,b,c} € E:

s(a)+s(b) +s(c) =[e € X] mod 2, (10.1)

where [e € X] is 1 if e € X and 0 otherwise.

Note that 3% has a solution: the mapping s which maps v to vy, for all
v € V, is a solution. Hence, if X is even then HX has a solution, as HX is
isomorphic to 3?. Conversely, if a solution exists then |X| is even — adding up
the equations (10.1) for all e € E we get:

Y. s(a)+s(b)+s(c)=) [eeX]=) 1=|X| mod?2,

{a,b,c}€E ecE ecX

and the left-hand side is equal to 2} _,cy s(v) as every vertex belongs to exactly
two hyperedges. In particular, if |X| is odd then 3¥ is not isomorphic to H?.
This proves Lemma 10.28. [

We now proceed to the proof of the first part of Proposition 10.27, namely,
that C is recongizable in polynomial time.

Lemma 10.29. The class C is recognizable in polynomial time.

Proof. Given a structure (W, T, ~) first check that ~ is an equivalence relation
with equivalence classes of size 2, and that T is a symmetric, antireflexive rela-
tion. Hence, T defines a 3-regular hypergraph G on W.

Next, check that the quotient structure G/~ is a connected 3-regular hyper-
graph where every vertex is incident with two hyperedges. Here, the quotient of
the hypergraph § is the hypergraph whose elements are the equivalence classes
of ~ and where the hyperedges are formed by equivalence classes of vertices
which form a hyperedge in §.

Let V = W/~. For each equivalence class v € V arbitrarily denote by vy and
v1 its two elements. Next, check that for each hyperedge {u,v,w} of H there
is some x € {0,1} such that for 7,j,k € {0,1}, the hypergraph § contains the

FIXPOINT LOGIC WITH COUNTING 121

hyperedge {u;, vj,wi} if and only if i + j +k = x mod 2. Let X be the set of all
hyperedges {u,v, w} as above for which x = 1.

By construction, § is isomorphic to 3%, via the isomorphism mapping v; € §
to v; € HX. In particular, by Lemma 10.28, § € C if and only if |X| is even.

All this yields a polynomial time algorithm recognizing the class C.]

This completes the proof of the first part of Proposition 10.27.

Undefinability in IFP+C

We now show that C is not definable by any formula of IFP+C.

Proposition 10.30. For every k € IN there is hypergraph J which is the dual of a
connected cubic graph such that duplicator wins the k-pebble game on the structures
H? and K¢} for any hyperedge e of H.

We first show how Proposition 10.30 proves Proposition 10.27.

Proof of Proposition 10.27. The first part is by Lemma 10.29. We show that € is
not definable by any sentence of IFP+C, proving the proposition.

Suppose ¢ is a sentence of IFP+C defining C. Let k € IN be as in Lemma 10.21.
Then pick H as in Proposition 10.30. By Corollary 10.22, 51¢} € €. This contra-
dicts Lemma 10.28. L]

Consider the graph which delineates the n x n hexagonal tessellation de-
picted in Fig. 10.3 — each hexagon is surrounded by six vertices and six edges,
and the graph consists of vertices and edges.

We view such a graph as a graph on the torus by identifying the leftmost
vertices with the rightmost ones, and the vertices at the top with the vertices at
the bottom. This gives a cubic graph with 2n? vertices, denoted T,.

The only properties of the graphs T, that we use are that they are cubic,
of increasing size, and for large 1, do not have small edge separators splitting
them into two big parts, as formalised in the following lemma. Appropriate
tessellations of spheres or other surfaces would also work.

122 DESCRIPTIVE COMPLEXITY

Figure 10.3: A 8 x 8 hexagonal tesselation of the torus — each column of vertices
has 8 vertices, and there are 8 columns. Vertices on the boundary are identified
as indicated.

Lemma 10.31. Fix a number k, and consider a set F of at most k edges in Ty, where n is
large enough. Then there is a connected component of Ty, — F of size at least 2n? — ck?,
for some constant ¢ > 0 (independent from k, n).

If n is large enough comparing to k, there is at most one such component, so
in this case we can call it the big component of T,, — F.

Lemma 10.31 follows from a variant of the isoperimetric inequality, for the
hexagonal tessellation of the plane: any closed path of length k can enclose at
most O(k?) vertices. This inequality can be proved combinatorially, but it also
follows from the classical isoperimetric inequality.

Proof of Proposition 10.30. Fix k € IN. Let n be large enough, as specified by
Lemma 10.31. Let X = (V,E) be the hypergraph dual to T,. Then for every
F C V with |F| < k we have that H — F has a unique connected component with
more than half the vertices.

Let ey € E. We show that duplicator wins the bijective k-pebble game on H?
and H{®}. Let i be the set of pebble names, with || = k.

The intuition behind the proof below is as follows. Recall that if e # ey then
F(leoe} is isomorphic to H?, where the isomorphism is given by 7, for any path
7T joining ey with e. Hence, in the game on H? and H{%}, duplicator wins by
always playing 7.

FIXPOINT LOGIC WITH COUNTING 123

Duplicator will behave as if the structure ({0} was actually F{%} for some
hyperedge e which is in the big connected component of H{ — F, where F is the
set of projections of the pebbled positions. Duplicator will maintain a path 7
connecting ¢y and e. The hyperedge e will be moved further away once spoiler
places his pebbles near e, and the path 77 will be updated accordingly. The
bijection played by duplicator is 7.

More precisely, as the pebble game will be played, duplicator will maintain
the invariant that at any time, the current position (a,b) with @ € (V x {0,1})?
and b € (V x {0,1})7 is such that p(a) = p(b), that is, if a pebble is placed on a
vertex v; in H? then the corresponding pebble in H{%} is either placed on v; or
v1_;. Let 5§ = p(a) = p(b) € VY; those are the vertices v in V such that vy or v;
is pebbled. Duplicator will also maintain a hyperedge e in the big component of
H — 5, and a path 7 joining ey with e, such that 7(2) = b. Initially, 7 and b are
empty, e = ¢y and 7 is the trivial path starting and ending at ep.

Suppose at position (@,b) of the game spoiler declares he will move one of
his pebbles x € 7 to a new position. Let § = p(a) = p(b). Duplicator picks a
hyperedge ¢’ in the big component of H — 5 which is not incident to any vertex
in 5. Note that ¢ and ¢’ are in the same connected component of H — 5. The new
path 77’ is obtained from 7t by appending a path connecting e and ¢’ in 3 — 3.
Duplicator responds with the bijection 7.

Now spoiler places the pebble x. Suppose the pebble is placed on a vertex
wp in structure H? (the case of a vertex w; is similar). So in the structure Fcleo}
the pebble is placed on w; = 7' (wp), where j is 0 or 1 depending on the parity of
the number of occurrences of w in 77’. By definition, the invariant A’ (a[x/wy]) =
b[x/wj] is maintained. It remains to check that this response of duplicator is not
a loosing move.

Suppose for example that the vertices with pebbles x,y,z form a hyperedge
fin H?, and to focus attention, suppose f = {wy, 19, v} for some u,v € V. We
need to check that #'(f) is a hyperedge in H{¢}. As u and v belong to the tuple
§ and ¢’ is not adjacent to 5, we have that f # ¢/. As 7’ has endpoints ¢y and
¢/, in total the vertices u, v, w are visited by 77’ an even number of times, unless
f = eo. Then A'(f) = {wj, uj,v;} where i+ j+k is even if f # ey and odd if

124 DESCRIPTIVE COMPLEXITY

f = ep. In either case, 7'(f) is a hyperedge in H{¢}, as required.

This handles the case when f is a hyperedge of the form {wy, 19, vp}. The
general case, when f = {w;, uj,v;} forms/does not form a hyperedge in H?,
proceeds similarly.

This shows that duplicator’s response 7’ is not loosing, and maintains the
invariant. Hence, duplicator wins the bijective k-pebble game. u

This finishes the proof of Theorem 10.24.
Corollary 10.32. There is a class of graphs which is in P but is not definable in IFP+C.

Proof. This can be done by interpreting the class € in finite graphs. In this par-
ticular case, the interpretation can be simplfied slightly, yielding the class of
bipartite graphs which are duals of the hypergraphs in €. In particular, those
graphs are bipartite, all vertices in one part have degree 3, and all vertices in the
other part have degree 4, and there are further conditions needed to express that
the graph stems from H? for the dual H? of a connected graph . u

Corollary 10.33. For every fixed k € IN, there are two non-isomorphic graphs G, H
which are not distinguished by k-WL.

10.4 Graph isomorphism, canonisation, and capturing polynomial time

Fix a signature X; we will consider mostly the signature of graphs below. Below
by a logic £ we mean a computable language over some fixed alphabet (the
syntax), together with a binary relation (the semantics) = between the class of
all X-structures and £.

Let £ be a logic and ¢ be a complexity class. Say that £ captures c on a class
of X-structures C if the following conditions hold:

- for any property P € ¢ of X-structures there is a formula ¢ € £ such that
forall A € C,

AeP < AkEy,

GRAPH ISOMORPHISM, CANONISATION, AND CAPTURING POLYNOMIAL TIME 125

- conversely, for every formula ¢ € £ the class {A|A € C, A |= ¢} is effec-
tively in c.

The effectivity condition above means that there is an algorithm which given ¢
produces a Turing machine which recognizes {A |A € €, A = ¢} and whose
language is in c. Without the effectiveness condition, we could have degenerate
logics as the following one. Fix any enumeration Py, P, ... of all the properties
of structures that are in the class c. The logic £ consists of all natural numbers,
and A = iif A € P;. This would satisfy the second condition above, without
the effectivity condition.

The existential second-order logic captures NP, by Fagin’s theorem. By the
Immerman-Vardi theorem (Thm. 10.12), IFP captures P on the class of all finite,
ordered graphs. The central problem in descriptive complexity is:

is there a logic which captures P on the class of all finite graphs?

By the CFI theorem (cf. Cor. 10.32), the logic IFP+C does not capture r on the
class of all finite graphs, as it fails to satisfy the first part of the above definition.
A negative answer to the above question would imply P # NP, due to Fagin’s
theorem. On the other hand, a positive answer — especially one with a “natural”
logic — might provide some insight into polynomial time computation.

Apart from classes of ordered structures, there are classes for which a logic
capturing P is known. In particular, IFP+C captures P on the following classes
of graphs:

. the class of all trees,
« the class of all planar graphs,

- any class excluding a fixed minor.

Definable orders

Suppose there is a formula ¢(x,y) of IFP which defines a total order on any
graph G from a fixed class C. Then the Immerman-Vardi theorem implies that
IFP captures polynomial time on C.

126 DESCRIPTIVE COMPLEXITY

However, often to define an order one needs to fix several parameters. For
example, if G is a path of nonzero length then there is no formula ¢(x,y) which
defines an order on G, due to the nontrivial automorphism of G which swaps
the endpoints. However, if an endpoint is fixed, then we can define an order
using IFP on G. Say that a formula ¢(Z, x,y) defines orders on a class € if for
every G € C there is a tuple ¢ € G* such that ¢(¢, x,y) defines an order on G.
For example, there is a formula ¢(z, x, i) of IFP which defines orders on the class
C of all paths.

Proposition 10.34. If ¢(Z,x,y) is a formula of IFP which defines orders on C then IFP
captures © on C.

Proof. Let P be a polynomial-time property and let ¢ be a sentence of IFP defin-
ing P, obtained from the Immerman-Vardi theorem.

Define a new sentence y’ which existentially quantifies over the variables
zZ, checks that ¢(Z,x,y) defines a linear order on the given structure, and then
evaluates ¢ with x < y interpreted as ¥(Z, x,y). It follows by construction that
¢’ holds in a graph G € € if and only if G € P. [

Corollary 10.35. IFP captures P on the class of all finite paths, and on the class of all
cycles.

Exercise 10.36. Prove that IFP captures P on the class of all graphs of maximum
degree 2.

The above method has serious limitations, however: there is no formula (of
any logic) which defines linear orders on the class of all edgeless graphs, due
to the symmetries of those graphs. For this reason, we will relax the notion
of defining an order on G itself, and will require producing an order on an
isomorphic copy of G instead. We formalize this below.

Graph canonisation

A graph canonisation algorithm for a class C is an algorithm which given a
graph G € € outputs an ordered graph G’ with vertices {0, ..., |G| — 1} which is

GRAPH ISOMORPHISM, CANONISATION, AND CAPTURING POLYNOMIAL TIME 127

isomorphic to G, in such a way that if G and H are isomorphic graphs then G’
and H' are equal graphs. For example, there is a polynomial-time canonisation
for the class of cliques, and there is a polynomial-time canonisation algorithm
for the class of stars (trees of depth 2).

If € has a polynomial-time canonisation algorithm, then there is a logic which
captures P on €. This logic is IFP over the signature {E, <}, and a graph G €
C satisfies a sentence ¢ if G’ satisfies ¢, where G’ is the ordered copy of G
produced by the canonisation algorithm and < is interpreted as the usual order
on {0,...,|G| — 1}. This logic captures P on € by the Immerman-Vardi theorem,
but is not very natural, at it refers to an external algorithm.

A more natural logic capturing P can be obtained if the canonisation can be
produced by a formula. Say that C has I[FP+C-definable canonisation if there are
formulas of IFP+C

+ @ok(Z), defining the correct choices of the parameters z,

- ¢e(z,x,y), where x and y range over the number sort (recall that IFP+C
formulas may produce numbers {0,...,n — 1} in a structure with n ele-
ments),

such that for every G € € there are ¢ € G* such that G = ¢ok(¢) and the
graph with vertices {0, ...,|G| — 1} (the elements of the number sort) and edges
defined by ¢£(¢, x,y), is isomorphic to G.

Say that a class C of graphs has Weisfeiler-Leman dimension k if k-WL identifies
every graph G € C.

Example 10.37. The class of forests has Weisfeiler-Leman dimension 2. Also, it
has IFP+C definable canonisation.

Proposition 10.38. Suppose C has IFP+C definable canonisation. Then:
1. C has a polynomial-time canonisation algorithm,
2. IFP+C captures p on C,

3. C has finite Weisfeiler-Leman dimension.

128 DESCRIPTIVE COMPLEXITY

Proof. (1). Recall that a fixed formula ¢(Z,x,y) of IFP+C can be evaluated in
polynomial time on a given graph G. In particular, given a graph G, we can scan
all tuples ¢ € G* and find the first one which satisfies ok (). Then compute the
edge relation defined by ¢£(¢,x,y) on {0,...,|G| — 1} and output the resulting
graph.

(2) follows from the Immerman-Vardi theorem (Thm. 10.12) just like in the
proof of Proposition 10.34.

(3). Let ¢(%,y,2z) be the formula defining the canonization on €. As in
Lemma 10.21, for the formula ¢ we can get a number k € IN such that for
every two graphs G,H and tuples @ € G* and b € H7, if (G,a) =« (H,b)
then |G| = |H| and for all i,j € {0,...,|G| =1}, G = ¢(a,i,j) if and only if
H E ¢(b,i,j). Hence, by definition of ¢, if G € € and H is a graph such that
G = H then G = H. By Corollary 6.12, k-WL distinguishes every G € €, so €
has Weisfeiler-Leman dimension at most k.]

It can be proved, often with great effort, that the following classes of graphs
admit IFP+C definable canonisation:

« the class of forests,

« the class of planar graphs,

+ any class of graphs excluding a fixed minor,
+ the class of graphs of bounded cliquewidth.

Proving results like this is usually much more involved than proving the exis-
tence of a polynomial-time canonisation algorithm, and requires a very fine un-
derstanding of the combinatorial structure of the considered graphs. By Propo-
sition 10.38, this proves that IFP+C captures P on each of those classes.

11
Outlook

In this final chapter, we review some of the currently active areas of research in
finite model theory. This list is by far not complete.

Model checking

One area is the pursuit of finding classes of graphs (or other structures) for
which model checking is fixed-parameter tractable for some logic (essentially,
that means that a sentence ¢ can be tested on a given graph G € C in time
f(@,C) - |G|¢ for some function f and constant ¢). We have seen that MSO is
fixed-parameter on any class of graphs with bounded treewidth, or more gen-
erally, bounded cliquewidth. Similarly, we have seen that model checking FO is
fixed-parameter tractable on any class of graphs with locally bounded treewidth.
This direction of research has been pushed to its limits on graph classes which
are closed under taking subgraphs. It is known that for such graph classes,
model checking FO is fixed-parameter tractable if and only if the class if nowhere
dense. An active direction of research is to obtain results of this form for graph
classes which are not closed under taking subgraphs. A first example of a pos-
itive result in this direction is for classes of bounded cliquewidth, for which
model checking MSO is fixed-parameter tractable. This result has been very re-
cently extended to some classes of bounded twin-width, for which model checking
FO is fixed-parameter tractable.

130 OUTLOOK

Satisfiability

A direction which has not been discussed at all in these lectures is finding frag-
ments of first-order logic (or similar logics) for which the satisfiability problem
is decidable (since it is undecidable for full first-order logic, cf. Thm. 4.2). Such
fragments include various variants of first-order logic with two variables, or
guarded logics.

Definable canonisation

Another active direction of research in finite model theory is to find classes of
structures for which canonisation can be carried out in some logic. Examples
include graphs of bounded rankwidth, for which admit IFP+C definable canon-
isation, and graphs of bounded treewidth, which admit some weak form of
MSO-definable canonisation.

Capturing polynomial time

The quest for finding a logic which captures polynomial time computation cur-
rently consists of two main directions. The first direction tries to extend the logic
IFP+C by various additional mechanisms apart from counting, such as the possi-
bility of solving systems of equations over finite fields. This allows in particular
to solve some variants of the CFI query which cannot be solved by IFP+C. Al-
though it seems unlikely that such logics capture P, proving this requires a better
understanding of the CFI construction, and producing more and more elaborate
versions of it. The second main direction is focussed on another candidate logic
for capturing P, described below.

Choiceless Polynomial Time*

Choiceless polynomial time (CPT), and its extension with counting (CPT+C) look
much like a programming language with bounded resources. It is an open prob-
lem whether CPT captures polynomial time computation (on unordered graphs).

131

A rough description of CPT is given below. Essentially, CPT is a variant of while-

programs, where:

the basic type is a hereditarily finite set with atoms. The atoms are the ele-
ments of the input structure. A hereditarily finite set with atoms is either
an atom or a finite set of hereditarily finite sets with atoms (defined recur-
sively). For example {{a,b},{b,c},{a,c}} is a hereditarily finite set with
atoms, if a,b, ¢ are atoms.

the programming language has variables which can store hereditarily fi-
nite sets with atoms. Expressions also evaluate to hereditarily finite sets
with atoms.

an input graph G = (V, E) is represented by setting the variables V and
E to the set of vertices and the set of edges (a set of two-element sets of
atoms),

the programming language is equipped with assignment instructions v := ¢,
where v is a variable and e is an expression (see below), sequential com-
position of instructions Ij; I, the while loop and the if else conditional,
where a condition is an expression, interpreted as true if it evaluates to a
nonempty set. Finally, there is a return instruction which terminates the
computation and returns a output value.

expressions can be manipulated using basic set-theoretic constructions
such as U,N and —, as well as |J (the set union of a family), the expression
unique(x) returing the unique element of a singleton x (or @ if it does not
exist) and the set comprehension construct

{f(x)[xee},
where f is an expression with variable x and e is an expression.
in the counting extension, #X is an expression which evaluates to the car-

dinality of a set X, represented using the von Neumann encoding (with
0=9,1={0},2={0,1},...,n={0,...,n—1}).

*omitted in the lectures

132 OUTLOOK

To bound the resources, it is required that there is a polynomial p such that
for every input graph G with n vertices, the program terminates after at most
p(n) computation steps, and moreover, the computation involves at most p(n)
hereditarily finite sets in total (as sets stored in the variables, or in their elements,
or their elements, etc.). Slightly more precisely, say that a hereditarily finite set
X occurrs in a state of the program if there is some variable which stores a
hereditarily finite set Y such that X =Y, or X belongs to an element of Y, or an
element of an element of Y, etc. Then the requirement is that there are at most
p(n) hereditarily finite sets which occur in some state of the program, during its
computation on input G.

A CPT program is then a pair (I, p) where I is an instruction as described
above, and p: IN — IN bounding its running time and its resources (if the in-
struction exceeds the time or resources specified by p on some input, it termi-
nates and returns). It is not difficult to show that every such program can
be evaluated in polynomial time, so that CPTC p and similarly CPT+CC p. The
converse inclusion CPT+CC p is wide open. As CPT is quite like a programming
language and less like a logic, it seems quite difficult to prove inexpressibility
results for CPT, even for problems which do not belong to p.

It is known, although nontrivial, that it can solve a variant of the CFI query
(namely the variant in which the resulting hypergraphs are equipped with a
total quasi-order whose equivalence classes are the sets {vg, v1} of size 2). There
are ongoing efforts to push this result further and capture more complicated
variants of the CFI query or special cases of the isomorphism problem for graphs
equipped with a total quasi-order whose equivalence classes have bounded size.

A

Automata on Words and Trees

In this appendix we will develop the finite model theory of words and trees us-
ing automata. It turns out that monadic second-order logic behaves particularly
well on those structures, due to their good decomposability properties. Roughly,
a word or tree can be decomposed into two disjoint parts which behave in an
independent way. This is related to the usefuleness of automata on words and
trees. We will see that the set of words satisfying a given first-order sentence is a
regular language. In fact, sets of words definable by finite automata correspond
precisely to sets which are definable in monadic second-order logic. This cor-
respondence lifts to the case of trees. Hence, automata provide a powerful tool
for studying the expressive power of monadic second-order logic on words and
trees. From this, we will derive decidability of the satisfiability problem, as well
as tractability of the model checking problem on words and trees.

A.1 Monadic second-order logic

In this section we will see that over the class of finite trees, the satisfiability
problem for first-order logic is decidable. This is even the case for the much
more powerful monadic second-order logic.

134 AUTOMATA ON WORDS AND TREES

A.2 Words

Monadic second-order logic is important because of its connection to automata
and regular languages. A finite word w over an alphabet A may be viewed as a
finite structure, as depicted in Fig. A.1. Its elements correspond to the positions

S 00— 000 00— 0—>0-—>0—0

Figure A.1: A word as a structure.

of w, that is, the set {1,...,n}, where n is the length of w. For each letter of A
there is a unary symbol that marks the positions carrying the letter. There is a
binary relation succ representing the successor relation on the positions. Let X4
denote the resulting signature.

For a sentence ¢ let L(¢) denote the set of words w € A* which satisfy ¢,
when viewed as a X 4-structure.

Example A.1. The following formula expresses that the sets X and Y partition
the positions in an alternating way:

alternate(X,Y) = Vx.[x € X > x ¢ Y] AVx, y.[succ(x,y) = (x € X <>y €Y)]
The following sentence expresses that the word has even length:
3X, Y.alternate(X,Y) AVx.[=3y.succ(y, x) — (x € X)] A[-3y.succ(x,y) — (x € Y)].
Note that the sentence above has the form
3X; ... 3X,.9,

where ¢ does not use second-order quantifiers. A formula of this form is called
an existential second-order formula.

It is not difficult to generalize the example above to express an arbitrary
regular language.

WORDS 135

Lemma A.2. For every reqular language L C A™ there is a sentence ¢ of existential
monadic second-order logic such that L(¢) = L.

Proof. We show that for every regular language L C A* there is a sentence ¢ of
monadic second-order logic such that L(¢) = L. Let A be a nondeterministic
finite automaton recognizing L. Let Q be its set of states. We ignore the empty
word in the reasoning, as it can be treated separately by writing a sentence
detecting that the domain is empty.

The idea is that a run qq 4 q1 R gn of A over a nonempty word
w = ay---a, can be represented by a partition of the positions of w into |Q|
sets, X, for each ¢ € Q, where X, contains a position i € {1,...,n} if ; = g
(see Fig. A.5). Partitions corresponding to accepting runs are characterized as

q g2 q3 4n—1 Qn

— 00— 00— . . . — 00— 0

Figure A.2: A run of an automaton on a word.

follows:

- for every successive positions x and y, if x € X,y € X, and y carries the
label a, then p % g is a transition of A;

- if the first position carries a label a € A then it belongs to some set X, such
that p % g is a transition of A for some initial state p;

- the last position y belongs to X, for some accepting state 4.

Accepting runs of A (with the first state removed) correspond bijectively to par-
titions X, as above. Note that the three conditions above can be expressed by a
formula p with free variables (X;),co using only first-order quantification.
Write a sentence ¢ starting with a sequence of existential quantifiers 3Xg,
one for each g € Q, followed by a conjunction of a formula expressing that
(Xg)4ecq partitions the vertices with the formula p above. Then w € L if and only
ifwe L(g). |

136 AUTOMATA ON WORDS AND TREES

We will show the converse to Lemma A.2 — that each sentence of monadic
second-order logic defines a regular language of words. Roughly speaking,
monadic second-order logic is built out of a few atomic relations using Boolean
combinations and existential quantification. On the other hand, regular lan-
guages are closed under Boolean combinations and projections, which correspond
to existential quantification as follows.

A word w € A* together with a set U of positions of w can be seen as a
word w ® U over the alphabet A x {0,1}, where the second component indicates
whether the position is in U. Suppose we have a formula ¢ = 3X.¢(X) and we
have inductively shown that the set L of words w ® U € (A x {0,1})* such that
w [= ¢(U) is regular. Then the set of words w € A* which satisfy ¢ is obtained
from L C (A x {0,1})* by projecting out the second component of each letter.

More generally, for two alphabets B and A, a function 7: B -+ A and a
language L C B*, let (L) C A* be the language of all words 7t(by) - - - 7t(by)
such that by - - - by € L. Say that 71(L) is the projection of L along 7.

Lemma A.3. Regular languages are closed under union, complementation, and projec-
tions.

Proof. The cases of unions and complements are well known (for complements,
the automaton is first determinised using the powerset construction). We treat
the case of projections. Let A be a nondeterministic finite automaton recognizing
L C B*and let r: B — A. Define an automaton A’ with the same states as A, the
same initial states, the same accepting states, and where each transition p LN qis

replaced by p gl g. It is easy to check that L(A’) = rt(L(A)). [|

Theorem A.4. Fix an alphabet A and let ¥4 be the associated signature. The following
conditions are equivalent for a language L C A*:

- L= L(A) for some nondeterministic finite automaton A over the alphabet A,
« L= L(¢) for some ¥ 5-sentence ¢ of monadic second-order logic.

Both translations are effective.

WORDS 137

Proof. The downward implication is by Lemma A.2. For the upward implication,
we prove a stronger statement concerning formulas ¢ with free second-order
variables.

Fix a formula ¢ with free variables V which are either first-order variables
or second-order variables. A valuation v of V in a word w defines a word w ® v
over the extended alphabet A x {0,1}", as depicted in Fig. A.3.

v v
—0—0-—>0—>0—0—0—>0—>0—>0 0o
a eb a b b a a b a b b a a b
Y 0 1 1 0 0 1 1 0 1 1 1 0
X 0 0 1 1 1 0 1 1 0 0 1 1
>y | 0 0 0 0 1 0O 0 O O 0 0 o
>z | 0 O O O O O 0 o0 1 0 0 o0

Figure A.3: Viewing a structure with a valuation as a word over an extended
alphabet.

Define the language L(¢) of ¢ to be the set of all words w ® v such that
w € A* and v is a valuation of the free variables V of ¢ in the structure A
associated to w, such that v satisfies ¢ in A. By induction on ¢, we show that
L(¢) C (A x {0,1}V)* is regular.

In the base case, we need to handle atomic formulas: x =y, x € X, succ(x,y)
and a(x) for each a € A. For each case it is easy to construct an automaton
or regular expression defining L(¢). For instance, if ¢ is a(x) then the regular
expression is K* - (a,1) - K* where K is the set of all letters of the form (b,0), for
be A.

In the inductive step, we need to handle Boolean combinations and first-
and second-order existential quantification. The case of Boolean combinations
follows, since regular languages are closed under Boolean combinations.

We treat the second-order existential quantifier; the proof in the first-order
case is the same. Suppose ¢ = IX.¢P for some formula 1 with free vari-

138 AUTOMATA ON WORDS AND TREES

ables VU {X}. Let A be a nondeterministic automaton recognizing L() C
(A x {0,1}VU{X1)*, obtained by the inductive assumption. Then L(¢) is the
projection of L(¢) obtained by removing the X component of each letter. As
regular languages are closed under projections, this case follows.

This ends the inductive proof that L(¢) is regular, for every formula ¢. The
statement of the theorem is obtained as a special case.]

Corollary A.5. It is decidable whether a given sentence ¢ of monadic second-order logic
is satisfied in some finite word.

Proof. Construct an automaton A recognizing L(¢), and test its emptiness. m

A.3 Ranked trees

The above results for finite words can be lifted to finite trees. It is easiest to
define automata for ranked trees, that is, trees with a fixed bound on the number
of children of each node. The case of unranked trees can be reduced to the case
of ranked trees (in fact, binary trees), as done in the next section.

Let A be a finite set of labels, called the alphabet. Assume that each label
a € A has a specified rank, which is a natural number. We then call A a ranked
alphabet. A ranked tree over A is a tree in which a node with label a of rank r has
exactly r children, numbered from 1 to r (cf. Fig. A.4). For a nonempty ranked
finite tree to exist, at least one letter must have rank 0.

A ranked tree t over a ranked alphabet A can be seen as a logical structure
as follows:

+ for each a € A there is a unary relation 4, marking the nodes with label 4;

there are binary relations child;, for each i from 1 to the maximal rank of a
label in A. The relation child; relates a node v with a node w if v is the ith
child of w (it doesn’t need to exist).

Denote by X4 the resulting signature. We can then speak about properties of
ranked trees over A which are definable in monadic second-order logic over the

RANKED TREES 139

a ranked alphabet a ranked tree

Figure A.4: A ranked alphabet and a ranked tree.

signature X 4. The goal now is to define a notion of automata which recognize
precisely all such properties.

a tree automaton an accepting run

accepting
o $ 0 O

. .
alphabet states % 7 % ,;.
.\z/. \g/o O\{ A E E ﬂ\g/@ﬁ

Figure A.5: A tree automaton computing the value of a Boolean expression using

!

transitions

V,— and 0, and its run.
A nondeterministic tree automaton A over a ranked alphabet A consists of:

« a finite set of states Q,

140 AUTOMATA ON WORDS AND TREES

. aset ¢ of transitions of the form:

r
—

Q/Q« (//@ Q,Q Q,O“
.\CA)\‘B/./. where N €A

‘o

- aset of accepting states F C Q.

A run of A on a ranked tree f (cf. Fig. A.5) is a function p mapping the nodes
of t to Q such that for every node v with label a4 and r children, if p maps v to g
and the children of v to q3, . . ., g, respectively, then

Ny
€6

A run is accepting if it maps the root to an accepting state. By L(A) we denote
the set of all ranked trees t for which there is an accepting run of A. A set L of
ranked trees over a ranked alphabet A is called regular if it is equal to L(A) for
some tree automaton A.

The following fact is proved similarly as in the case of words:

Lemma A.6. The class of regular tree languages is closed under Boolean combinations.

Proof. Let A and B be two tree automata over a ranked alphabet A. Define
the disjoint union of A and B as the automaton A & B whose set of states is the
disjoint union of the states of A and B, and analogously for the transitions and
the accepting states. Then L(AW B) = L(A) UL(B).

To show that regular tree languages are closed under complementation, we
employ the usual powerset construction. For a tree automaton A we construct a
(deterministic, in a suitable sense) automaton with the following components:

RANKED TREES 141

« the states are all sets of states of A. Each state can be depicted as
Q& states of A

. the transitions are

@O

o .

all states @ of A such that g

transition of A

« the accepting states are the states which do not contain any accepting state
of A.

It is easy to check that this automaton recognizes the complement of L(A). m

Let A and B be two ranked alphabets and let 7: A — B be a rank-preserving
function, that is, the rank of 77(a) is equal to the rank of a. Then every ranked
tree t over A yields a ranked tree 77(t) over B, obtained by replacing the labels
according to 7t. For a set of ranked trees L over A, let (L) = {m(t) |t € L}.

Lemma A.7. If L is a regular tree language then 7t(L) is regular, too.

Proof. Let A be a tree automaton with L(A) = L. Define a tree automaton B
with the same states as A, the same accepting states, and the same transitions,
but where the alphabet letter in each transition is relabelled according to 7r. Then
L(B) = n(L).]

We then prove:

Theorem A.8. Fix a ranked alphabet A and let X4 be the associated signature. The
following conditions are equivalent for a set L of ranked trees:

« L= L(A) for some tree automaton A over the ranked alphabet A,

142 AUTOMATA ON WORDS AND TREES

« L= L(¢) for some X 5-sentence ¢ of monadic second-order logic.
Both translations are effective.

Proof. We follow the same proof as in Theorem A.4.

For the downwards implication, as in Lemma A.2 note that an accepting run
of a tree automaton A on a tree ¢ can be represented by a partition of the nodes
into a family of sets X;, one per each state g € Q of A. Moreover, a formula
with free variables (X;);cq can express that given sets form a partition which
corresponds to an accepting run of A. We take ¢ to be ¢ preceded by a sequence
of second-order existential quantifiers 3X;, for each g € Q.

For the upwards implication, again we prove a stronger statement by induc-
tion on a formula ¢, possibly with free variables V. For such a formula define
a ranked alphabet A x {0, 1}V, where the rank of a letter is the rank of its first
component in A. A ranked tree t over A together with a valuation v of the free
variables V defines a ranked tree t ® v over A x {0,1}". Define the language
L(¢) as the set of all ranked trees t ® v where ¢ is a ranked tree over A and v is
a valuation of V in t which satisfies ¢ in t.

We show that L(¢) is regular by induction on ¢. The base case amounts to
constructing automata for each of the atomic predicates x = y, x € X, child;(x,y),
and a(x) for a € A. Each case is easily solved by hand.

In the inductive step, we use Lemma A.6 to handle Boolean combinations
and Lemma A.7 to handle existential quantification.]

Lemma A.9. There is an algorithm which, given a tree automaton A and a tree t decides
in time O(|A| - |t|) whether A accepts t.

Proof. Given t, run A on t, from leaves to the root. At each node v, store the set
Xy € Q of all states g € Q such that there is a run on the subtree of v with g
being the state at v. The set X, can be computed in time O(|A|), given the sets
Xoy, -+, Xy, computed recursively at all the children vy, ..., v; of v. Altogether,
this gives an algorithm with the specified running time.]

We now show that emptiness of tree automata is decidable, in polynomial
time.

RANKED TREES 143

Lemma A.10. There is an algorithm which given a tree automaton A decides in poly-
nomial time whether L(A) is empty.

Proof. The depth of a run on a tree t is the maximal number of nodes on a root-
to-leaf path in t. The root state of a run is the state it assigns to the root. L(A) is
nonempty if and only if there is some run whose root state is accepting.

The algorithm computes the set R,, of states g of A such that A has some run
with root state 4.

Fori =1,2,..., let R; be the set of states g of A such that A has some run
with root state q of depth at most i.

Then

RiCRC...CQ.

Rj can be easily computed from the transition relation ¢ of A.

Take an accepting run p of depth at most i + 1 and suppose that the root has
label a of rank > 0. Then p decomposes into r runs of depth at most i. Hence,
foralli>1,

Riy1 ={9+1 € Q| (q1,...,9r41) € 6, for some a of rank r and 41,...,4, € R;}.

In particular, the set R;;1 can be computed in polynomial time, given R;. As the
sequence R; C Ry C ... is increasing, after at most |Q| steps, it must stabilize.
Suppose that R; = R;;1. It follows that R; = R;;1 = Rj;p = ... = Ry, is the set
of states q of A such that A has some run with root state 4.

By the above, R, can be computed in polynomial time. Finally, L(A) = @ if
and only if R, N F = @. u

Corollary A.11. Fix a ranked alphabet A. It is decidable whether a given sentence ¢ of
monadic second-order logic is satisfied in some finite ranked tree over A.

Proof. Convert ¢ to an automaton A using Theorem A.8. Next, test emptiness of
A using Lemma A.10.]

Corollary A.12. Fix a sentence ¢ of monadic second-order logic. There is an algorithm
which given a ranked tree t, decides in time O(|t|) whether t satisfies ¢.

Proof. Follows from Lemma A.g.]

144 AUTOMATA ON WORDS AND TREES

A.q4 Unranked trees

Fix a finite alphabet A. A rooted, labelled tree is a directed graph (possibly empty)
in which every node is labelled by an element of A, as depicted below:

Figure A.6: A rooted, labelled, unranked tree.

Such a tree can be naturally viewed as a structure over the signature X 4
consisting of the binary parent relation, as well as unary predicates for each label
a€ A

Our goal is to prove the following generalization of Corollary A.11 to un-
ranked trees.

Theorem A.13. It is decidable whether a given sentence ¢ of monadic second-order
logic is satisfied in some finite labelled tree.

To prove Theorem 8.10, we still need to address the case of unranked trees.
To do so, encode unranked trees in ranked trees, as depicted below.
We now describe the details of the construction.

Proof of Theorem 8.10. Let A be an unranked alphabet. Construct a ranked alpha-
bet A’ = {a'|a € A} U{B,E} where a’ is a copy of a € A and has rank 2, B has
rank 2, and E has rank 0. Define a transformation T mapping an unranked tree
t with labels from an alphabet A to a ranked tree T(t) over the ranked alphabet

UNRANKED TREES 145

Figure A.7: Transforming an unranked tree to a ranked tree.

A, by induction as follows. If t has a root v with label 2 and children whose
subtrees are t1,...,t,, then T(t) has a path of r 4+ 1 nodes vy, vy, ..., v;, with la-
bels @/, B, B, ..., B, E, respectively, where each subsequent node is the first child
of the previous one. The nodes vy, ...,v,_1 each have a second child which is
the root of the ranked tree T(t;) constructed recursively (cf. Fig A.7).

The tree t can be decoded from T(t) by contracting every node with label E
or B with its parent. The key point is that this decoding can be carried out by
formulas of monadic second-order logic, as follows.

In any ranked tree ' over the alphabet A’, define a unary relation node, unary
relations a for each a € A, and a binary relation parent, such that:

. node holds at the nodes with label 4/, for some a € A;
- the predicate a € A holds at the nodes with label a’;

« parent holds between two nodes v, w, if and only if v, w € node, and w is an
ancestor of v in t, and every node on the path from w to v (exclusively) is
labelled by B.

Clearly, the relations node and parent above are definable by formulas of monadic
second-order logic which are independent of t'. Denote those formulas node’ and
parent’.

146 AUTOMATA ON WORDS AND TREES

Let I(#') denote the A-labelled structure with elements consisting of all nodes
satisfying node, additionally equipped with the relations a for a € A and parent
as defined above.

Claim 4. For every unranked tree t over the alphabet A, the structure I(T(t)) is
a labelled tree isomorphic to t.

Now, there is a sentence v which holds in a ranked tree t' if and only if it is
isomorphic to a tree T(t), for some t: <y says that a node is labelled with B or E
if and only if it is a first child. From the previous claim, we get:

Claim 5. Every unranked tree t over the alphabet A is isomorphic to I(t') for
some ranked tree t’ over the alphabet A’ which satisfies 7.

We now complete the proof of Theorem 8.10. Let ¢ be any sentence of
monadic second-order logic on A-labelled unranked trees. Translate ¢ on A-
labelled unranked trees to a sentence ¢’ on A’-labelled ranked trees, by substi-
tuting each of the atomic predicates a(x) and child(x, y) by the formulas obtained
above. For example:

¢ = Vx3dy.a(x) — (parent(x,y) ANb(y))
is transformed into

¢’ = Vx.node' (x) — [By.node’(y) A (a'(x) — parent'(x,y) AV (y))].

In this way we obtain a sentence ¢’ such that for all #:
t' satisfies ¢’ if and only if I(t') satisfies ¢.
It follows from Claim 5 that the following conditions are equivalent:
- some unranked tree over the alphabet A satisfies ¢,
- some ranked tree over the alphabet A’ satisfies v A ¢'.

By Corollary A.11, the latter problem is decidable. This proves Theorem 8.10, as
v A ¢ can be effectively obtained, given ¢.]

UNRANKED TREES 147

Rabin’s celebrated result extends Theorem 4.2 to the class of countable trees.
The general outline of the proof is again similar as in the case of finite words or
trees, however, significant obstacles need to be overcome. First, the definition of
automata needs to be modified substantially, as infinite trees lack leaves which
allowed to kick off the computation in the finite case. Second, proving closure
under complementation is rather involved.

Apart from obtaining an algorithm for satisfiability on unranked trees, we
also get a linear-time algorithm for model checking.

Corollary A.14. Let ¢ be a sentence of monadic second-order logic. There is an algo-
rithm which given a tree t decides in time O, (|t|) whether t satisfies ¢.

Proof. We use the notation from the proof of Theorem 8.10. The additional ob-
servation is that the ranked tree T(t) can be computed from t in linear time.
Moreover, t satisfies ¢ if and only if T(t) satisfies ¢'. Apply Corollary A.12 to ¢’
and T(t).]

B
Interpretations

Let € and D be two classes of structures, over signatures X and I, respectively.
Assume for simplicity that X is relational. Let [: D — C be a partial map from
D to € such that:

- the domain of I is definable by a I'-sentence . That means that I(ID) is
defined if and only if ID satisfies -.

« every structure in € is isomorphic to some structure in the image of I.

- for each D € Dom(I), the structure I(ID) is definable by formulas inde-
pendent of ID. More precisely, there is a I'-formula é(x) and T'-formulas
R'(x1,...,x;), for each R € X of arity r, with the following property. For
each D € D, the domain of I(ID) is dp, and for each relation R € % of
arity 7, the relation Ry is equal to the restriction of Ry, to dp.

Call an operation as above an L-interpretation of € in D if all the I'-formulas
above belong to a logic £. If such an interpretation exists, then say that C inter-
prets in D, or that D interprets C, via an L-interpretation.

In the previous section, we showed that the class of unranked trees over
an alphabet A interprets in the class of ranked trees over the alphabet A’ via
a monadic second-order interpretation. The argument finishing the proof of
Theorem 8.10 generalizes to:

150 INTERPRETATIONS

Theorem B.1. Let £ be first-order logic or monadic second-order logic. If C interprets
in D via an L-interpretation I: D — C then the satisfiability problem for the logic £
over the class C reduces to the satisfiability problem over the class D.

Proof. For each Z-formula ¢ of monadic second-order logic define a I'-formula
¢’ by induction as follows:

Jx.a — Ix5(x) Ao R(xy,...,x,) = R'(x1,...,x/)
IX.a — IX.a X=yr—x=y
aVp—a Ve xeX—xeX

- e L1

Note that this translation maps first-order formulas to first-order formulas.

Let D € Dom(I) and ¢ be a X-formula with free variables V. Let v be a
valuation of V in the set Jp. The following equivalence is shown by induction
on ¢:

ID),vE¢e & DoEd.
In particular, if ¢ is a sentence, ¢ holds in I(ID) if and only if ¢’ holds in D.
Hence, ¢ is satisfiable in C if and only if ¢’ A 7y is satisfiable in D. u

The proof shows that the model-checking problem over € can be reduced to
the model-checking problem over D if we assume that the second condition in
the definition of an interpretation is efficient.

Corollary B.2. Suppose I: D — C is an L-interpretation such that for every structure
C € Cone can compute in time p(|C|) a structure D € D such that 1(ID) is isomorphic
to C. Then there is a reduction of the model-checking problem for £ on C & C to the
model-checking problem for £ on D which, given C € Cand ¢ € L outputs in time
p(IC|) + poly(¢) a structure D € D and ¢' € L such that

CkEe¢ < DEY.
It is often useful to compose interpretations.

Lemma B.3. Let £ be first-order logic or monadic second-order logic. If I: D — C
and J: C — B are L-interpretations, then the composition Jol: D — B is an L-
interpretation.

CLIQUEWIDTH AND MSO-INTERPRETATIONS OF TREES 151

B.1 Cliguewidth and MSO-interpretations of trees

The following theorem states that every class of bounded cliquewidth interprets
in a class of trees, via an interpretation of monadic second-order logic.

Theorem B.4. Fix k € IN and let C be a set with k elements. There is an interpretation
I of monadic second-order logic such that I1(t) = [t] for each clique decomposition t with
colors C. In particular, the class Cy of graphs of cliquewidth k interprets in a class of
trees over a fixed alphabet, via an interpretation of monadic second-order logic.

Proof. First, for each i € C define a formula x;(x) such that for a clique decom-
position ¢ with colors C and leaf a of ¢

t = xi(a) <= ahas coloriin [t].

The formula x;(x) works as follows: it existentially quantifies over sets X;, for
each i € C, and asserts that:

+ (Xj)iec form a partition of the ancestors of x,
. if x is labeled c; then x € X;,

. for every ancestor v € X; of x and its parent v’ (if it exists), if ¢ is a node
of rank 1 labelled recolorf, thenv' € X i) otherwise, if v is a node of rank
2 then v’ € X;.

For a node ¢ of t, let t|, denote the subtree of t rooted at c. Write a binary
formula x/(x,z) such that for a clique decomposition t with colors C and leaf a
of t and its ancestor c,

t = xi(a,c) <= ahascoloriin [t|].

The formula x/(x, z) is just a;(x) with all quantifiers constrained to quantify over
vertices which are descendants of z.

Finally, we define a formula ¢(x, y) such that for any clique decomposition ¢
with colors C and leaves a, b of ¢,

t=¢(a,b) <= a,bareadjacent in [t].

152 INTERPRETATIONS

The formula ¢(x, y) expresses that for some M C {{i,j} |i,j € C} and {i,j} € M,
the following hold:

+ the greatest common ancestor z of x and y is labelled join,,,
Xi(x,z),
Xi(y,2)-
The formulas x;(x) together with ¢(x,y) yield the required interpretation I. m
Corollary B.5. Satisfiability of monadic second-order logic is decidable over Cy.

Corollary B.6. There is an algorithm which inputs a sentence ¢ of monadic second-
order logic and a graph G together with its clique decomposition t of width k, and decides
if G satisfies @ in time Oy ,([#]).

Theorem B.7. Let T be a class of trees and let C be a class that interprets in T via an
interpretation of monadic second-order logic. Then C has bounded cliquewidth.

Interpretations of trees

Theorem B.4 proves that the class of graphs of cliquewidth at most k interprets
in a class of ranked trees.

In this section we prove a converse: if C is a class of graphs which interprets
in a class of ranked trees via an interpretation of monadic second-order logic,
then € has bounded cliquewidth.

Fix a ranked alphabet A. Let ¢(x,y) be a formula of monadic second-order
logic. For a ranked tree t, let ¢(t) denote the graph G whose vertices are the
leaves of t, and where two vertices 4, b are adjacent in G if and only if ¢ = ¢(a, b).

Lemma B.8. For any ranked tree t, the graph ¢(t) has cliqguewidth bounded by a con-
stant depending only ¢.

Proof. Let A be a deterministic tree automaton corresponding to ¢(x,y) as de-
scribed in Theorem A.8. The automaton A is over the alphabet A x {x,y}, and
let Q be its set of states.

CLIQUEWIDTH AND MSO-INTERPRETATIONS OF TREES 153

Given a ranked tree t over the alphabet A and a node a, let A(t ® [x
a]) € Q denote the root state of the automaton in its run on the tree t extended
by the valuation mapping x to a and leaving y undefined. Similarly, define
At ® [y — a]) € Q.

A node c of t defines a function y: Q — Q, such that running the automaton
A on the tree t with the subtree rooted at c replaced by a single leaf with state g
yields the state 7(q) at the root of ¢. Denote the function -y by dj.

Then, for two leaves a,b of t, the state A(t ® [x +— a,y — b]) depends only
on the following:

- thestatep=A(t®[x —a]) € Q

. thestateq=A(t®[y—b]) €Q

. the label A of the least common ancestor ¢ of 2 and b in ¢,
- the transition function 6 .: Q — Q.

Let X consist of all tuples (p,q, A,y) such that A(t® [x — a,y — b]) is an
accepting state of A.

Define a set of colors C = QU (Q x {0,1}). For every subtree t' of t we
define a clique decomposition with colors C of the subgraph of ¢(t) induced by
the leaves of ', with the coloring mapping a leaf a to A(t ® [x — a]) € Q.

The decomposition is constructed by induction on the size of . The base
case, when t' has just one node, is trivial. In the inductive step, suppose ' has
root labeled A and two subtrees, ¢y and 1, and let dy and d; be the two clique de-
compositions obtained by inductive assumption. Define a clique decomposition
d as the following term:

d := recolor ¢ (joing (recolor;,(do), recolor; (d1))),
where:
+ ip: C — Cis any function such that iy(q) = (g,0) for g € Q;

.« i1: C — Cis any function such that i1(q) = (9,1) for g € Q;

154 INTERPRETATIONS

- S consists of all sets {p, g} with p,q € Q such that (p,q, 7,6, .) € X, where
A is the label of the root ¢ of ' and dpc: Q — Qs the function defined by
cint;

« f:C — Q C Cis any function such that f((p,0),(q,1)) = f((p,1),(g,0))
is the state r of A such that (p,q, A, r) is a transition of A.

By definition of the set X, the obtained clique decomposition d satisfies the re-
quired property. This ends the inductive definition.
In the end, we obtain a clique decomposition of ¢(t) of width 3|Q|. [|

From this, we get that classes of bounded cliquewidth are preserved by in-
terpretations:

Theorem B.9g. Let C be a class of graphs of bounded cliquewidth and let 1 be an inter-
pretation of monadic second-order logic. Then I(€) is a class of bounded cliquewidth.

Proof. Let C be a class of cliquewidth at most k. By Theorem B.4 there is an
intepretation I such that Iy(t) = [t] for each clique decomposition with k colors.
The graph I(I¢(t)) is a graph of cliquewidth bounded only by k and I o I, by
Lemma B.8. The class of all graphs I(I;(t)) contains I(€), so I(€) is a class of
bounded cliquewidth.]

Exercise B.10. Prove Lemma B.3.

Exercise B.11. Show that the class of grids expanded with finitely many unary
predicates, as considered in the proof of Theorem 4.2, first-order interprets in
the class C of subgraphs of planar (undirected) grid graphs. Conclude that sat-
isfiability of first-order logic is undecidable over C.

Exercise B.12. Show that the class of all finite graphs MSO-interprets in the class
of subgraphs of planar grid graphs.

Exercise B.13. Show that for each finite relational signature ¥, the class of all
finite X-structures interprets in the class of all finite graphs via a first-order
interpretation. First interpret the class of finite X-structures in the class of finite
labelled graphs, and then interpret the latter in the class of finite graphs.

CLIQUEWIDTH AND MSO-INTERPRETATIONS OF TREES 155

Exercise B.14. Show that the class of all finite graphs interprets in the class of all
finite partial orders.

Exercise B.15. Let C be the class consisting of all structures with domain {1, ...,n} x
{1,...,m}, for all m,n € IN, equipped with the binary relation ~1 relating ele-
ments with equal first coordinate, and the binary relation ~; relating elements
with equal second coordinate, and a unary predicate U which is an arbitrary
subset of the domain. Prove that the class of finite graphs first-order interprets
in C.
Exercise B.16. A tree order is a partially ordered set (X, <) such that for every
x € X, {y|y < x} is totally ordered by <, and for every x,y € X there is z such
that z < x and z < y. For example, ({0,1}*, <), where < is the prefix order, is a
tree order, and every total order is a tree order.

Prove that (Q, <) first-order interprets in ({0,1}*, <, Up), where Uy C {0,1}*
is the unary predicate consisting of words ending with 0.

Exercise B.17. Prove that the class of countable tree orders first-order interprets in
the class of all structures ({0,1}%, <, Uy, W), where {0,1} is the set of infinite
0, 1-sequences, where W ranges over all possible subsets of {0,1}%.

Bibliography

	Frontmatter
	Contents
	Overview
	Preliminaries
	Structures
	First-order logic
	Basics of model theory
	Proof of the compactness theorem*
	Second-order logic

	Evaluation
	Representing finite structures
	First-order logic
	Second-order logic

	Satisfiability
	Trakhtenbrot's theorem

	Types
	Atomic types
	Types of higher rank

	Pebble games
	Ehrenfeucht-Fraïssé games of infinite duration
	Bounded variable fragment
	Counting extension*

	Quantifier Elimination
	Tarski Arithmetic*
	Relational structures
	Random graphs
	Fraïssé limits*

	Compositionality
	Treewidth
	Cliquewidth

	Locality
	Model-checking on graphs of bounded degree
	Bounded local treewidth

	Descriptive complexity
	Fagin's theorem
	Fixpoint logics
	Fixpoint logic with counting
	Graph isomorphism, canonisation, and capturing polynomial time

	Outlook
	Automata on Words and Trees
	Monadic second-order logic
	Words
	Ranked trees
	Unranked trees

	Interpretations
	Cliquewidth and MSO-interpretations of trees

