
The number of runs in Sturmian words

Paweł Baturo1, Marcin Piatkowski 1, andWojciech Rytter2,1⋆

1 Department of Mathematics and Computer Science, Copernicus University
2 Institute of Informatics, Warsaw University, Warsaw, Poland

Abstract. Denote byS the class ofstandard Sturmian words. It is a class of
highly compressible words extensively studied in combinatorics of words, includ-
ing the well known Fibonacci words. The suffix automata for these words have a
very particular structure. This implies a simple characterization (described in the
paper by the Structural Lemma) of the periods of runs (maximal repetitions) in
Sturmian words. Using this characterization we derive an explicit formula for the
numberρ(w) of runs in wordsw ∈ S , with respect to theirrecurrences (directive
sequences). We show thatρ(w)

|w|
≤ 4

5
for each w ∈ S , and there is an infinite

sequence of strictly growing wordswk ∈ S such thatlimk→∞
ρ(wk)
|wk|

= 4
5
.

The complete understanding of the functionρ for a large classS of complicated
words is a step towards better understanding of the structure of runs in words. We
also show how to compute the number of runs in a standard Sturmian word in
linear time with respect to the size of its compressed representation (recurrences
describing the word). This is an example of a very fast computation on texts given
implicitly in terms of a special grammar-based compressed representation (usu-
ally of logarithmic size with respect to the explicit text).

1 Introduction

The runs (maximal repetitions) in strings are important in combinatorics on words and
in practical applications: data compression, computational biology, pattern-matching.
A run is a non-extendable (with the same period) periodic segment in a string in which
the period repeats at least twice. In 1999 Kolpakov and Kucherov [10] showed that
the numberρ(w) of runs in a stringw is O(|w|), but the exact multiplicative constant
coefficient is unknown, recent bounds are given in [11, 5]. Inorder to better understand
the behavior of the functionρ for general words we giveexactestimations for a classS
of highly compressible words: the standard Sturmian words (standard words, in short).
The classS of standard Sturmian words is of particular interest due to their importance
in combinatorics on words, [2, 3]. The standard words are a generalization of Fibonacci
words and, like Fibonacci words, are described by recurrences.

The recurrence for a standard word is related to so calleddirective sequence - an integer
sequence of the form

γ = (γ0, γ1, ..., γn), whereγ0 ≥ 0, γi > 0 for 0 < i ≤ n.
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The standard word corresponding toγ, denoted byS(γ) = xn+1, is defined by recur-
rences:

x−1 = b, x0 = a, x1 = x
γ0

0 x−1, x2 = x
γ1

1 x0, (1)

x3 = x
γ2

2 x1, . . . , xn = x
γn−1

n−1 xn−2, xn+1 = xγn

n xn−1 (2)

For example the recurrence for the 4-th Fibonacci word is

fib−1 = b, fib0 = a, fib1 = fib1
0b, fib2 = fib1

1fib0,

f ib3 = fib1
2fib1, f ib4 = fib1

3fib2.

f ib4 = abaababa = S(γ0, γ1, γ2, γ3) where (γ0, γ1, γ2, γ3) = (1, 1, 1, 1)

We consider here standard words starting with the lettera, hence assumeγ0 > 0. The
caseγ0 = 0 can be considered similarly. For evenn > 0 a wordxn has suffixba, and
for oddn it has suffixab.

The numberN = |xn+1| is the (real) size, whilen can be thought of as the compressed
size.

Example 1.Consider more complicated example (used later to demonstrate counting
of runs), letγ = (1, 2, 1, 3, 1), we have

S(γ) = ababaabababaabababaabababaababaab

The corresponding recurrence is
x−1 = b; x0 = a, x1 = x1

0x−1, x2 = x2
1x0, x3 = x1

2x1, x4 = x3
3x2, x5 = x1

4x3.

A numberi is a period of the wordw iff w[j] = w[i + j] for all i with i + j ≤ |w|. The
minimal period ofw will be denoted byperiod(w). We say that a wordw is periodic
iff period(w) ≤ |w|

2 . A wordw is said to beprimitive iff w is not of the formzk, where
z is a finite word andk ≥ 2 is a natural number.

A run in a stringw is an intervalα = [i...j] such thatw[i...j] is a periodic word with the
periodp = period(w[i...j]) and this period is not extendable to the left or to the right of
[i...j]. In other words,[i...j] is a run iffj− i+1 ≥ 2p, i = 1 or w[i−1] 6= w[i−1+p]
andj = n or w[j + 1] 6= w[j + 1 − p].

A run α can be properly included as an interval in another runβ, but in this case
period(α) < period(β). The value of the runα = [i...j] is val(α) = w[i...j]

When it creates no ambiguity we identify sometimes runs withtheir values, although
two different runs could correspond to identical subwords,if we disregard positions of
these runs. Hence runs are also called maximalpositioned repetitions.

Let ρ(w) be the number of runs in a wordw. The most interesting and open conjec-
ture about runs is:ρ(|w|) < |w|. The first linear bound was given by Kolpakov and
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Fig. 1.The structure of runs ofS(1, 2, 1, 3, 1).There are 5 runs with period|a|, 5 with period|ab|.
We have 10short runs (period of size at most|x1| = |ab|), 8 medium (with period|x1| < p ≤
|x2| = 5, and1 large run. Consequentlyρ(1, 2, 1, 3, 1) = 19.

Kucherov [10], the best upper bound is by [6, 5] and the best lower bound is by [5, 7].
The structure of runs and squares is almost completely understood for the class of Fi-
bonacci words, see [9, 13, 4]. We continue the work of [8], where it was shown how to
compute the number of runs for block-complete Sturmian words (not all standard Stur-
mian words have this property) in time linear with respect tothe size of the whole word
(while our algorithm is linear with respect to the size of compressed representation). A
similar approach as in [8] is used in this paper – a kind of a reduction sequence, however
our reductions are different than those in [8] and correspond closely to the structure of
the recurrences (directive sequences). Also our aim is different – derivation of a simple
formula forρ(w) and asymptotic behavior ofρ(w).

Our results We show thatsupw∈S
ρ(w)
|w| = 0.8 and provide an easily computable

formula for the number of runs. We give also a fast algorithm computingρ(w) in time
linear with respect to the length of the directive sequence defining w: this gives an
algorithm efficient with respect to the compressed size of the input.

2 Morphic representations and the numbersNγ(k)

Essentially we use an idea of areduction sequence introduced in [8]. The computation
of runs inS(γ0, γ1, . . . , γn) is reduced to a computation forS(γ1, γ2, . . . , γn).
The relation betweenS(γ0, γ1, . . . , γn) andS(γ1, γ2, . . . , γn) is described in terms of
morphisms transforming one of them to the other.



Forγ = (γ0, γ1, . . . , γn) define the sequence of morphisms:

hi(a) = aγib, hi(b) = a , for 0 ≤ i ≤ n

Lemma 1. Assume 0 ≤ i < n. We have

S(γn) = hn(a), S(γi, γi+1 . . . , γn) = hi(S(γi+1, γi+2 . . . , γn)).

Let |w|r denote the number of occurrences of a letterr ∈ {a, b} in the wordw. Denote

Nγ(k) = |S(γk, γk+1, . . . γn)|a, Mγ(k) = |S(γk, γk+1, . . . γn)|b

The numbersNγ(k), Mγ(k) satisfy the equation:

Nγ(k) = γk Nγ(k + 1) + Nγ(k + 2); Mγ(k) = Nγ(k + 1) (3)

Observation. In case of the directive sequence(1, 1, . . . , 1) describing the Fibonacci
word the numbersNγ(k) are Fibonacci numbers, since the number of lettersa in fibn

equals the size offibn−1.

Example. For the wordS(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab

from Figure 1 we haveγ = (1, 2, 1, 3, 1) and:

S(1) = ab, S(3, 1) = aaaba, S(1, 3, 1) = (ab)3a ab,

Nγ(3) = |S(3, 1)|a = 4, Nγ(2) = |S(1, 3, 1)|a = 5

Lemma 2. Let A = Nγ(2), B = Nγ(3) and w = S(γ0, γ1, . . . , γn). Then

|w| = ((γ0 + 1) γ1 + 1) A + (γ0 + 1) B

Proof. We have|w| = Nγ(0) + Mγ(0) andMγ(0) = Nγ(1).
Hence|w| = Nγ(0) + Nγ(1) and by equation (3):

|w| = γ0Nγ(1) + (γ1 + 1)Nγ(2) + Nγ(3).

Now Equation (3) directly implies the thesis.

For our example wordA = 5, B = 4, γ0 = 1, γ1 = 2. The formula gives the number
(4 + 1) 5 + 8 = 33, which is the correct length ofS(1, 2, 1, 3, 1).

3 Counting runs and repetition ratios in Standard Words

We introduce a zero-one functionunary testing if the number equals 1,
if x = 1 thenunary(x) = 1 elseunary(x) = 0.

Similarly define zero-one functionseven(k) andodd(k) with the value equal 1 iffk is
even (odd), respectively.



We use the following notation in this section:

A = Nγ(2) = |S(γ2, γ3 . . . , γn)|a, B = Nγ(3) = |S(γ3, γ4 . . . , γn)|a

∆(γ) = n − 1 − (γ1 + . . . + γn) − unary(γn).

The following theorem will be proven later.

Theorem 1. [Formula for the number of runs]
Let n ≥ 3 and γ = (γ0, . . . , γn). Then the number of runs in S(γ) equals

ρ(γ) =















2 A + 2 B + ∆(γ) − 1 if γ0 = γ1 = 1
(γ1 + 2) A + B + ∆(γ) − odd(n) if γ0 = 1; γ1 > 1
2A + 3B + ∆(γ) − even(n) if γ0 > 1; γ1 = 1
(2 γ1 + 1) A + 2 B + ∆(γ) Otherwise

,

Example 2. We now show how to computeρ(1, 2, 1, 3, 1), using our formula, for the
word shown in Figure 1. In this case

γ = (γ0, γ1γ2, γ3, γ4) = (1, 2, 1, 3, 1) and n = 4

A = Nγ(2) = 5, B = Nγ(3) = 4, ∆ = (4 − 1) − 7 = 4, even(n) = 1

Theorem 1 implies correctly (see Figure 1):

ρ(γ) = (γ1 +2)A+B +∆−even(4) = 4A+B−4−1 = 4 ·5+4−4−1 = 19.

Example 3. As the next example derive the formula for the number of runsin Fibonacci
wordfibn = S(1, 1, . . . , 1) (n ones) forn ≥ 3. LetFn be then-th Fibonacci number.
In this caseNγ(k) = Fn−k−1. According to formula from Theorem 1 we have

ρ(fibn) = 2Nγ(2) + 2Nγ(3) + n − 1 − n − 1 − 1

= 2 Fn−3 + 2 Fn−4 − 3 = 2 Fn−2 − 3.

Theorem 2. ρ(w) ≤ 4
5 |w| for each w ∈ S

Proof. The easy whenn ≤ 2 can be considered separately, we omit a simple proof for
this case. Assume now thatn ≥ 3 and consider 4 cases.
Let w = S(γ0, ..., γn). Observe that∆(γ) ≤ 0.

Case 1:γ0 = γ1 = 1. We have, due to Lemma 2:|w| = 3A + 2B.
According to Theorem 1 we haveρ(γ) ≤ 2 A + 2 B. Then

ρ(w)

|w|
≤

2A + 2B

3A + 2B
≤

4

5

due to inequalitiesA ≥ B ≥ 1. This completes the proof in this case.



Case 2:γ0 = 1; γ1 > 1. We have, due to Lemma 2:

|w| = (2 γ1 + 1) A + 2B

We have also, due to Theorem 1, thatρ(w) ≤ (γ1 + 2) A + B. Consequently:

ρ(w)

|w|
≤

(γ1 + 2) A + B

(2 γ1 + 1) A + 2B
≤

4

5

becauseγ1 ≥ 2 and γ1+2
2 γ1+1 ≤ 4

5 .

Case 3:γ0 > 1; γ1 = 1. In this case we haveρ(w) ≤ 2A + 3B, due to Theorem 1,
and , due to Lemma 2,

|w| = (γ0 + 2) A + (γ0 + 1) B ≥ 4A + 3B

Consequently we have

ρ(w)

|w|
≤

2A + 3B

4A + 3B
≤

3A + 2B

4A + 3B
≤

3

4

Case 4:γ0 > 1; γ1 > 1. In this case, due to Theorem 1 and Lemma 2, we have

ρ(w) ≤ (2 γ1 + 1) A + 2 B,

|w| = ((γ0 + 1) γ1 + 1) A + (γ0 + 1) B.

We have

ρ(w)

|w|
≤

(2 γ1 + 1) A + 2 B

((γ0 + 1) γ1 + 1) A + (γ0 + 1) B
≤

(2 γ1 + 1) A + 2 B

(3 γ1 + 1) A + 3 B
≤

4

5

because
2 γ1 + 1

3 γ1 + 1
≤

4

5

This completes the proof.

Theorem 3.
For the class S of standard words we have

sup { ρ(w)
|w| : w ∈ S } = 0.8.

Proof. Let

wk = S(1, 2, k, k) =
(

(ababa)k ab
)k

ababa,

see the figure 2 for the casek = 3. We have|wk| = 5k2 + 2k + 5.
Theorem 1 implies that|ρ(1, 2, k, k)| = 4k2 − k + 3. Consequently

lim
k→∞

ρ(wk)

|wk|
= lim

k→∞

4k2 − k + 3

5k2 + 2k + 5
= 0.8
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Fig. 2. The structure of runs ofS(1, 2, k, k) for k = 3, there are4k2 − k + 3 = 36 runs.

Theorem 4.
We can count number of runs in standard word S(γ0, . . . , γn) in time O(n).

Proof. We need only to compute inO(n) time the numbersNγ(k) for k = 1, 2, 3. We
can compute it iterating Equation 2.

Algorithm ComputeNγ(k);
x := 1; y := 0;
for i := n downto k do

(x, y) := (γi · x + y, x)
return x;

4 The proof of Theorem 1

We assume now thatxi’ are as given by recurrences described in Equations 1,2. The
structure of subword graphs for standard Sturmian words is very special [14, 13], in
particular it implies the following fact.

Lemma 3. [Structural Lemma]
The period of each run of S(γ0, γ1, . . . , γn) is of the form x

j
ixi−1, where 0 ≤ j < γi.

We say that a run isshort if the length of its period does not exceed|x1|, large if the pe-
riod exceeds|x2|, andmedium otherwise. Denote byρshort(γ), ρmed(γ), ρlarge(γ)
the number of short, medium and large runs inSγ, respectively. For example we have
10 short, 8 medium and 1 large run in Figure 1.



Lemma 4. [Short Runs]The number of short runs in S(γ) is

ρshort(γ) =















Nγ(2) + Nγ(3) − 1 if γ0 = γ1 = 1
2 Nγ(2) − odd(n) if γ0 = 1; γ1 > 1
Nγ(1) + Nγ(3) − even(n) if γ0 > 1; γ1 = 1
Nγ(1) + Nγ(2) otherwise

Proof. We estimate separately numbers of runs with periodsx0 andx1

Claim. Let γ = (γ0, . . . , γn) be directive sequence. There are:
(a) Nγ(1) runs with periodx0 if γ0 > 1,
(b) Mγ(1) runs with periodx0 if γ0 = 1,
(c) Nγ(2) runs with periodx1 if γ1 > 1,
(d) Mγ(2) runs with periodx1 if γ1 = 1.

Point (a). Let us define morphismh(a) = aγ0b andh(b) = a. Every run with period
x0 in S(γ) is equal toaγ0 or aγ0+1. Every such run is separated by the letterb and
corresponds to the lettera in h−1(S(γ0, . . . , γn)) = S(γ1, . . . , γn).

Point (b). The proof of this point is similar to (a).

Points (c,d).A run with the periodx1 in S(γ) corresponds to a run with the periodx0 in
h−1(S(γ)) and now validity of this case follows from points (a) and (b).This completes
the proof of the claim and the lemma.

Lemma 5. [Medium Runs,n ≥ 3] If n ≥ 3 then

ρmed(γ) = Nγ(1) − Nγ(2) − γ1 + 1

Proof. The thesis follows directly from the following stronger claim (the proof is
omitted in this version)

Claim. Let γ = (γ0, . . . , γn). There are:

(a) Nγ(2) − 1 runs with periodxi
1x0 for each0 < i < γ1.

(b) Nγ(3) runs with periodx2.

The claim of the lemma follows by summing formulas from the points (a) and (b). We
have

(Nγ(2) − 1) (γ1 − 1) + Nγ(3) =

(γ1Nγ(2) + Nγ(3)) − Nγ(2) − γ1 + 1 = Nγ(1) − Nγ(2) − γ1 + 1

This completes the proof of the lemma.

Lemma 6. [Medium Runs, n=2] If n = 2 then

ρmed(γ) = Nγ(1) − Nγ(2) − γ1 + 1 − unary(γn)

Proof. The proof for the caseγn > 1 is similar to the one for Lemma 5. In the case
γn = 1 there are no intermediate runs, and we have to subtractunary(γn) = 1 in this
case.



We reduce the problem of counting large runs to the one for counting medium runs,
using the morphic representation ofSγ. Let h be a morphism and lety = a1a2 . . . at

be a word of lengtht.
The morphism partitionsx = h(y) into segmentsh(a1), h(a2) . . . h(at). These seg-
ments are called here h-blocks.

We say that a subwordw of x is synchronizedwith h in x iff each occurrence ofw in
x starts at the beginning of some h-block and ends at the end of some h-block. Figure 3
shows examples of synchronized and non-synchronized subwords with the morphism
h0 : S(2, 1, 3, 1) → S(1, 2, 1, 3, 1) related to the morphic structure ofS(1, 2, 1, 3, 1).
Recall thath0(a) = aγ0b, h0(b) = a.

a  ba  b a  b a a  b a  b a  b a a  b a  b a  b a a  b a  b a  b a a  b a  b a

a a a a a a a a a a a a a ab b bb b

h0

aba ababa ababaab

Fig. 3.The medium run-periodsx1x0 = aba andx2 = ababa do not synchronize withh0 on the
string from Figure 1, while the large run-periodx3 = ababaab is synchronized withh0.

Lemma 7. [Synchronization Lemma]
The large run-periods are synchronized with h0 in S(γ0, . . . , γn)

Proof. We omit the proof of the followingsyntactical fact.

Claim.
(a) If i ≥ 2 thenxixi−1 ends withaγ0b or with (aγ0b)γ1+1a

(b) aγ1+2 is not a sub-word inS(γ1, . . . , γn)

In the inverse morphismh−1
0 the blockaγ0b goes toa and the blocka goes tob. If the

word starts and ends withaγ0b then it is obviously synchronized with the morphism.
The wordxixi−1, for i ≥ 2, starts withaγ0b. The only problem is when it ends with
a and this occurrence ofa is followed byaγ0−1b. However, due to the point (a) of
the claim, we have an occurrence of the sequence(aγ0b)γ1+2 in S(γ1, . . . , γn). After
applying the inverse ofh0 this sequence goes toaγ1+2 in S(γ1, . . . , γn). However this
is impossible due to point (b) of the claim. This completes the proof.

The following fact is implied by synchronization lemma.

Lemma 8. [Recurrence Lemma]

ρlarge(γ0, γ1, . . . , γn) = ρlarge(γ1, γ2, . . . , γn) + ρmed(γ1, γ2, . . . , γn).



4.1 Completing the proof of Theorem 1

The claim of the next lemma follows from Lemma 5 and the recurrence from Lemma 8.

Lemma 9. [Large Runs]

ρlarge + ρmed = Nγ(1) + n − 1 − (γ1 + ... + γn) − unary(γn)

Proof. According to Lemma 5 we have

ρlarge + ρmed = (Nγ(1) − Nγ(2) − γ1 + 1) +

(Nγ(2)−Nγ(3)− γ2 + 1) + . . . + (Nγ(n− 1)−Nγ(n)− γn−1 + 1− unary(γn))

= Nγ(1) + n − 1 − (γ1 + ... + γn) − unary(γn),

sinceNγ(n) = γn. This completes the proof.

Now the formula in Theorem 1 results by combining the formulas forρshort and for the
sumρlarge + ρmed using the equalities

ρ(γ) = ρshort(γ) + ρmed(γ) + ρlarge(γ), and Nγ(1) = γ1Nγ(2) + Nγ(3).
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