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Abstract. Denote byS the class ofstandard Surmian words. It is a class of
highly compressible words extensively studied in comlairias of words, includ-
ing the well known Fibonacci words. The suffix automata fa@séwords have a
very particular structure. This implies a simple charaztgion (described in the
paper by the Structural Lemma) of the periods of runs (maknejaetitions) in
Sturmian words. Using this characterization we derive gieix formula for the
numberp(w) of runs inwordsw € S, with respect to theirecurrences (directive
sequences). We show that“i < 4 foreachw € S, and there is an infinite
sequence of strictly growing Words;C € S such thatlimg_, o ”(5’7) = 4
The complete understanding of the functjofor a large class OH compllcated
words is a step towards better understanding of the steicfuuns in words. We
also show how to compute the number of runs in a standard &mrword in
linear time with respect to the size of its compressed remtasion (recurrences
describing the word). This is an example of a very fast cotpon on texts given
implicitly in terms of a special grammar-based compresspiesentation (usu-
ally of logarithmic size with respect to the explicit text).

1 Introduction

The runs (maximal repetitions) in strings are importantdimbinatorics on words and
in practical applications: data compression, computatibiology, pattern-matching.
A run is a non-extendable (with the same period) periodicsg in a string in which
the period repeats at least twice. In 1999 Kolpakov and KumhELO] showed that
the numbep(w) of runs in a stringe is O(|w|), but the exact multiplicative constant
coefficient is unknown, recent bounds are given in [11, Spritter to better understand
the behavior of the functiop for general words we givexactestimations for a clasS

of highly compressible words: the standard Sturmian wostin@ard words, in short).
The classS of standard Sturmian words is of particular interest du@éirimportance
in combinatorics on words, [2, 3]. The standard words arengiggization of Fibonacci
words and, like Fibonacci words, are described by recug®nc

The recurrence for a standard word is related to so cdlkedtive sequence- an integer
sequence of the form

¥ = (0,71, s n), Whereyy > 0,v; > 0for0 < i < n.
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The standard word correspondingtpdenoted byS(y) = z,,+1, is defined by recur-
rences:
r_1=b, xg=a, x1 = x)’r_1, x2 = x| X0, 2)

— )2 _ 2 In—1 —
T3 =T L1, ...y Tn =Tp" 7 Tne2, Tngl = T "Tp—1 (2)

For example the recurrence for the 4-th Fibonacci word is
fib_y = b, fibg = a, fiby = fibgb, fiby = fib] fibo,

fibs = fibyfiby, fiby = fibyfiba.
f2b4 = abaababa = 5(70571772573) Where (70)71772)73) = (1715171)

We consider here standard words starting with the lettience assumg, > 0. The
caseyy = 0 can be considered similarly. For even> 0 a wordzx,, has suffixba, and
for oddn it has suffixab.

The numbelV = |z,,1] is the (real) size, while can be thought of as the compressed
size.

Example 1.Consider more complicated example (used later to demdestoainting
of runs), lety = (1,2,1,3,1), we have

S(v) = ababaabababaabababaabababaababaab

The corresponding recurrence is
r_1 = b, o = a, r1 = $(1)IL',1, T = IL'%’L'(), Tr3 = 1‘%$1, T4 = $§$2, I5 = $411£L'3.

A numberi is a period of the wordb iff w[j] = w[i + j] for all i with i + j < |w|. The
minimal period ofw will be denoted byeriod(w). We say that a wordb is periodic
iff period(w) < % A word w is said to beprimitiveiff w is not of the formz*, where
z is a finite word and: > 2 is a natural number.

Arun inastringw is an intervaky = [i...j] such thatw[i...j] is a periodic word with the
periodp = period(wli...j]) and this period is not extendable to the left or to the right of
[i...j]. In other wordsli...jl isaruniffj —i+1> 2p,i = 1orw[i — 1] # w[i — 1+ p]
andj =norwlj+ 1] #w[j +1—p)].

A run « can be properly included as an interval in another frbut in this case
period(a) < period(B). The value of the ruav = [i...j] is val(«) = wli...j]

When it creates no ambiguity we identify sometimes runs witir values, although
two different runs could correspond to identical subwoildse disregard positions of
these runs. Hence runs are also called maxjyositioned repetitions.

Let p(w) be the number of runs in a word. The most interesting and open conjec-
ture about runs isp(|w|) < |w|. The first linear bound was given by Kolpakov and



NN TSN SN e N s VN

ababaabababaabababaabababaaba

NN TN N N TN NV N N N N N
ababaabababaabababaabababaaba

NN TN N S NV N b/\/\
ab abaabababaab’abahbaa ababaaba

ababaabababaabababaabababaaba

ababaabababaabababaabababaaba

Fig. 1. The structure of runs d§(1, 2, 1, 3, 1).There are 5 runs with peridd|, 5 with period|ab|.
We have 1Gshort runs (period of size at most:| = |ab|), 8 medium (with periodz:| < p <
|z2| = 5, and1 large run. Consequently(1,2,1,3,1) = 19.

Kucherov [10], the best upper bound is by [6, 5] and the begétdound is by [5, 7].
The structure of runs and squares is almost completely sttt for the class of Fi-
bonacci words, see [9, 13, 4]. We continue the work of [8], iehiewas shown how to
compute the number of runs for block-complete Sturmian w@nat all standard Stur-
mian words have this property) in time linear with respechtsize of the whole word
(while our algorithm is linear with respect to the size of guessed representation). A
similar approach as in [8] is used in this paper — a kind of ac&dn sequence, however
our reductions are different than those in [8] and corredpmosely to the structure of
the recurrences (directive sequences). Also our aim ierifft — derivation of a simple
formula forp(w) and asymptotic behavior @{w).

Our results We show thatup,,cs pl(u“j’l) = 0.8 and provide an easily computable
formula for the number of runs. We give also a fast algoritlumputingp(w) in time
linear with respect to the length of the directive sequerafinohg w: this gives an

algorithm efficient with respect to the compressed size @irput.

2 Morphic representations and the numbersiV,, (k)

Essentially we use an idea ofeduction sequence introduced in [8]. The computation
of runsinS(~p,v1,. - .,vs) is reduced to a computation f8t(y1, v2, . - ., Vn)-

The relation betweef§ (v, 71, - .., 7n) @andS(y1, 72, - - ., ¥») is described in terms of
morphisms transforming one of them to the other.



Fory = (v0,71,---,7n) define the sequence of morphisms:
hi(a) = a"b, hib) = a, for0<i<n
Lemmal. Assume0 <i < n.\Wehave
S(vn) = hnla), S(vi,Yit1-->n) = hi(S(yit1,Vit2 -+, 7n))-
Let|w|,- denote the number of occurrences of a letter {a, b} in the wordw. Denote
Ny(k) = [S(Ves Yiet1s - - ¥n)lay My(K) = 1S (v, Vet1s- - V)l
The numbersV,, (k), M, (k) satisfy the equation:
Ny(k) = i Ny(k+1) + Ny(k +2); My(k) = Ny(k+1) 3)

Observation. In case of the directive sequenge 1, ..., 1) describing the Fibonacci
word the numbersV, (k) are Fibonacci numbers, since the number of letidrs fib,,
equals the size ofib,, 1.

Example. For the wordS(1,2,1,3,1) = ababaabababaabababaabababaababaab
from Figure 1 we have = (1,2,1,3,1) and:

S(1) = ab, S(3,1) = aaaba, S(1,3,1) = (ab)>a ab,

N’Y(?’) = |S(3a 1)|a =4, NW(Q) = |S(173a 1)|a =95

Lemma?2. Let A = N,(2), B = Ny(3)andw = S(y0,71,--.,7=). Then
lw| = (w+)m+1)A+ (v+1)B

Proof. We havelw| = N,(0) + M, (0) andM,,(0) = N,(1).
Hence|lw| = N,(0) + N, (1) and by equation (3):

[w| = 70Ny (1) + (71 + 1)N,(2) + Ny (3).
Now Equation (3) directly implies the thesis.
For our example wordl = 5, B =4, v = 1, 71 = 2. The formula gives the number

(44 1) 5+ 8 = 33, which is the correct length (1,2, 1,3, 1).

3 Counting runs and repetition ratios in Standard Words

We introduce a zero-one functiemary testing if the number equals 1,

if x = 1thenunary(z) = 1 elseunary(z) = 0.
Similarly define zero-one functior@en (k) andodd(k) with the value equal 1 iff is
even (odd), respectively.



We use the following notation in this section:

A= N'y(Q) = |3'72a73---a7n)|a7 B = NW(S) = |S(737'74---a'7n)|a

Ay) =n—1— (1 +...+7) —unary(yn).
The following theorem will be proven later.

Theorem 1. [Formula for the number of runs]
Letn >3andy = (yo0,.-.,7x). Then the number of runsin S(v) equals

) m+2)A+B+A(R) —odd(n) if vo=1;m>1
7)) = 2A 4+ 3B + A(y) — even(n) if vo>1mm=1"
2m+1)A+ 2B + A(y) Otherwise

Example 2 We now show how to computg(1, 2,1, 3,1), using our formula, for the
word shown in Figure 1. In this case

v = (Y0,7172,73,74) = (1,2,1,3,1) andn =4
A=Ny(2)=5 B=Ny(3)=4, A=(4—-1)—-7=4, even(n) =1
Theorem 1 implies correctly (see Figure 1):
p(v) = (m+2)A+B+A—even(4) = 4A+B—-4—-1=4-5+4-4—-1 = 19.

Example 3 As the next example derive the formula for the number of inf$bonacci
word fib, = S(1,1,...,1) (n ones)fom > 3. Let F;, be then-th Fibonacci number.
In this caseN, (k) = F,,_,_1. According to formula from Theorem 1 we have

p(fiby) = 2N,(2) +2N,(3) +n—1—n—1—1
=2F, 34+2F,_4—3 =2F,_o—3.
Theorem 2. p(w) < 2 |w| for eachw € S

Proof. The easy whemn < 2 can be considered separately, we omit a simple proof for
this case. Assume now that> 3 and consider 4 cases.
Letw = Svo,...,7m). Observe thatA() < 0.

Case 1liyg = v1 = 1. We have, due to Lemma v| = 34 + 2B.
According to Theorem 1 we haygy) <2 A+ 2 B. Then

p(w) <2A+QB <é
lw| = 3A+2B ~ 5

due to inequalitiest > B > 1. This completes the proof in this case.



Case 2199 = 1; 71 > 1. We have, due to Lemma 2:
lw| = (271 +1) A+2B
We have also, due to Theorem 1, that) < (11 + 2) A + B. Consequently:

plw) . (m+2)A+B _4
W] S@2nt1)AtT2B =5

Y142 4
becausey; > 2 ands s <5

Case 3179 > 1; 71 = 1. Inthis case we have(w) < 2A + 3B, due to Theorem 1,
and , due to Lemma 2,

wl = (v+2)A+ (w+1)B > 4A+3B

Consequently we have

p(w) < 2A+3B < 3A+ 2B

3
< Z
lw| ~4A+3B ~4A+3B — 4

Case 419 > 1; 1 > 1. Inthis case, due to Theorem 1 and Lemma 2, we have
plw) < 2m+1)A + 2B,

lw| = (+1)m+1) A+ (n+1)B.

We have
plw) _ 27 +1)A+ 2B _@2n+hA+2B _ 4
lw| ~ (+D)m+D)A+ (w+1)B ~ Bm+1)A+3B ~ 5
because
271+1<§
3mm+175

This completes the proof.

Theorem 3.
For the class S of standard words we have

sup{% cweS}t =08

Proof. Let
k
w, = 91,2,k k) = ((ababa)]C ab) ababa,

see the figure 2 for the cage= 3. We havewy| = 5k% + 2k + 5.
Theorem 1 implies thap(1,2, k, k)| = 4k? — k + 3. Consequently

_ plwp)  4R2 k3
lim 29 gy 28 TFTY g
oo |wp| | heso 5EZ+ 2k 15
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Fig. 2. The structure of runs a§(1, 2, k, k) for k = 3, there aretk® — k +3 = 36 runs.

Theorem 4.
W& can count number of runsin standard word S(7yo, . . ., v») intime O(n).

Proof. We need only to compute i@(n) time the numbersv,, (k) for k = 1,2,3. We
can compute it iterating Equation 2.

Algorithm ComputeN, (k);

r:=1;y:=0;

for i := n downto & do
(z,y) == (vi-x+y, x)

return z;

4 The proof of Theorem 1

We assume now that;’ are as given by recurrences described in Equations 1,2. The
structure of subword graphs for standard Sturmian word®ig special [14,13], in
particular it implies the following fact.

Lemma 3. [Structural Lemma] ‘
The period of each run of S(yo,71, - . ., 1) isof theformz]x;_1, where0 < j < ;.

We say that a run ishort if the length of its period does not exceled|, large if the pe-
riod exceedszs |, andmedium otherwise. Denote by.nort (), Pmed(Y), Piarge(Y)
the number of short, medium and large run$'imn respectively. For example we have
10 short, 8 medium and 1 large run in Figure 1.



Lemma 4. [Short Runs] The number of short runsin S(v) is

N,(2)+ Ny(3)—1 if o=11=1
(n) if vo=1;71>1
Psnort(7) = N,(1) 4+ Ny(3) —even(n) if v >1;91=1
) otherwise

Proof. We estimate separately numbers of runs with perigdandaz

Claim. Lety = (vo,.-.,7vs) be directive sequence. There are:
(@) N, (1) runs with periodrg if ~o > 1,
(b) M, (1) runs with periodzy if ~o =1,
(€) N,(2) runs with periods; if ;> 1,
(d) M, (2) runs with periode; if v = 1.

Point (a). Let us define morphismh(a) = a"b andh(b) = a. Every run with period
zo in §) is equal toa? or a?° 1. Every such run is separated by the letieand
corresponds to the lettarin 21 (S(vo, ..., 7n)) = S(V1,- -+ Vn)-

Point (b). The proof of this point is similar to (a).

Points (c,d).A run with the periodr; in §() corresponds to a run with the perioglin
h~1(S(v)) and now validity of this case follows from points (a) and (B)is completes
the proof of the claim and the lemma.

Lemma 5. [Medium Runs,n > 3] If n > 3 then

Pmea(7) = Ny(1) — Ny(2) — v + 1

Proof. The thesis follows directly from the following stronger icha(the proof is
omitted in this version)

Claim. Lety = (y0,.-.,7n). There are:
(@) N,(2) — 1 runs with periodz’ z( for each0 < i < ;.
(b) NN, (3) runs with periodz,.

The claim of the lemma follows by summing formulas from thénp®(a) and (b). We
have
(N,(2) =) (m =1+ N,(3) =

(MN4(2) + Ny(3)) — Ny(2) = +1 = Ny(1) = Ny(2) = +11
This completes the proof of the lemma.

Lemma 6. [Medium Runs, n=2] If n = 2 then

pmed(Y) = Ny(1) = Ny(2) =71 + 1 — unary(yn)

Proof. The proof for the case,, > 1 is similar to the one for Lemma 5. In the case
~v, = 1 there are no intermediate runs, and we have to suhiraety(~,) = 1 in this
case.



We reduce the problem of counting large runs to the one fontbog medium runs,
using the morphic representation.8f. Let h be a morphism and let = ajas ... a;
be a word of length.

The morphism partitions = h(y) into segmenté(a1), h(as)...h(ar). These seg-
ments are called here h-blocks.

We say that a subword of x is synchronizedwith A in x iff each occurrence ob in
x starts at the beginning of some h-block and ends at the erahwé &-block. Figure 3
shows examples of synchronized and non-synchronized sdbwdgth the morphism
ho = S(2,1,3,1) — S(1,2,1,3,1) related to the morphic structure 61,2, 1,3, 1).
Recall thatho(a) = a7°b, ho(b) = a.
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Fig. 3. The medium run-periods; zo = aba andze = ababa do not synchronize with, on the
string from Figure 1, while the large run-peried = ababaab is synchronized witlh,.

Lemma 7. [Synchronization Lemma]
The large run-periods are synchronized with kg in S(vo, ..., 7n)

Proof. We omit the proof of the followingyntactical fact.

Claim.
(@) If i > 2 thenz;z;_; ends witha?b or with (a70b)71 g
(b) a2 is not a sub-word ib (71, . . ., Vn)

In the inverse morphisr; ! the blocka?b goes toa and the block: goes tob. If the
word starts and ends witli"°b then it is obviously synchronized with the morphism.
The wordx;x;_1, for i > 2, starts witha?b. The only problem is when it ends with
a and this occurrence aof is followed by a>~!b. However, due to the point (a) of
the claim, we have an occurrence of the sequénte)” ™2 in S(v1,...,v,). After
applying the inverse df this sequence goes #6'*2 in S(v1,...,v,). However this

is impossible due to point (b) of the claim. This completesphoof.

The following fact is implied by synchronization lemma.

Lemma 8. [Recurrence Lemma]

plarge('YOv’Ylv'--;’Yn) = plarge('Yl,’YQ;---;'Yn) + pmed(’Yly’YQa---;'Yn)-



4.1 Completing the proof of Theorem 1
The claim of the next lemma follows from Lemma 5 and the remuce from Lemma 8.
Lemma 9. [Large Runs]

Plarge + Pmed = Ny(1) + n—1 — (v + ... + 1) —unary(yn)
Proof. According to Lemma 5 we have
Plarge T Pmed = (N'y(1> - N’Y(2) -m+1)+
(Ny(2) = Ny(3) =72 +1) + ...+ (Ny(n—1) = Ny(n) — yn—1+ 1 —unary(y,))
= Ny(1) + n—1 — (1 + . + ) —unary(yn),
sinceN, (n) = ~,. This completes the proof.

Now the formula in Theorem 1 results by combining the formdita ps},...» and for the
SUMpiarge + Pmea USING the equalities

P(Y) = Pshort(V) + Pmed(Y) + Prarge(v), and Ny (1) = y1.N,(2) + Nv(3).
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