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Semidefinite Programming

1 Maximum Cut - Integer Program

We start with the following motivating example:

MAX-CUT
Input: A weighted, undirected graph G = (V,E,w).
Output: A graph partition (A,A), A ⊆ V that maximizes

∑
uv∈E:u∈A,v∈B w(uv).

The approximate solution of this problem can be found by choosing a uniformly random parti-
tion. Since every edge with probability 1

2 has its ends in different sets, the expected value of the

objective function is
P

e∈E w(e)

2 . Therefore this is a 1
2 -approximation algorithm.

Our goal now is to improve this approximation ratio. First we examine the following LP
formulation:

maximize
∑
uv∈E

zuvw(uv)

xu + xv ≥ zuv ∀uv ∈ E
(1− xu) + (1− xv) ≥ zuv ∀uv ∈ E

0 ≤ xv ≤ 1 ∀v ∈ V
0 ≤ zuv ≤ 1 ∀uv ∈ E

The program above can be solved in polynomial time and then the result can be rounded.
Unfortunately:

xv =
1
2
∀v ∈ V

zuv = 1 ∀uv ∈ E

is a feasible solution, which shows that this LP has integrality gap equal to two. Therefore we
need to find another solution.

2 Maximum Cut - Semidefinite Program

Let’s formulate the new IP as follows:
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maximize
∑
uv∈E

1
2

(1− yuyv)w(uv)

y2
v = 1 ∀v ∈ V

In order to obtain a relaxation we will allow variables to be unit vectors in Rd for some d.
The integer multiplication yuyv will be treated as the dot product instead. We will show, that
a program defined this way, the Semidefinite Program (SDP), can be solved in polynomial time.
First we observe that this is actually the LP program. To see this let’s replace every dot product
yuyv with a new variable auv. Now the program has the form:

maximize
∑
uv∈E

1
2

(1− auv)w(uv)

avv = 1 ∀v ∈ V

and is currently unbounded. The missing constraints should guarantee that there exists a set
V of vectors in Rn such that ∀u, v auv = yuyv.

Let A = (auv) be the Gram matrix (matrix of inner products). Then A is obviously symmetric
since the inner product is symmetric. Recall from the algebra course that:

Definition 1. A symmetric matrix M ∈ Rn×n is said to be positive semi-definite if

∀x ∈ Rn xMxT ≥ 0

Theorem 2. Let M be a symmetric n× n matrix. The following are equivalent:

1. M is positive semi-definite.

2. All eigenvalues of M are non-negative.

3. There exists an m× n matrix V such that M = V V T .

Matrix A is positive semi-definite since we can take matrix formed from vectors yv as the
aforementioned matrix V . Hence the missing contraints have the form

xAxT ≥ 0 ∀x ∈ Rn

which can be written as

∑
u,v∈V

xuxvauv ≥ 0 ∀x ∈ Rn

Although this set of constraints is infinite, this problem can still be solved in polynomial time
as long as we are provided with the Separation Oracle.

The Separation Oracle can work as follows. We know that all eigenvalues of a positive semi-
definite matrix are non-negative. Therefore they can be computed in polynomial time within
desired accuracy ε. Solution is found if all of them are non-negative. Otherwise we have to fix the
eigenvector corresponding to a negative eigenvalue. Hence:

Corollary 3. Max-Cut SDP program can be solved in polynomial time.
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3 Random Rounding Algorithm

Now let’s concentrate on transforming vectors from the SDP result to integer values. 0.878-
approximation algorithm will be presented.

We choose a random vector r from the uniform distribution on the unit sphere. This vector
uniquely determines the hyperplane through the origin that is perpendicular to it and separates
vectors yv. Hence we can define:

A = {v : ryv ≥ 0}
B = {v : ryv < 0}

By spherical symmetry, every pair of vectors can be seen as vectors on the plane. Therefore
picking a random hyperplane is equivalent to choosing a random diameter of the unit circle. Hence,
from the equality:

yuyv = cos(∠yuyv)

the probability of cutting the egde uv is:

P[(u, v) is in cut] =
arccos(yuyv)

π

Now we are interested in estimating the approximation ratio of the randomized rounding algo-
rithm. It is known that:

min
(∠yuyv)∈{0,1}

∠yuyv

π
1
2(1− cos(∠yuyv))

≥ 0.87856 . . .

Therefore our algorithm will achieve ratio at least 0.878 at every egde. Hence:

Theorem 4 ([1]). The randomized rounding algorithm has the approximation ratio 0.878.

Remark 5. This algorithm can be derandomized.

Remark 6. Sometimes it is not sufficient to use R2 relaxation (e.g. K4).

Remark 7. If P 6= NP there is no algorithm with an approximation ratio higher than 16
17 .

Remark 8. If the Unique Games Conjecture is true then the randomized rounding algorithm is
optimal.
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4 Semidefinite Programs - Formal Definition

Finally we present two formal, equivalent definitions of the SDP. As we have seen above, SDP
variables can be vectors of Rd for some d. Hence the following definition appears:

maximize
∑

i,j∈{1,...,n}

cij < xi, xj >∑
i,j∈{1,...,n}

aijk < xi, xj >≤ bk ∀k

xi ∈ Rd d ≤ n ∀i ∈ {1, . . . , n}

But we have dealt also with positive semi-definite matrices and we have observed, that elements
of this matrices can be manipulated on separately. Therefore we can also formulate the following
form of the SDP:

maximize
∑

i,j∈{1,...,n}

cijxij∑
i,j∈{1,...,n}

aijkxij ≤ bk ∀k

X = (xij)1≤i,j≤n is positive definite
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