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Advanced Rounding Techniques & Asymmetric Travelling
Salesman Problem

1 Dependent rounding: continuation

We begin with a problem stated in the end of lecture 5.

Theorem 1.1. [Srinivasan et al. [4]] Let G = (V,E) be a bipartite graph and x : E → (0, 1) be an
arbitrary function. Then we can (algorithmically) construct binary random variables Xe such that

1. E[Xe] = xe for each e ∈ E,

2.
∑

e∈δ(v)Xe ∈ {bdvc , ddve} for each v ∈ V where dv =
∑

e∈δ(v) xe,

3. variables Xe for e ∈ δ(v) are negatively correlated for each v ∈ V .

Proof. Let us consider the following algorithm

Algorithm 1: Dependent Rounding

while E 6= ∅ do
Let C ⊆ E by a cycle, or a non-extendable path;
Let C = M1 ∪M2, where Mi are matchings;
α := min{xe : e ∈M1} ∪ {1− xe : e ∈M2};
β := min{1− xe : e ∈M1} ∪ {xe : e ∈M2};
with probability β

α+β do
foreach e ∈M1 do xe := xe − α;
foreach e ∈M2 do xe := xe + α;

otherwise
foreach e ∈M2 do xe := xe − β;
foreach e ∈M1 do xe := xe + β;

foreach e ∈ E do
if xe = 0 then set Xe = 0; E := E − e;
if xe = 1 then set Xe = 1; E := E − e;

Let Xe,k be a random variable equal to the value of xe after the (k− 1)-th step. Similarly Mi,k,
αk and βk denote matchings and coefficients chosen in the k-th step and E(·|Fk) means estimated
value conditioned on everything that happened before (i.e. it encompasses all previous random
choices made by the algorithm). We will now prove each property by induction.

1. Obviously Xe,1 = xe and in the last iteration k0 we have Xe,k0 = Xe. Therefore it suffices
to show E(Xe,k+1|Fk) = Xe for every Fk which implies EXe,k+1 = EXe,k, by total expectation
theorem.



E(Xe,k+1|Fk) =


Xe,k − α β

α+β + β α
α+β = Xe,k e ∈M1,k

Xe,k + α β
α+β − β

α
α+β = Xe,k e ∈M2,k

Xe,k e 6∈M1,k ∪M2,k

(1)

2. For k = 1 thesis is of course satisfied. If M1,k ∪M2,k forms a cycle then every vertex v has
zero or two adjacent edges that change value. The first case is trivial. In the second case, the edges
belong to different matchings and

∑
e∈δ(v)Xe,k+1 −

∑
e∈δ(v)Xe,k equals α− α (or β − β) = 0.

If M1,k ∪ M2,k is a path then the previous argument works for every vertex except for the
beginning and the end of the path – v1, v2. However the path is maximal so deg(v1) = deg(v2) = 1.
The last adjacent edge eventually gets rounded to 0 or 1 so

∑
e∈δ(v1)Xe becomes one of the two

integers closest to
∑

e∈δ(v)Xe,k what gives the thesis.
3. Let S ⊆ δ(v) for some vertex v. We will to show E(

∏
e∈S)Xe,k+1 ≤ E(

∏
e∈S)Xe,k for all k,

and the claim follows.
|S ∩ (M1,k ∪M2,k)| could be 0,1 or 2. If it is 0 then of course nothing changes.

The second case: S∩(M1,k∪M2,k) = {e1}. We can take advantage of the property E(Xe,k+1|Fk) =
Xe,k proven in part 1.

In the last case S ∩M1,k = {e1}, S ∩M2,k = {e2}.

E(Xe1,k+1Xe2,k+1|Fk) = (2)

= β
α+β (Xe1,k − α)(Xe2,k + α) + α

α+β (Xe1,k + β)(Xe2,k − β) = (3)

= Xe1,kXe2,k − αβ ≤ Xe1,kXe2,k (4)

E(
∏
e∈S

Xe,k+1|Fk) =
∏

e∈S−{e1,e2}

Xe,k E(Xe1,k+1Xe2,k+1|Fk) ≤
∏
e∈S

Xe,k (5)

Knowing this and with part 1 proven, we can conclude

E(
∏
e∈S

Xe) ≤ · · · ≤ E(
∏
e∈S

Xe,k+1) ≤ E(
∏
e∈S

Xe,k) ≤ · · · ≤ E(
∏
e∈S

xe) =
∏
e∈S

EXe (6)

This proves P (∀e∈SXe = 1) ≤
∏
e∈S P(Xe = 1). The condition P (∀e∈SXe = 0) ≤

∏
e∈S P(Xe =

0) can be obtained in the same way. Each step of the algorithm can be done in polynomial time.
The analysis is complete when we observe that in every step we erase at least one edge, so there
are O(n2) steps.

Remark 1.2. If the sums
∑

e∈δ(v) xe happen to be integers then we can guarantee that
∑

e∈δ(v)Xe

are respectively equal to them.

2 Swap rounding

In this section we will present another rounding technique, introduced in [3]. Let T1, T2 be some
spanning trees in G and let α1 + α2 = 1, αi ≥ 0. We will use characteristic function of a tree:
χT (e) = 1⇔ e ∈ T .

We want to sample spanning tree X (Xe would be binary variables saying if edge e belongs to
the tree) with conditions



1. EXe = α1χT1(e) + α2χT2(e)

2. variables {Xe} are negatively correlated

The easiest way to satisfy condition 1 is to sample tree T1 with probability α1 and T2 with
α2. Unfortunately appearances of edges would be highly correlated. We will need a tool from the
matroid theory.

Fact 1. If spanning trees T1, T2 are different, we can choose edges e1 ∈ T1 − T2, e2 ∈ T2 − T1 so
that T1 − e1 + e2 and T2 − e2 + e1 are also spanning trees.

Remark 2.1. For simplicity, we work on spanning trees in this section, but the reasoning is the
same for bases of any matroid.

This fact leads to the following algorithm. As long as T1 6= T2 pick e1, e2 as in Fact 1, set
T1 := T1 − e1 + e2 with probability α2 and T2 := T2 − e2 + e1 with probability α1. When T1 = T2
return T1.

Please note that edges from T1 ∩ T2 are taken for sure, the ones from T1 − T2 are rejected with
probability α2 and otherwise they will not be picked any more. Similarly for T2−T1. The algorithm
stops because |(T1 − T2) ∪ (T2 − T1)| decreases in every step.

Theorem 2.2 (Chekuri et al. [3]). The above schema guarantees negative correlation.

Remark 2.3. This method is easily generalized for larger sets of trees T1 . . . Tn and coefficients
α1 + · · · + αn = 1 by iteratively launching the algorithm for some pair Ti, Tj and setting weight
αi + αj for the resulting tree.

3 Maximum entropy sampling

Let us recall one of the LP formulations for the spanning tree problem.

∀∅6=S⊆V x(E(S)) ≤ |S| − 1 (7)

x(E) = |V | − 1 (8)

∀e xe ≥ 0 (9)

Let x lie in the interior of the solutions’ polytope. We want to sample integer solution X
satisfying:

1. X is a spanning tree (i.e. a vertex of the polytope)

2. EXe = xe

3. variables {Xe} are negatively correlated

Let πT be the probability of drawing tree T . The idea is to choose the distribution in such a
way it would maximize the entropy function −

∑
T πT log πT (we sum over the set of all spanning

trees in the graph).



Theorem 3.1 (Asadpour, Saberi [2]). Distribution satisfying 1-3 and maximizing entropy can be
expressed as

πT =
∏
e∈T

λe (10)

for some weights (λe) which may be found in polynomial time.

The question remains how to effectively draw trees knowing the numbers (λe). We will need a
generalized version of the Kirchhoff’s theorem.

Theorem 3.2. Consider a matrix M defined as follows: Mii =
∑

e∈δ(vi) λe and for i 6= j:
Mij = −λij if ij ∈ E and 0 otherwise. The algebraic complement of the field (1, 1) (which is
the determinant of M without first row and first column) equals

∑
T

∏
e∈T λe.

What is the probability that some particular edge e1 does not belong to T?

P(e1 6∈ T ) =
∑
T

∏
e∈T

λ1e (11)

where λ1e1 = 0 and λ1e = λe otherwise. Knowing this we can draw a random number y ∈ [0, 1]
and if y ≤ P(e1 6∈ T ) then we reject e1 (and remove it from the graph, setting λ1e = 0), otherwise
we include it in the tree (and contract it). We iterate this procedure until all edges are fixed – all
we need to know are probabilities

P(ek 6∈ T |e1 . . . ek−1 fixed) =

∑
T

∏
e∈T λ

k
e∑

T

∏
e∈T λ

k−1
e

(12)

where λke is defined in a way similar to λ1e before. All of them could be obtained using Theorem
3.2 with modified weights. Please note we only use the sums in division so weights do not need to
be normalized.

Theorem 3.3 (Asadpour, Saberi [2]). The above sampling algorithm satisfy conditions 1-3.

4 Techniques from the flow theory

In this section we present a few theorems concerning flows in graphs which will turn out helpful in
the next section. Firstly we recall some definitions.

Definition 1. A circulation in a directed graph G = (V,A) is a function c : A −→ R+ satisfying∑
a∈in(v) c(a) =

∑
a∈out(v) c(a) for every vertex v. For given cost function ω : A −→ R+ circulation

cost equals
∑

a∈A c(a)ω(a).

Definition 2. A cut in an undirected graph G = (V,E) is a division V = V1 ∪ V2, V1 ∩ V2 = ∅.
A size of a cut is defined as |E(V1, V2)| = |{v1 ∈ V1, v2 ∈ V2, v1v2 ∈ E}| (or as a sum of weights
between V1 and V2 in the general case). A minimal cut is a cut with the smallest size.



Theorem 4.1 (Hoffman [6]). Let G = (V,A) be a directed graph and functions l, u : A −→ N
satisfy l ≤ u. There exists a circulation c so l(a) ≤ c(a) ≤ u(a) for every edge a iff

∀S⊂V
∑

a∈A(S,V−S)

l(a) ≤
∑

a∈A(S,V−S)

u(a) (13)

Moreover for every cost function ω and integer bounds there exists an integer circulation min-
imizing the cost and it may be found in polynomial time. This remains true if some of u(a) are
infinite.

We now focus on the Karger’s algorithm. It searches for a minimal cut in a connected
undirected graph G = (V,E). The algorithm is surprisingly simple. While |V | > 2 take a random
edge and contract it (note that multiple edges may appear, we keep them). The two vertices in the
end represent a cut.

Theorem 4.2. For any minimal cut the probability of having it drawn is ≥ 1
n2 .

Proof. Let c equal the size of the minimal cut. This implies all vertices have degree ≥ c, so |E| ≥ cn
2 .

We get minimal cut V1, V2 if no edges from E(V1, V2) get erased. Probability of drawing one of
them in k-step is at most c

c(n−k+1)/2 , so

P(success) ≥ (1− c
cn/2)(1− c

c(n−1)/2) . . . (1− c
c3/2) = (14)

= (1− 2
n)(1− 2

n−1) . . . (1− 2
3) = n−2

n
n−3
n−1 . . .

1
3 = 2

n(n−1) ≥
1
n2 (15)

Remark 4.3. The number of minimal cuts in a graph is ≤ n2.

Similar bound can be obtained for slightly bigger cuts.

Theorem 4.4 (Karger [5]). The number of connected cuts of size ≤ αc is ≤ n2α for any half-integer
α. This remains true in weighted case.

Please note that Karger’s algorithm returns only connected cuts (i.e. cuts with both sides
inducing connected subgraphs). If a cut (V1, V2) is minimal then of course Vi are connected, but
otherwise we have to keep that in mind.

5 ATSP approximation

Asymmetric traveling salesman problem
Input: Set V , cost function w : V × V −→ R+ satisfying triangle inequality
Output: Hamiltonian cycle with the smallest cost

Theorem 5.1 (Asadpour et al. [1]). There is an O
(

logn
log logn

)
-approximation for ATSP



Although the difference between log n and logn
log logn seems negligible, it took long time to show

that approximation better than O(log n) is reachable.
We start with a LP relaxation.

min
∑
a

waxa (16)

∀v
∑

a∈in(v)

xa =
∑

a∈out(v)

xa = 1 (17)

∀∅6=S(V
∑

a∈out(S)

xa ≥ 1 (18)

∀a xa ≥ 0 (19)

Let x∗ be an optimal solution of the above LP. Let us define z(uv) = n−1
n (x∗(u, v) + x∗(v, u)).

Please note z belongs to the interior of the LP for spanning trees (7).

∀∅6=S⊆V x(E(S)) ≤ |S| − 1 (20)

x(E) = |V | − 1 (21)

∀e xe ≥ 0 (22)

We also assign costs to undirected edges so, that the cost of uv is equal to min(w(u, v), w(v, u)).
We will use the same symbol w to denote this new cost function, as it is always clear from the
context which cost is being used.

Definition 3. We call a spanning tree R (α, β)-thin in relation to z if its cost is not bigger than
cost of z times β and

∀∅6=S⊂V |E(S, V − S) ∩R| ≤ αz(E(S, V − S)) (23)

Theorem 5.2. We can find an (O
(

logn
log logn

)
, 2)-thin tree in relation to z.

Proof. We draw tree R using maximum entropy sampling. E(w(R)) = w(z) therefore from Markov
inequality we get w(R) ≤ 2w(z) with probability ≥ 1

2 .
Consider a cut S with size s in relation to z. Then E(|E(S, V − S) ∩ R|) = s. Let us take

α = 10 logn
log logn . As MES gives us the negative correlation we can use the Chernoff bound (see Lecture

5).

P(|E(S, V − S) ∩R| ≥ αs) ≤
(
eα−1

αα

)s
≤ n−2.5s (24)

(we omit the technical proof of the last inequality).
We want to estimate the probability of having at least one cut too large (larger more than α

times its weight in z) – we call this event B. Please note LP 16 guarantees that all (directed) cuts
in x∗ have sizes in [1, n2 ]. Therefore size of the smallest cut in z must be ≥ 2(1− 1

n). We can group
all cuts according to their sizes [2(1− 1

n), 3(1− 1
n)), [3(1− 1

n), 4(1− 1
n)) . . . [(n− 1)(1− 1

n), n(1− 1
n)]

and use Theorem 4.4.



P(B) ≤
n∑
k=3

nkn−2.5(k−1)(1−
1
n
) = O(

n∑
k=3

n−1.5) = O(
1√
n

) (25)

Therefore we sample desired tree with high probability.

Let T0 be a (undirected) tree from theorem 5.2. We transform T0 into a directed tree T replacing
each edge uv with (u, v) or (v, u) choosing the one with smaller cost.

Theorem 5.3. We can find an integer circulation containing T with cost ≤ (2α+ 2)OPT .

Proof. We want to use Theorem 4.1 with l = χT , u = χT + 2αx∗ (α as defined in proof of Theorem
5.2). We need to ensure that

∀S⊂V
∑

a∈A(S,V−S)

l(a) ≤
∑

a∈A(V−S,S)

u(a) (26)

Indeed, as T0 was (α, 2)-thin

∑
a∈A(S,V−S)

l(a) =
∑

a∈A(S,V−S)

χT (a) ≤
∑

e∈E(S,V−S)

αz(E(S, V − S)) ≤
∑

a∈A(S,V−S)

2αx∗(a) (27)

Since x∗ is a circulation we have
∑

a∈A(S,V−S) 2αx∗(a) =
∑

a∈A(V−S,S) 2αx∗(a) and so we get∑
a∈A(S,V−S)

l(a) ≤
∑

a∈A(V−S,S)

2αx∗(a) ≤
∑

a∈A(V−S,S)

u(a) (28)

The cost of T0 is the same as that of T by definition, and so by Theorem 5.2 is at most
2OPT . Circulation x∗ is a relaxation of ATSP problem so its cost is ≤ OPT and so the cost of
the circulation whose existence follows from Hoffman’s Theorem is at most that of χT + 2αx∗, i.e.
≤ (2α+ 2)OPT . Therefore cheapest circulation with lower bound l = χT and no upper bound also
has cost ≤ (2α+ 2)OPT . One can also ensure that it is integral by Hoffman’s Theorem.

Proof of Theorem 5.1. Let c be the circulation from Theorem 5.3. It represents a connected multi-
graph over V . Moreover it is Eulerian and let v1 . . . vm be some corresponding Eulerian cycle. We
can change it greedily into Hamiltonian cycle by shortcutting vertices which have already occurred.
As the weight function w satisfies the triangle inequality, shortcutting will not increase the cost of
the path.

6 In the next lecture

Lecture 7 will concern metric embeddings. Here is the general idea. Image we try to design an
approximation algorithm for a problem that is hard for general metric spaces (or we just do not
know how to approximate it well), but easy for specific spaces like `1, `2, `∞, etc. One could try
to embed the given metric space into one of these metrics with as little distortion as possible, solve
the problem there, and pull back the solution.

In the next lecture we consider the problem of approximate (or low-distortion) embeddings of
general metrics into tree metrics, i.e. shortest path metrics induced by (weighted) trees.



More specifically, for a given metric (V, d) we would like to find a mapping φ of V into a vertex
set of some tree T (a tree-embedding), so that

d(x, y) ≤ dT (φ(x), φ(y)) ≤ αd(x, y)

and α should be relatively small, but may depend on n.
Unfortunately that goal is impossible to achieve even for a cycle. We will show in the next

lecture that in this case we need to have α = Ω(n). Therefore we relax our goal slightly. We
construct a distribution on tree-embeddings, such that

d(x, y) ≤ dT (φ(x), φ(y))

and
EdT (φ(x), φ(y)) ≤ αd(x, y),

where φ is a random mapping into a tree T (also random).
One can easily see that by removing a random edge from a cycle, we obtain such a distribution

with α = 2. What is a bit surprising, and very useful, is that we can actually construct such a
distribution for any metric, with α = O(log n).
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