
Lecture 4 (20.03.2013) Scribe: Daniel Malinowski
Lecturer: Marcin Mucha

Advanced approximation using linear programming

1 Linear programming

During the next two lectures we will apply the following strategy:

1. Take an easy (polynomially solvable) problem P1.

2. Write a linear program LP1 for P1 and prove some properties of it.

3. Change program LP1 into LP2 whose (integer) solutions correspond to solutions of a hard
problem P2.

4. Create an algorithm for finding good approximate solutions to P2 by using the structural
results proved for P1.

Now we will recall some basic properties of linear programming.
Let LP be a linear program with n variables. The set of feasible solution of LP is a polytope

W ∈ Rn,

Fact 1. For x ∈W the following conditions are equivalent:

• x is a vertex of W (x is not in an internal point of any segment contained in W).

• There exist n linearly independent constraints in LP which are tight (that means that the
inequalities are in fact equalities).

Such x is called a vertex or an extreme solution.

Corollary 2. If LP contains constraints xi ≥ 0 for all variables xi, and x is an extreme solution
of LP with k non zero variables, then x satisfies k nontrivial (different than xi ≥ 0) constraints
from LP with equality (tightly).

Remark 3. These k constraints are linearly independent even after removing from them variables
equal to zero.

Fact 4. If W is bounded, then there exists an optimal solution which is a vertex.

Fact 5. Such solution can be found in polynomial time.

Fact 6. Even if number of constraints in LP is big (e.g. 2n), then an optimal extreme solution can
be found in poly(n) time if we have an effective representation of solutions of LP i.e. an algorithm,
which works in poly(n) time and for a point a ∈ Rn decides if a ∈ W , and if not, then it returns
unsatisfied constraint. Such representation is called a separation oracle. The algorithm that can
solve linear programs given only a separation oracle is the ellipsoid algorithm.

2 A toy problem

Let us consider the maximum weighted bipartite matching problem.
Let G = (V,U,E) is a bipartite graph, E 6= ∅ and (for simplicity) |V | = |U |. We also have a

weight function w : E → R≥0.
The following linear program LP is a relaxation of the integer linear program for this problem:

maximize
∑
e∈E

w(e)xe

∀e∈Exe ≥ 0

∀v∈V ∪U
∑
e∈δ(v)

xe ≤ 1

where δ(v) is a set of edges incident to v.

Fact 7. In optimal extreme solutions of LP each xi ∈ {0, 1}.

Proof. Let x∗ be a optimal extreme solution of LP , E∗ = supp(x∗) = {e ∈ E : w(e) > 0}, V ∗, U∗ –
vertices incident with E∗ from V,U respectively and G∗ = (V ∗, U∗, E∗).

Without loss of generality we can assume that G = G∗, because any solution for G∗ is a solution
for G and any extreme solution for G is also an extreme solution for G∗.

By corollary 2, there exist |E| constraints of the form x∗(δ(v))
def
=

∑
e∈δ(v) x

∗
e ≤ 1 which are

tight. Such vertices v are called tight.

Lemma 8. There exist e s.t. x∗e = 1.

Proof. On the contrary assume that ∀e∈E0 < x∗e < 1. So degree of each tight vertex is at least 2.

|E| ≥ 1

2

∑
v tight

deg(v) ≥ 1

2

∑
v tight

2 = #{tight vertices} ≥ |E|

That means that these inequalities are in fact equalities. So all vertices are tight and have degree
2. Therefore G consists of cycles of even length. But since G is bipartite, if we take vertices from
the left side of G and sum their constraints, we get the same value as if we summed constraints
corresponding to vertices from right side. That means that these constraints are not linearly
independent. We get a contradiction, so there exist an edge e s.t. x∗e = 1

Now we can prove by induction that x∗(e) = 1 on all edges (recall that there all edges with x∗(e)
have been removed in the preprocessing stage). If there are no edges then the claim is obviously
true. Otherwise we take any e = (uv) with x∗e = 1. Constraints of the LP imply that e is the only
edge in the support of x∗ incident on u or v. Therefore, we can just remove u, v together with e
from G. The resulting graph is smaller and x∗ induces an optimal extreme solution for this graph,
so by induction x∗(e) = 1 for all edges.

Finally, since we initially removed all edges with x∗(e) = 0 from the graph, we get the claim.

3 Generalized Assignment Problem (GAP)

Generalized Assignment Problem (GAP)
Input: set of jobs J , set of machines M , bipartite graph G = (J,M,E), execution times pji
for (ji) ∈ E, execution costs cji for (ji) ∈ E and maximum total time ti for i ∈M
Question: assign each job j to a machine i s.t. (ji) ∈ E and ∀i∈M

∑
j assigned to i pji ≤ ti

minimizing
∑

i∈M
∑

j assigned to i cji

We will find a solution to this problem with cost ≤ OPT , but possibly using as much as twice
the allowed time on each machine.

Let us consider a relaxation LP of a ILP program for GAP:

minimize
∑

(ji)∈E

cjixji

∀j∈J
∑
i∈M

xji = 1

∀i∈M ′
∑
j∈J

pjixji ≤ Ti

∀j∈J,i∈Mxji ≥ 0

where at the beginning M ′ = M (but with time we will remove some machines from M) and Ti = ti.
As before we can remove variables xji s.t. x∗ji is equal to 0. So from corollary 2 we get

Fact 9. Let x∗ be an optimal extreme solution of LP . Then there exist J̃ ⊂ J and M̃ ⊂M ′ s.t.

• ∀j∈J̃
∑

i∈M xji = 1 (note that this holds for all j ∈ J)

• ∀i∈M̃
∑

j∈J pjixji = Ti

• constraints corresponding to J̃ and M̃ are linearly independent.

• |J̃ |+ |M̃ | = |E|

�

Algorithm 1: (due to David B. Shmoys and Éva Tardos)

Remove from G edges (ji) s.t. pji > ti (opt does not use them),
so we can assume that always pji ≤ ti;
while there exist unassigned jobs do

[2.1] Find a new optimal and extreme solution x∗ of LP ;
[2.2] Remove edges (ji) s.t. x∗ji = 0;
[2.3] If there exists edge (ji) s.t. x∗ji = 1 then assign j to i, remove vertex j
from G and decrease Ti by pji;
[2.4] Otherwise if there exists i ∈M ′ s.t. deg(i) = 1 then remove i from M ′;
[2.5] Otherwise if there exists i ∈M ′ s.t. deg(i) = 2 and

∑
(ji)∈E xji ≥ 1 then

remove i from M ′;

Theorem 10. This algorithm works in polynomial time, finds a solution with cost ≤ OPT and
every machine i ∈M uses at most 2ti time.

Proof. To show, that the algorithm is polynomial it is sufficient to show that during every iteration
of the loop one of the conditions 2.3, 2.4 or 2.5 is satisfied. This is because operation 2.3 decreases
the size of G, while 2.4 and 2.5 decrease the size of M ′.

Assume that there are no jobs with degree 1 (otherwise x∗ji would be equal to 1) and no machines
in M ′ with degree 1. Counting the edges and using Fact 9 we get

|E| ≥ 2|J |+ 2|M ′|
2

≥ |J̃ |+ |M̃ | ≥ |E|

Each inequality must be an equality so J = J̃ , M̃ = M ′ (which means that all constraints are
tight) and degrees of all vertices are equal to 2. Like before, G consists of cycles of even length.
This time however, we cannot use the simple left side vs right side dependence argument, because
the constraint coefficients are no longer 0/1. Instead, note that for each job in any of the cycles in
G, the sum of x∗ is equal to 1. Therefore one of the machines in this cycle has sum of x∗ at least
1. Condition 2.5 is satisfied for this machine.

Therefore, the algorithm stops after a polynomial number of steps. It is clear that the solution
returned it is not worse than OPT . This is because whenever x∗ji = 1 and we assign job j to
machine i, we pay pji, but we also decrease the cost of the optimum LP solution by pji. Therefore
the total cost paid in this way is at most OPT . The only other thing that we change in the linear
program is we remove some constraints – but this can only make the cost of the optimum solution
smaller.

To show that every machine i ∈ M uses at most 2ti time we have to look at the moment in
which it is removed from M ′. Before that moment we have used ti − Ti time on it.

If we delete it (from M ′) in 2.4 then in the future we can only use it for the single remaining
job, or not use it at all. But even if we use it for this job, we will use at most ti additional time,
because we know, that pji ≤ ti – so it will be used for at most ti + ti = 2ti time.

And if we delete it in 2.5 then we know, that it is connected to exactly two jobs – j1 and j2. In
this case, we know that x∗j1i + x∗j2i ≥ 1 and the solution is feasible, so pj1ix

∗
j1i

+ pj2ix
∗
j2i
≤ Ti. By

easy calculation we get that min(pj1i, pj2i) ≤ Ti, so even if we assign both of these jobs to machine
i, the final solution will use machine i for at most max(pj1i, pj2i) ≤ ti additional time.

