
Deterministic 7/8-approximation for the Metric Maximum TSP

Łukasz Kowalik and Marcin Mucha∗

Abstract

We present the first7/8-approximation algorithm for the maximum traveling salesman prob-
lem with triangle inequality. Our algorithm is deterministic. This improves over both the random-
ized algorithm of Hassin and Rubinstein [3] with expected approximation ratio of7/8−O(n−1/2)
and the deterministic(7/8 − O(n−1/3))-approximation algorithm of Chen and Nagoya [1].

In the new algorithm, we extend the approach of processing local configurations using so-
called loose-ends, which we introduced in [6] for the asymmetric variant (ATSP).

1 Introduction

The Traveling Salesman Problem and its variants are among the most intensively researched problems
in computer science and arise in a variety of applications. In its classical version, given a set of vertices
V and a symmetric weight functionw : V 2 → R≥0 satisfying the triangle inequality one has to find a
Hamiltonian cycle of minimum weight.

There are several variants of TSP, e.g. one can look for a Hamiltonian cycle of minimum or maximum
weight (MAX-TSP), the weight function can be symmetric or asymmetric, it cansatisfy the triangle
inequality or not, etc.

In this paper, we are concerned with the MAX-TSP variant, where the weight function is symmetric
and satisfies the triangle inequality. This variant is often calledthe metric MAX-TSP.

MAX-TSP (not necessarily metric) was first considered by Serdyukovin [8], where he gives a3
4
-

approximation. Next, a5
6
-approximation algorithm for the metric case was given by Kostochka and

Serdyukov [5]. Hassin and Rubinstein [3] used these two algorithms together with new ideas to achieve
a randomized approximation algorithm with expected approximation ratio of(7

8
− O(n−1/2)). This

algorithm has later been derandomized by Chen and Nagoya [1], at a cost of a slightly worse approxi-
mation factor of(7

8
− O(n−1/3)).

In this paper, we give a deterministic7
8
-approximation algorithm for metric MAX-TSP. Our algorithm

builds on the ideas of Serdyukov and Kostochka, but is completely different from that of Hassin and
Rubinstein. We apply techniques similar to those used earlier in [6] for the directed version of MAX-
TSP with triangle inequality.

1.1 Closer look at previous results

Classic undirected MAX-TSP algorithm of Serdyukov [8] starts by constructing two sets of edges of
the input graphG: a maximum weight cycle coverC and a maximum weight matchingM , and then
removing a single edge from each cycle ofC and adding it toM . It can be shown that we can avoid
creating cycles inM , so in the end we get two sets of paths:C

′ andM ′. These sets can be extended to
Hamiltonian cycles arbitrarily. Since we started with a maximum weight cycle coverand a maximum

∗Institute of Informatics, University of Warsaw, Poland. E-mail addresses:{kowalik,mucha}@mimuw.edu.pl.

1

weight matching, we havew(C′) + w(M ′) ≥ w(C) + w(M) ≥ 3

2
OPT. It follows that the better of

the two cycles has weight at least3

4
OPT. Here, we used two standard inequalities:w(C) ≥ OPT and

w(M) ≥ 1

2
OPT. The latter only holds for graphs with even number of vertices. The case of odd

number of vertices needs separate treatment.

Serdyukov’s algorithm works for any undirected graph, with weight function not necessarily satisfying
the triangle inequality. However, if this inequality is satisfied, we can get a muchbetter algorithm.
Kostochka and Serdykov observed the following useful fact (see e.g. [3] for a proof).

Lemma 1.1 (Kostochka, Serdyukov [5]). Let G = (V, E) be a weighted complete graph with a
weight functionw : E → R≥0 satisfying the triangle inequality. LetC be a cycle cover inG and let
Q = {e1, . . . , e|C|} be a set of edges with exactly one edge from each cycle ofC. Then the collection
of pathsC \ Q can be extended in polynomial time to a Hamiltonian cycleH with

w(H) ≥ w(C) −

|C|
∑

i=1

w(ei)/2.

Kostochka and Serdyukov [5] propose an algorithm which starts by finding a maximum weight cycle
coverC and then applies the above lemma withQ consisting of the lightest edges of cycles inC. Since
all cycles have length at least3, the weight of the removed edges amounts to at most1

3
w(C), so we

regain at least1
6
w(C), which leads to5

6
-approximation. (Note that if it happens that all the cycles inC

have length at least 4 we get7

8
-approximation).

2 Our approach

Similarly to Serdykov’s algorithm (as well as that of Hassin and Rubinstein),our algorithm starts by
constructing a maximum weight cycle coverC and maximum weight matchingM . In our reasoning
we need the inequalityw(M) ≥ 1

2
OPT, which holds only for graphs with even number of vertices. In

the remainder of this paper we only consider such graphs. Our results can be extended to graphs with
odd number of vertices, this is discussed in Appendix B.

In all previous algorithms edges are moved from the cycle coverC to the matchingM . We do not
follow this approach. Instead, we remove some edges fromC and add some edges toM . The edges we
add toM are not necessarily the edges we remove fromC. In fact, they might not even be cycle edges
in C. All we need to guarantee is that their total weight is sufficiently large compared to the weight
loss inC.

Here is how it works. Letmin(Ci) be the lightest edge of a cycleCi ∈ C. Since removing a single
edge from eachCi and then joining the resulting paths using Lemma 1.1 results in the weight loss
equal to half the weight of the removed edges, it should be clear that we should removemin(Ci) from
eachCi. The weight loss is then

∑

i w(min(Ci))/2.

We are going to describe an iterative process of adding edges to a collection of pathsP , initially equal
to M . Edges will be added inphases, each phase corresponds to a single cycleCi ∈ C. After finishing
the phase corresponding toCi we will call Ci processed. The edges added in the phase corresponding
toCi will usually, but not neccessarily belong toCi or at least connect vertices ofCi. Their total weight
will also be directly related tow(Ci) andw(min(Ci)). Let (α, β) ⋆ Ci = αw(Ci) + βw(min(Ci)).
The following Lemma shows why this is a useful definition:

Lemma 2.1. If during processing the cycles inC, we can add edges of total weight at least
∑

Ci∈C
(α, 1/2)⋆

Ci to M , then we get a(3/4 + α/2)-approximation algorithm.

Proof. Let H1 be the Hamiltonian cycle obtained fromC by using Lemma 1.1, and letH2 be the cycle
obtained fromM by processing all cycles ofC and patching the resulting collection of paths into a

2

Hamiltonian cycle. Then

w(H1) + w(H2) ≥

[

w(C) −
∑

i

w(min(Ci))/2

]

+

+

[

w(M) + αw(C) +
∑

i

w(min(Ci))/2

]

≥ (3/2 + α)OPT,

so the heavier of the two cycles is a(3/4 + α/2)-approximation.

In the remainder of the paper, we show that this can be done forα = 1/4, yielding a7/8-approximation.

2.1 Skeleton of the algorithm

A graphP is sub-Hamiltonian if it is a family of disjoint paths or a Hamiltonian cycle (i.e. it can be
extended to a Hamiltonian cycle). LetP be a family of disjoint paths. We say that set of edgesS is
allowedw.r.t. P , if S is disjoint fromP and the edge sum ofP andS is sub-Hamiltonian. We call an
edgee allowedw.r.t P if {e} is allowed w.r.t.P . If an edge is not allowed, we call itforbidden.

In the algorithm presented below, we maintain a sub-Hamiltonian graphP satisfying the following
invariant.

Invariant 1. For any vertexv, if degP (v) = 2 then the cyclev belongs to has been already processed.

Consider a phase of our algorithm and letC be the cycle that is still unprocessed. In this situation a
setS of edges will be called asupportof C if S is allowed w.r.t.P , and after addingS to P (and thus
makingC processed) Invariant 1 is satisfied.

The following is the skeleton of the algorithm, that we will develop in the remainderof the paper.

Algorithm 2.1 MAIN ALGORITHM

1: Let M be a heaviest matching andC a heaviest cycle cover inG.
2: Let H1 be the Hamiltonian cycle obtained fromC by using Lemma 1.1.
3: P := M
4: Mark all cycles inC asunprocessed.
5: for each unprocessed cycleC in C do
6: FindS, a support ofC of large weight.
7: P := P ∪ S
8: Mark C as processed.

9: Arbitrarily patchP to a Hamiltonian cycleH2.
10: Return the heavier ofH1 andH2.

2.2 Loose-ends

When considering a cycleCi, we are going to extendP by adding some edges connecting the vertices
of Ci. Ideally we would like to addni/2 new edges, whereni is the length ofCi. However, this is not
always possible, because some of the cycles have odd length andni/2 is not an integer. Instead we are
going to use the idea of loose-ends introduced in [6].

A loose-endis a vertexv, for which degP (v) = 1 even though the cycle it belongs to is already
processed. A vertexv of cycleC ∈ C becomes a loose-end if no edge adjacent tov is added toP when
C is processed. This vertex can be connected with some other vertex at a later stage and cease being a
loose-end.

3

Consider two odd-length cyclesC1 andC2, say both of length 5. When we processC1, we can only
add 2 edges toM , and some vertexv ∈ C1 is not an endpoint of any of these edges, so it becomes a
loose-end. Later, when we processC2, we can add 3 edges toM , by connecting one ofC2’s vertices
with v. Using the triangle inequality, we can guarantee that this edge has large weight. So in this
case we get a little less weight fromC1 and a little more weight fromC2. It is important to process
cycles in order that guarantees that the weight lost when processing theearlier cycles (the ones that
give loose-ends) is dominated by the weight gained when processing the later cycles (the ones that use
loose-ends). We will show that the algorithm can determine this order.

Let S be a support ofC in some phase of the algorithm. We will say thatS is a k-support if after
adding it toP (and thus processing cycleC) the number of loose-ends increases by at leastk (k could
be negative here).

In the following section we describe in detail how the cycles are processedin our algorithm. For
even-length cycles we construct heavy0-supports, and for odd-length cycles we construct both(−1)-
supports and(+1)-supports.

When constructing(−1)-supports, we need to assume that at least one loose-end is available. Unfortu-
nately, just one loose-end may be insufficient to guarantee the existence of a (−1)-support. This could
happen if the loose-endu is connected toC, the cycle being processed, by a path inP . In that case,
adding an edge betweenu and a vertex ofC to P may create a cycle inP . This is acceptable only if
that cycle is Hamiltonian (in particular,C would have to be the last cycle processed). Luckily, it turns
out that two loose-ends are always sufficient to avoid creating such short cycles. Thus, when describ-
ing a(−1)-support for each odd cycle we will consider two situations: when there are two loose-ends,
and when there is exactly one loose-end but the algorithm is in the last (i.e.|C|-th) phase.

3 Processing cycles

In this section we consider an arbitrary phase of the algorithm and we describe supports of unprocessed
cycles. The construction of a support of such a cycleC may depend on the number of loose-ends and
the way the collectionP of paths constructed so far interacts withC, in particular on which edges of
C are forbidden etc.

The following observations will be used in many of our proofs.

Observation 1. Let C be an unprocessed cycle and letM ⊂ E(C) be a matching. Let̃C be any cycle
in P ∪ M . Then if C̃ contains an allowed edge ofM , it contains at least two allowed edges. Also, if
C̃ contains a forbidden edge ofM , it contains exactly one edge ofM .

Observation 2. In any phase of the algorithm and for any unprocessed cycleC, forbidden edges with
both endpoints inC form a matching.

Consider an unprocessed cycleC. A set of edgesS will be called asemi-supportof C whenP ∪
S contains vertices of degree at most 2, and after addingS to P (and thus makingC processed)
Invariant 1 is satisfied. If after addingS to P the number of loose-ends increases byk be will also call
S ak-semi-support (k may be negative).

Note that the only difference between a semi-support and a support is that after adding a semi-support
to P we may get a non-Hamiltonian cycle inP . The following lemma, similar to the Kostochka-
Serdyukov technique, will be used to convert a semi-supportM to a supportS without losing much
weight. The weight loss in this process depends on how the weight ofM is distributed between allowed
and forbidden edges, on the weight of allowed edges ofM that belong to cycles inP ∪ M , etc.

Lemma 3.1. Consider any phase of the algorithm and letC be an unprocessed cycle. LetM be a
k-semi-support ofC. Assume there is a vertexx0 6∈ V (M), such thatx0 is a loose-end orx0 ∈ V (C).

4

x0 x1

y1

y2

x2

y3

x3

Figure 1: Breaking the cycles in the proof of Lemma 3.1. Dashed edges arelighter than the corre-
sponding solid edges. Crossed-out edges are the edges removed from the cycles.

Moreover, assumeP ∪M contains cycles (possibly of length 2)C1, . . . , Cq. For eachi, 1 ≤ i ≤ q, let
ei be any edge inM ∩ Ci. LetQ = {e1, . . . , eq} and letD =

⋃

i Ci. Finally, let us partition edges in
M into two sets:F containing forbidden edges, andA containing allowed edges.

Then one can findS, a k-support ofC, such that

(i) w(S) ≥ w(M \ Q) + 1

2
w(Q),

(ii) w(S) ≥ w(A \ D) + 3

4
w(A ∩ D) + 1

2
w(F).

Proof. Denote the ends ofe1 by x1 andy1 in such a way thatx0y1 is heavier thanx0x1. Note that
w(x0y1) = max{w(x0x1), w(x0y1)} ≥ 1

2
(w(x0x1) + w(x0y1)) ≥ 1

2
w(e1), where the last step

follows from the triangle inequality. Moreover, by replacinge1 by x0y1 we break the cycleC1 andx1

becomes a loose-end. We can proceed in this way for all cycles, i.e., for every i = 1, . . . , q the ends of
ei are labelledxi andyi so that

w(xi−1yi) ≥
1

2
w(ei). (1)

Let S = M \ {ei | i = 1, . . . , q} ∪ {xi−1yi | i = 1, . . . , q}. Clearly,P ∪ S does not contain cycles
hence it is sub-Hamiltonian. Also, observe that there are only 2 vertices, namelyx0 andxq whose
degrees differ in graphsP ∪ M andP ∪ S. SincedegP∪S x0 = 2 anddegP∪S xq = 1, after addingS
to P (and thus processingC) Invariant 1 is still satisfied, and soS is a support. Also note thatx0 is a
loose-end inP ∪ M and it is not a loose-end inP ∪ S, while xq is not a loose-end inP ∪ M and it is
a loose-end inP ∪ S. It follows thatS is ak-support.

Now let us bound the weight ofS. By (1),w(S) ≥ w(M \ Q) + 1

2
w(Q), which is claim (i). To prove

(ii), in each cycleCi we choose the lightest edgeei in M ∩ Ci and we assumeQ consists of these
edges. Notice thatF ⊆ Q (by Observation 1) and alsoA \ D ⊆ M \ Q, so by (i) we have,

w(S) ≥ w(M \ Q) + w(Q) ≥ w(A \ D) + w((A ∩ D) \ Q) + 1

2
w(A ∩ Q) + 1

2
w(F). (2)

By Observation 1, and sinceQ consists of the lightest edges in cycles,w((A∩D)\Q) ≥ 1

2
w(A∩D).

Thenw((A∩D) \Q) + 1

2
w(A∩Q) = w((A∩D) \Q) + 1

2
w((A∩D)∩Q) = 1

2
w((A∩D) \Q) +

1

2
w(A ∩ D) ≥ 3

4
w(A ∩ D). By plugging it into (2) we get (ii).

3.1 Even cycles

Lemma 3.2. Let C be an unprocessed 4-cycle and assume that there is at least one loose-end. Then
there is a0-support ofC of weight≥ (1

4
, 1

2
) ⋆ C.

Proof. We consider two cases:

5

Case 1 E(C) has at most one forbidden edge. We partitionE(C) into two matchings,M1 andM2.
W.l.o.g. assumeM1 does not contain forbidden edges. LetS1 andS2 be the supports corresponding to
M1 andM2 by Lemma 3.1 and letS be the heavier of them. Following the notation from Lemma 3.1,
defineA1, A2 (F1, F2) as the sets of allowed (resp. forbidden) edges ofM1, M2. Let D1, D2 be the
sets of edges ofE(C) that belong to cycles inP ∪M1 or P ∪M2 respectively. Also letA = A1 ∪A2,
F = F1 ∪ F2 andD = D1 ∪ D2.

Notice that by inequality (ii) of Lemma 3.1 applied toMi, i = 1, 2 we getw(Si) ≥ w(Ai \ Di) +
3

4
w(Ai ∩ Di) + 1

2
w(Fi). Summing up the two inequalities yields

w(S) ≥ 1

2
(w(S1) + w(S2)) ≥

1

2
w(A \ D) + 3

8
w(A ∩ D) + 1

4
w(F). (3)

Let us first assume thatP ∪M1 contains a cyclẽC. By Observation 1 both allowed edges ofM1 are in
C̃. So either both chords ofC are forbidden or both edges ofM2 are. Since we assumed thatE(C) has
at most one forbidden edge, it is the chords ofC that are forbidden. It now follows from Observation 2
that both edges ofM2 are allowed, soA = C. From (3) we getw(S) ≥ 3

8
w(A) = 3

8
w(C) ≥ (1

4
, 1

2
)⋆C.

Hence, we may assume thatP∪M1 contains no cycle. It follows thatD1 = ∅, so|A\D| ≥ 2. From (3)
we getw(S) ≥ 1

2
w(A\D)+ 3

8
w(A∩D)+ 1

4
w(F) ≥ 1

4
(w(A\D)+w(A∩D)+w(F))+ 1

4
w(A\D) ≥

1

4
w(C) + 1

4
w(A \ D) ≥ (1

4
, 1

2
) ⋆ C, where the last inequality follows from|A \ D| ≥ 2.

v1

v2 v3

v4

u

S1

v1

v2 v3

v4

u

S2

v1

v2 v3

v4

u

S3

v1

v2 v3

v4

u

S4

Figure 2: Supports in Case 2 of the proof of Lemma 3.2

Case 2 E(C) has two forbidden edges. Denote the vertices ofC by v1, . . . , v4 in the order they appear
on C and assume w.l.o.g. thatv1v2 andv3v4 are forbidden. Letu be a loose-end. Consider four edge
setsS1 = {uv1, v2v3}, S2 = {uv2, v1v4}, S3 = {uv4, v2v3}, andS4 = {uv3, v1v4}. Note that these
sets are allowed since for anyi, edges ofSi belong to a single path inP ∪ Si (ending inv4, v3, v1

andv2 respectively). It follows that allSi are supports and we chooseS, the heaviest of them. Then
w(S) ≥ 1

4

∑

4

i=1
w(Si) ≥ 1

4
[2w(v2v3) + 2w(v1v4) + (w(uv1) + w(uv2)) + (w(uv3) + w(uv4))] ≥

1

4
[2w(v2v3) + 2w(v1v4) + w(v1v2) + w(v3v4)], where the last step follows from triangle inequality.

Hencew(S) ≥ 1

4
w(C) + 1

4
[w(v2v3) + w(v1v4)] ≥ (1

4
, 1

2
) ⋆ C.

Lemma 3.3. Let C be an unprocessed even-length cycle,|C| ≥ 6, and assume that there is at least
one loose-end. Then there is a0-support ofC of weight at least(1

4
, 1

2
) ⋆ C.

Proof. We partitionE(C) into two matchings,M1 andM2, let S1 andS2 be the supports correspond-
ing to M1 and M2 by Lemma 3.1, and letS be the heavier of these supports. We follow all the
definitions from the beginning of the proof of the previous lemma to obtain inequality (3).

From that inequality we getw(S) ≥ 3

8
w(A) + 1

4
w(F) = 1

4
w(C) + 1

8
w(A). It follows thatw(S) ≥

(1

4
, 1

2
) ⋆ C if |A| ≥ 4.

Since by Observation 2 we have|A| ≥ |C|/2, the only case we need to consider is that of|C| = 6 and
|A| = 3. W.l.o.g. assumeM1 = A andM2 = F . Let Q bet the set of the lightest edges from each
cycle inP ∪ M1 or P ∪ M2, one edge from each cycle. There is at most one such cycle inP ∪ M1,
since by Observation 1 each such cycle has to contain at least two edges.It follows that |A \ Q| ≥ 2.
By inequality (i) in Lemma 3.1 we getw(S) ≥ 1

2
(w(S1) + w(S2)) ≥ 1

2
w(E(C) \ Q) + 1

4
w(Q) =

1

4
w(E(C) \ Q) + 1

4
w(C) = 1

4
w(A \ Q) + 1

4
w(C) ≥ (1

4
, 1

2
) ⋆ C, as required.

6

3.2 Odd cycles

3.2.1 Triangles

For any cycleC, by max(C) we denote the heaviest edge inC.

Lemma 3.4. For any unprocessed triangleC, there is a(+1)-support ofC of weight at least(1

4
, 1

2
) ⋆

C − 1

4
w(max(C)).

Proof. Let x, y, z be the vertices ofC and assume w.l.o.g. that bothxz andyz are allowed. LetS
consist of the heavier of the edgesxz, yz. Clearly,S is a support andw(S) ≥ 1

2
(w(xz) + w(yz)) ≥

1

4
w(C) + 1

4
(w(xz) + w(yz)) − 1

4
w(xy) ≥ (1

4
, 1

2
) ⋆ C − 1

4
w(xy) ≥ (1

4
, 1

2
) ⋆ C − 1

4
w(max(C)).

Lemma 3.5. LetC be an unprocessed triangle and assume that there are two loose-ends.Then there
is a (−1)-support ofC of weight at least(1

4
, 1

2
) ⋆ C + 1

4
w(max(C)).

Proof. Let x, y, z bet the vertices ofC and letu andv be the loose-ends. We consider 2 cases:

Case 1 Both loose-ends are connected toC by paths, sayu is connected tox andv to y. Note that
in this case all edges ofC are allowed. LetS1 = {xy, zv} andS2 = {zy, xv}. Note that after
adding any of these sets toP , both added edges lie on a single path that ends inu (see Figure 3), soP
remains sub-Hamiltonian. Hence bothS1 andS2 are supports ofC. The heavier of them has weight
max{w(xy)+w(zv), w(zy)+w(xv)} ≥ 1

2
(w(xy)+w(zy)+w(zv)+w(xv)) ≥ 1

2
(w(xy)+w(zy)+

w(xz)) ≥ 1

4
w(C) + 1

2
w(min(C)) + 1

4
w(max(C)) = (1

4
, 1

2
) ⋆ C + 1

4
w(max(C)).

x

y

zu

v

S1

x

y

zu

v

S2

Figure 3: Supports in Case 1 of the proof of Lemma 3.5. Gray lines denote thepaths connecting
loose-ends withC.

Case 2 At least one loose-end, sayu, is not connected toC by a path inP . W.l.o.g. assume that both
xz areyz allowed. LetS1 = {xz, yu} andS2 = {yz, xu}. Note that addingS1 to P does not create a
cycle. Indeed,yu does not belong to a cycle becauseyu belongs to a path that ends in a vertex different
fromx, y or z. Alsoxz does not belong to a cycle because it was allowed before adding it toP . Similar
reasoning shows that addingS2 to P does not create a cycle. Hence bothS1 andS2 are supports.
Similarly to the previous case we getmax{w(S1), w(S2)} ≥ 1

2
(w(xz)+w(yu)+w(yz)+w(xu)) ≥

(1

4
, 1

2
) ⋆ C + 1

4
w(max(C)).

Observation 3. Let C be an unprocessed odd cycle in the last phase of the algorithm and assumethat
there is exactly one loose-endu. Thenu is connected by a path inP to a vertexz ∈ C andE(C)
contains exactly⌊|E(C)|/2⌋ forbidden edges and none of them is adjacent toz.

Lemma 3.6. Let C be an unprocessed triangle in the last phase of the algorithm and assume that
there is exactly one loose-endu. Then there is a(−1)-support ofC of weight at least(1

4
, 1

2
) ⋆ C +

1

4
w(max(C)).

7

Proof. Let x, y, z denote the vertices ofC. By Observation 3 cycleC contains a forbidden edge
— assume w.l.o.g. it isxy — and u is connected inP by a path toz. Let S1 = {xz, yu} and
S2 = {yz, xu}. Clearly,xz andyu are in the same cycle inP ∪ S1 and it is a Hamiltonian cycle.
Hence,S1 is a support ofC, and similarlyS2. We pick the heavier of these cycle (its weight can be
estimated similarly as in the proof of Lemma 3.5).

3.2.2 Odd cycles of length at least 5

The proofs of the remaining lemmas in this section have been moved to Appendix Adue to space
limitations.

Lemma 3.7. Let C be an unprocessed5-cycle with at most one forbidden edge. Then there is a
(+1)-support of weight at least(1/4, 1/2) ⋆ C.

Lemma 3.8. LetC be an unprocessed5-cycle with two forbidden edges. Lete be any of the forbidden
edges ofC. Then there is a(+1)-support ofC of weight at least(1

4
, 1

2
) ⋆ C − 1

4
w(e).

Lemma 3.9. LetC be an unprocessed5-cycle with two forbidden edges and assume that there are two
loose-ends. Lete be any of the forbidden edges ofC. Then there is a(−1)-support ofC of weight at
least(1

4
, 1

2
) ⋆ C + 1

4
w(e).

Lemma 3.10. Let C be an unprocessed5-cycle in the last phase of the algorithm and assume that
there is exactly one loose-endu. Let e be any of the two forbidden edges ofE(C). Then there is a
(−1)-support ofC of weight at least(1

4
, 1

2
) ⋆ C + 1

4
w(e).

Lemma 3.11. LetC be an unprocessed odd cycle of length at least 7. Then there is a(+1)-support of
weight at least(1

4
, 1

2
) ⋆ C.

4 Ordering the cycles

4.1 Basic setup

Based on the results from the previous section, we can see that every cycle C belongs to one of three
categories:

even cycles: C has a0-support of weight(1

4
, 1

2
) ⋆ C, if there exists at least one loose-end,

good odd cycles: C has a(+1)-support of weight at least(1

4
, 1

2
) ⋆ C — that is the case ifC is an odd

cycle of length≥ 7 or a5-cycle with at most one forbidden edge,

bad odd cycles: C has a(+1)-support of weight smaller than(1

4
, 1

2
) ⋆ C, and it also has a(−1)-

support of weight greater than(1

4
, 1

2
) ⋆ C, but only if there exist at least two loose-end or it is

the last cycle processed — that is the case for all3-cycles and for5-cycles with two forbidden
edges.

Remark 4.1. Notice that a good odd cycle might become bad when other cycles are processed, if it is
initially a 5-cycle with zero (or one) forbidden edges and two (one, resp.) of its allowed edges becomes
forbidden.

We say that a cycleC is k-processed, if it is processed using ak-support. The general order of
processing the cycles consists of4 stages:

(1) as long as there exists a good odd cycle,(+1)-process it,

8

(2) (+1)-process bad odd cycles until the number of loose-ends is greater or equal to the number of
remaining bad odd cycles,

(3) 0-process even cycles,

(4) (−1)-process the remaining odd cycles.

When we use the above processing order all the assumptions of previoussection’s lemmas are satis-
fied. In particular in stage3, there exists at least one loose-end, so we can process the even cycles.
This is because we can assume thatC contains at least one triange, otherwise already the Kostochka-
Serdyukov algorithm gives7/8-approximation.

It is clear that we are getting enough weight from cycles processed in stages1 and3. We also gain some
extra weight in stage2 and lose weight in stage4. We want to select the cycles to be processed in stage
2 in such a way that the overall weight of edges added during stages2 and4 is at least

∑

i(
1

4
, 1

2
) ⋆ Ci,

where the sum is over all cycles processed in these stages.

4.2 Ordering bad odd cycles

Let us first define certain useful notions. For any bad odd cycleC, let B−1(C) (B+1(C)) be the lower
bound on the weight of the(−1)-support ((+1)-support), as guaranteed by the appropriate lemma in
the previous section. Suppose thatCi is the set of bad odd cycles processed in stagei, i = 2, 4. If we
use previous section’s lemmas to lowerbound the weight of all edges addedin stages2 and4, we are
going to get

∑

C∈C2

B+1(C) +
∑

C∈C4

B−1(C),

and we need to show thatC2 andC4 can be chosen so that the value of this expression is at least
∑

C∈C2∪C4

(1

4
, 1

2
) ⋆ C.

For every bad odd cycleC there exists a non-negative number, which we call theloose-end value for
C and denote LEV(C) such that

B+1(C) ≥ (1

4
, 1

2
) ⋆ C − LEV(C) and B−1(C) ≥ (1

4
, 1

2
) ⋆ C + LEV(C).

Note, that this number is equal to1
4
w(e), wheree is the heaviest edge ofC if C is a triangle, or the

heavier of the two forbidden edges ofC if C is a bad5-cycle.

The reason why we call this number the loose-end value forC is that it is essentially the price at
whichC should be willing to buy/sell a loose-end. In this economic analogy, the cyclesthat are(+1)-
processed are selling loose-ends to cycles that are(−1)-processed. If we can make every cycle trade
a loose-end at a preferred price (LEV or better), the weight of a support of any cycleC together with
its profit/loss coming from trading a loose-end adds up to at least(1

4
, 1

2
) ⋆ C. But it is obvious how to

make every cycle trade a loose-end at a preferred price! It is enoughto make the cycles with smallest
LEV sell loose-ends (process them in stage2), and make the remaining cycles buy loose-ends (process
them in stage4).

Note here, that some bad odd cycles will get loose-ends for free from good odd cycles processed in
stage1. Since we assume that the total number of vertices in the graph is even, the number of the
remaining bad odd cycles is also even, and so they can be divided evenly into sellers and buyers.

Using Lemma 2.1 we get

Theorem 4.2. Metric MAX-TSP problem can be7/8-approximated for graphs with even number of
vertices.

In Appendix B we show that this can be extended to graphs with odd number of vertices.

9

References

[1] Z.-Z. Chen and T. Nagoya. Improved approximation algorithms for metricmax TSP. InProc.
ESA’05, pages 179–190, 2005.

[2] R. Hassin and S. Rubinstein. Better approximations for max TSP.Inf. Process. Lett., 75(4):181–
186, 2000.

[3] R. Hassin and S. Rubinstein. A 7/8-approximation algorithm for metric MaxTSP. Inf. Process.
Lett., 81(5):247–251, 2002.

[4] S. R. Kosaraju, J. K. Park, and C. Stein. Long tours and short superstrings (preliminary version).
In FOCS’94, pages 166–177, 1994.

[5] A. V. Kostochka and A. I. Serdyukov. Polynomial algorithms with the estimates 3/4 and 5/6 for
the traveling salesman problem of the maximum (in Russian).Upravlyaemye Sistemy, 26:55–59,
1985.

[6] Ł. Kowalik and M. Mucha. 35/44-approximation for asymmetric maximum TSPwith triangle
inequality. InProc. 10th Workshop on Algorithms and Data Structures (WADS’07), pages 590–
601, 2007.

[7] M. Lewenstein and M. Sviridenko. A 5/8 approximation algorithm for the maximum asymmetric
TSP.SIAM J. Discrete Math., 17(2):237–248, 2003.

[8] A. I. Serdyukov. The traveling salesman problem of the maximum (in Russian). Upravlyaemye
Sistemy, 25:80–86, 1984.

10

A Proofs of the technical lemmas

A.1 5-cycles

Lemma 3.7. Let C be an unprocessed5-cycle with at most one forbidden edge. Then there is a
(+1)-support of weight at least(1/4, 1/2) ⋆ C.

Proof. Let v1, . . . , v5 be the vertices ofC in the order they appear onC and assume w.l.o.g. thatv1v5

is the lightest edge inE(C).

Let M1 = {v1v2, v3v4} andM2 = {v2v3, v4v5}. Let S1 andS2 be the supports corresponding to
M1 andM2 by Lemma 3.1 and letS be the heavier of them. Also, assume all definitions leading to
inequality (3) in the proof of Lemma 3.2.

We consider three cases:

Case 1 v1v5 is forbidden. Thenv1v2 belongs to a path inP ∪ M1 (ending inv5), hencev1v2 6∈ D.
By Observation 1, then alsov3v4 6∈ D, soM1 ∩ D = ∅. By symmetry, alsoM2 ∩ D = ∅. Hence
A \ D = A. By inequality (ii) in Lemma 3.1 we getw(S) ≥ 1

2
(w(S1) + w(S2)) ≥ 1

2
w(A) ≥

1

2
· 4

5
w(C) = 2

5
w(C) ≥ 1

4
w(C) + 3

4
min(C) ≥ (1

4
, 1

2
) ⋆ C.

Case 2 One of the matchings, sayM1, contains a forbidden edge. Hence the other edge ofM1 is
allowed and by Observation 1 it does not belong toD. Also note that at least one of the edgese of M2

has a vertex in common with the forbidden edge fromM1. It follows thate does not lie on a cycle in
M2 ∪ P , because it lies on a path that ends with the forbidden edge fromM1. By Observation 1, the
other edge ofM2 cannot lie on a cycle either. Altogether, this gives|A \ D| ≥ 3.

Using inequality (3) we getw(S) ≥ 1

2
w(A\D)+ 3

8
w(A∩D)+ 1

4
w(F) ≥ 1

4
w(C \{v1v5})+ 1

4
w(A\

D) + 1

8
w(A ∩ D) ≥ 1

4
w(C \ {v1v5}) + 1

2
w(v1v5) = (1

4
, 1

2
) ⋆ C.

Case 3 There are no forbidden edges inE(C). SupposeP ∪ M1 contains a cycle. Then the chords
v1v3 andv2v4 are forbidden. It follows that the edges ofM2 belong to a path inP ∪M2 (one ending in
v1), so they cannot lie on a cycle inP ∪M2. We conclude that at least one ofP ∪M1 andP ∪M2 does
not contain cycles, and so|A\D| ≥ 2. Using inequality (3) we getw(S) ≥ 1

2
w(A\D)+ 3

8
w(A∩D) =

3

8
w(A) + 1

8
w(A \D) ≥ 3

8
· 4

5
w(C) + 1

4
min(C) = 1

4
w(C) + 1

20
w(C) + 1

4
min(C) ≥ (1

4
, 1

2
) ⋆ C.

Lemma 3.8. Let C be an unprocessed5-cycle with two forbidden edges. Lete be any of the two
forbidden edges ofC. Then there is a(+1)-support ofC of weight at least(1

4
, 1

2
) ⋆ C − 1

4
w(e).

Proof. Let v1, . . . , v5 be the vertices ofC in the order they appear onC and assume w.l.o.g. thatv1v5

andv2v3 the forbidden edges ofC ande = v1v5. LetM1 = {v1v2, v3v4} andM2 = {v2v3, v4v5} and
assume the notation from the proof of the previous lemma.

Note that the edges ofM1 belong to a path inP ∪M1 ending inv5, henceM1 ∩D = ∅. It follows that
|A \ D| ≥ 2. Using inequality (3) we getw(S) ≥ 1

2
w(A \ D) + 3

8
w(A ∩ D) + 1

4
w(F) ≥ 1

4
(w(A \

D)+w(A∩D)+w(F))+ 1

4
w(A \D) = 1

4
w(C \ {e})+ 1

4
w(A \D) ≥ 1

4
w(C \ {e})+ 1

2
min(C) =

(1

4
, 1

2
) ⋆ C − 1

4
w(e).

Lemma 3.9. LetC be an unprocessed5-cycle with two forbidden edges and assume that there are two
loose-ends. Lete denote any of the two forbidden edges ofC. Then there is a(−1)-support ofC of
weight at least(1

4
, 1

2
) ⋆ C + 1

4
w(e).

Proof. Label the vertices ofC as in the proof of the previous lemma. Observe that since there are at
least two loose-ends, at least one of them, call itu, is not connected by a path toC in P .

11

LetM1 = {v1v2, v3v4, v5u} andM2 = {uv1, v2v3, v4v5}, letS1 andS2 be the supports corresponding
to M1 andM2 by Lemma 3.1, and letS be the heavier of them.

Note that the edges ofM1 belong to a path inP ∪ M1 (the one ending inu), henceP ∪ M1 does not
contain cycles and we haveS1 = M1. Also, neitheruv1 nor v4v5 belong to a cycle inP ∪ M2. Of
coursev2v3 belongs to a 2-cycle inP ∪ M2.

By inequality (i) in Lemma 3.1 we getw(S) ≥ 1

2
(w(S1)+w(S2)) ≥

1

2
[w(v1v2)+w(v3v4)+w(v5u)+

w(uv1) + w(v4v5)] +
1

4
w(v2v3). Using the triangle inequality givesw(S) ≥ 1

2
[w(v1v2) + w(v3v4) +

w(v1v5) + w(v4v5)] + 1

4
w(v2v3) ≥

1

4
w(C) + 3

4
min(C) + 1

4
w(v1v5) ≥ (1

4
, 1

2
) ⋆ C + 1

4
w(e).

Lemma 3.10. Let C be an unprocessed5-cycle in the last phase of the algorithm and assume that
there is exactly one loose-endu. Let e be any of the two forbidden edges ofE(C). Then there is a
(−1)-support ofC of weight at least(1

4
, 1

2
) ⋆ C + 1

4
w(e).

Proof. Label the vertices ofC as in Lemma 3.8. By Observation 3,u is connected inP to v4 by a
path.

Let S1 = {v1v2, v3v4, v5u}, S2 = {uv1, v2v4, v3v5} andS3 = {uv1, v2v5, v3v4}. One may check
that for anyi = 1, 2, 3, Si is a support and in particularP ∪ Si is a Hamiltonian cycle. LetS be the
heaviest of these supports.

Denotew(v2v4)+w(v3v5)+w(v2v5)+w(v3v4) by X. Thenw(S) ≥ 1

2
w(S1)+

1

4
w(S2)+

1

4
w(S3) =

1

2
(w(v1v2) + w(v3v4) + w(v5u) + w(uv1)) + 1

4
X.

By triangle inequality (used twice),X ≥ 2w(v2v3). By symmetry,X ≥ 2w(v4v5). Hence,X ≥
w(v2v3) + w(v4v5). Let us apply triangle inequality one more time:w(v5u) + w(uv1) ≥ w(v1v5).

Putting it all together we getw(S) ≥ 1

2
(w(v1v2) + w(v3v4) + w(v1v5)) + 1

4
(w(v2v3) + w(v4v5)) ≥

(1

4
, 1

2
) ⋆ C + 1

4
w(e).

A.2 Odd cycles of length at least 7

Lemma 3.11. LetC be an unprocessed odd cycle of length at least 7. Then there is a(+1)-support of
weight at least(1

4
, 1

2
) ⋆ C.

Proof. Let |C| = 2k + 1, k ≥ 3. We enumerate vertices inV (C) so thatC = v0v1v2 . . . v2k−1v2kv0,
both v0v1 andv0v2k are allowed andw(v0v1) ≥ w(v0v2k). Consider two subsets ofE(C): M1 =
{v2iv2i+1 | 0 ≤ i ≤ k − 1} andM2 = {v2i+1v2i+2 | 0 ≤ i ≤ k − 1}. In other words we partition
E(C) \ {v0v2k} into two matchings.

Let C1, . . . , Cp be all cycles inP ∪M1 and LetCp+1, . . . , Cq be all cycles inP ∪M2. Similarly as in
Lemma 3.1, letD =

⋃q
i=1

Ci and we partition edges inM1∪M2 into two sets:F containing forbidden
edges, andA containing allowed edges. Further, let us choose for each cycleCi, i = 1, . . . , q, some
edgeei in Ci ∩ E(C) and letQ = {e1, . . . , eq}. Since by Observation 1 each cycleCi that contains
v0v1 contains also another edge fromA, we assume w.l.o.g. thatv0v1 6∈ Q.

Using Lemma 3.1 we obtain supportsS1, S2. Let S be the heavier of these supports. Thenw(S) ≥
1

2
(w(S1) + w(S2)). Using Lemma 3.1 we obtain supportsS1, S2. Let S be the heavier of these

supports. Thenw(S) ≥ 1

2
(w(S1) + w(S2)).

By inequality (i) in Lemma 3.1,w(S) ≥ 1

2
w((M1 ∪ M2) \ Q) + 1

4
w(Q) = 1

4
w(E(C) \ {v0v2k}) +

1

4
w((M1 ∪ M2) \ Q). Sincev0v1 6∈ Q andw(v0v1) ≥ w(v0v2k), w(S) ≥ 1

4
w(E(C)) + 1

4
w((M1 ∪

M2) \ (Q ∪ {v0v1})). As F ⊆ Q, (M1 ∪ M2) \ (Q ∪ {v0v1}) = (A \ {v0v1}) \ Q and hence

w(S) ≥ 1

4
w(E(C)) + 1

4
w((A \ {v0v1}) \ Q). (4)

It follows that|(A \ {v0v1}) \ Q| ≥ 2 impliesw(S) ≥ (1/4, 1/2) ⋆ C.

12

First assume there arek forbidden edges inE(C). Then one of the matchings, sayM1, contains only
allowed edges (and the other matching contains all the forbidden edges ofC). Note that inP ∪M1 all
edges ofM1 belong to a path with one end inv2k. It follows thatM1 = S1 andS1 ∩Q = ∅. It follows
thatA ∩ Q = ∅ and hence(A \ {v0v1}) \ Q contains at leastk − 1 ≥ 2 edges, as required.

Now assume there are at mostk − 1 forbidden edges inE(C). Then|A| ≥ k + 1. By Observation 1,
|A \ Q| ≥ ⌈ |A|

2
⌉. It follows that|(A \ {v0v1}) \ Q| ≥ ⌈ |A|

2
⌉ − 1. For |A| ≥ 5, we get⌈ |A|

2
⌉ − 1 ≥ 2.

Hence we are left with the case|A| ≤ 4. Since|A| ≥ k + 1, k ≤ 3. Sok = 3, |A| = 4 and|F | = 2.
We consider two subcases.

Case 1. v5v6 is forbidden. Thenv4v5 is allowed and after adding the matching containingv4v5 to P ,
v4v5 is on a path ending inv6, hencev4v5 does not belong to anyCi. Hence the three remainig edges
in A belong at most one cycleCi, so|A ∩ Q| ≤ 1 and further|(A \ {v0v1}) \ Q| ≥ 2, as required.

Case 2. v5v6 is allowed. If F = {v2v3, v4v5}, one of the matchings, namelyM2, contains only
allowed edges. Moreover, these edges belong to a path inP ∪ M2 (ending inv6), soM2 = S2 and
S2 ∩Q = ∅. There is just one allowed edge inM1 and hence it cannot belong to a cycleCi. It follows
thatQ = F and hence|(A \ {v0v1}) \ Q| ≥ 3. The caseF = {v1v2, v3v4} is symmetric. Finally,
assumeF = {v1v2, v4v5}. By Observation 1, inP ∪ M1 andP ∪ M2 there are at most 2 cycles with
edges fromA. If P ∪M1 contains such cycle, thenv0v3 is forbidden. However, thenP ∪M2 contains
no such cycle. Hence|A ∩ Q| ≤ 1 and|(A \ {v0v1}) \ Q| ≥ 2, as required.

B Graphs with odd number of vertices

When the input graph has an odd number of vertices the algorithm described before does not work
because there is no perfect matching. It is easy to see that when we use amaximum weight near-perfect
matching instead (i.e. such that exactly one vertex is not matched) our algorithm gives(7/8 − 1

4n)-
approximation, which is already better than the best known previous results. Luckily, even for the odd
case we can still retain 7/8-approximation by applying our algorithm in a more sophisticated way.

The modified algorithm for the odd case also begins with a cycle coverC and a matchingM . Note
that now we can assume that there is an unmatched vertexv. Our new algorithm processes cycles ofC

as before, but the cycleC∗ that containsv is processed in a special way. We show that this algorithm
returns a Hamiltonian cycle of weight at least7

8
OPT, provided that the initial cycle coverC and the

matchingM satisfy certain special conditions. We show that such a pair of a matching and a cover is
contained in a set ofO(n4) pairs which can be constructed in polynomial time. For each of these pairs
we apply the modified algorithm and we return the heaviest of the Hamiltonian cycles found.

B.1 Finding a special pair of cycle cover and matching

Now we are going to describe the aforementioned set ofO(n4) matching-cover pairs. In what follows
we assume that the graph contains at least 4 vertices (otherwise the problem can be solved exactly
in O(1) time)). A simple pathvxyz will be called acandidate pathwhen w(xy) ≥ w(vx) and
w(xy) ≥ w(yz). For each candidate pathp we findCp, the maximum weight cycle cover containing
pathp. (Such a cover can be found by finding a maximum weight cycle cover in a modified graph, i.e.
with weights of edges on pathp very large). Similarly, for each candidate pathp = vxyz we findMp

x ,
the maximum weight matching inG − {x} that contains edgeyz (again, we make the weight of edge
yz very large and we find the maximum weight matching). Next, for each candidate pathp = vxyz
we findMp

y , the maximum weight matching inG − {y} that contains edgevx. Note that

Proposition B.1. For any candidate pathp = vxyz,

(a1) Cp contains a cycle of length at least 4 containing edgexy,

13

(a2) matchingMp
x containsyz and matchingMp

y containsvx, and

(a3) w(xy) ≥ w(vx) andw(xy) ≥ w(yz).

Proposition B.2. For some candidate pathp = vxyz we have

(b1) w(Cp) ≥ OPT, and

(b2) w(Mp
a) + 1

2
w(xy) ≥ 1

2
OPT wherea ∈ {x, y}

Proof. Let H be a maximum weight Hamiltonian cycle. Letxy be the heaviest edge onH and letvx
andyz be the two edges incident withxy in H. Condition (b1) is obvious then. LetMx andMy be
the the near perfect matching that leavesx (resp.y) unmatched and consists of edges ofH only. Note
thatw(Mp

x) ≥ w(Mx) andw(Mp
y) ≥ w(My). Clearlyw(Mx)+w(My)+w(xy) = OPT. It follows

thatw(Mp
x) + w(Mp

y) + w(xy) ≥ OPT and hencemax{w(Mp
x) + 1

2
w(xy), w(Mp

y) + 1

2
w(xy)} ≥

1

2
[w(Mp

x) + w(Mp
y) + w(xy)] ≥ 1

2
OPT, which is equivalent to (2).

In what follows letC andM denote a cover and a matching satisfying conditions (a1)–(a3) and (b1)–
(b2) and letp = vxyz be the corresponding candidate path. LetC∗ be the cycle of length at least 4 in
C that containsxy and assume w.l.o.g. thatx is unmatched inM andyz ∈ M .

Now we can prove an analog of Lemma 2.1.

Lemma B.3. If during processing the cycles inC, we can add edges of total weight at least
[
∑

Ci∈C\{C∗}(
1

4
, 1

2
) ⋆ Ci] + [(1

4
, 1

2
) ⋆ C∗ + 1

2
w(xy)] to M , then a Hamiltonian cycle of weight at

least 7

8
OPT is returned.

Proof. The sum of the weights of the two Hamiltonian cycles found by the algorithm is at leastw(C)−
∑

C∈C
w(min(C)/2+w(M)+ 1

4
w(C)+

∑

C∈C
w(min(C))/2+ 1

2
w(xy) = 5

4
w(C)+w(M)+w(xy).

By (b1) and (b2) this is at least7
4
OPT, so the better of the two solutions is a7

8
-approximation.

B.2 Processing the cycle C
∗ containing an unmatched vertex

Let us denote the vertices ofC∗ by x1, . . . , x|C∗|, in the order they appear aroundC∗ and so that
v = x1, x = x2, y = x3 andz = x4.

Lemma B.4. AssumeC∗ is even-length and consider any phase of the algorithm withC∗ unprocessed.
Then there is a(+1)-support ofC∗ of weight at least(1

4
, 1

2
) ⋆ C∗ + 1

2
w(xy).

Proof. We partitionE(C∗) into two matchings and then we replace edgeyz in one of them byxy, i.e.
finally we haveM1 = {x2t−1x2t | t = 1, . . . , |C∗|/2} \ {x3x4} ∪ {x2x3} andM2 = {x2tx2t+1 | t =
1, . . . , |C∗|/2} (indices modulo|C∗|). Note thatM1 andM2 are(+1)-semi-supports (after adding
M1 to P vertexx4 becomes a loose-end, and after addingM2 to P vertexx2 becomes a loose-end).
Similarly as in Lemma 3.1, choose one edge fromM1 in each cycle inP ∪M1 and one edge fromM2

in each cycle inP ∪ M2, and letQ be the set of these edges.

Let S1 andS2 be the(+1)-supports obtained fromM1 andM2 using Lemma 3.1. LetS denote the
heavier of them.

Note that edgesx1x2 = vx andx2x3 = xy belong to a path inP ∪ M1 (ending inx4), because
x3x4 = yz is in M . Also x2x3 = xy andx4x5 belong to a path inP ∪ M2 (ending inx2 = x). It
follows thatvx, xy, x4x5 6∈ Q.

By inequality (i) in Lemma 3.1,w(S) ≥ 1

2
(w(S1) + w(S2)) ≥ w(xy) + 1

2
w(vx) + 1

2
w(x4x5) +

1

4

∑|Q|
i=5

w(xixi+1) = 1

4
w(C∗ \ {yz}) + 3

4
w(xy) + 1

4
w(vx) + 1

4
w(x4x5). Sincew(xy) ≥ w(yz),

w(vx) ≥ min(C∗) andw(x4x5) ≥ min(C∗) we get finallyw(S) ≥ (1

4
, 1

2
) ⋆ C∗ + 1

2
w(xy).

14

Lemma B.5. AssumeC∗ is odd-length. Consider any phase of the algorithm withC∗ unprocessed and
with at least one loose-end. Then there is a0-support ofC∗ of weight at least(1

4
, 1

2
) ⋆ C∗ + 1

2
w(xy).

Proof. Note that|C∗| ≥ 5. Let |C∗| = 2k + 1 and letu be a loose-end. LetM1 = {x2t−1x2t | t =
1, . . . , k} \ {x3x4} ∪ {x2x3, x2k+1u} andM2 = {x2tx2t+1 | t = 1, . . . , k} ∪ {u, x1}. Note thatM1

andM2 are0-semi-supports (after addingM1 to P vertexx4 becomes a loose-end, after addingM2

to P vertexx2 becomes a loose-end, and in both casesu ceases to be a loose-end). Similarly as in
Lemma 3.1, choose one edge fromM1 in each cycle inP ∪ M1 and one edge fromM2 in each cycle
in P ∪ M2, and letQ be the set of these edges.

Let S1 andS2 be the0-supports obtained fromM1 andM2 using Lemma 3.1. LetS denote the heavier
of them.

By the same argument as in the proof of Lemma B.4,vx, xy, x4x5 6∈ Q. Hence by inequality (i) in
Lemma 3.1,w(S) ≥ 1

2
(w(S1)+w(S2)) ≥ w(xy)+ 1

2
w(vx)+ 1

2
w(x4x5)+

1

4
[w(x2k+1u)+w(ux1)+

∑|Q|
i=5

xixi+1)] = 1

4
w(C∗ \{yz, x2k+1x1})+ 3

4
w(xy)+ 1

4
[w(vx)+w(x4x5)+w(x2k+1u)+w(ux1)].

Sincew(x2k+1u) + w(ux1) ≥ w(x2k+1x1), w(xy) ≥ w(yz), w(vx) ≥ min(C∗) andw(x4x5) ≥
min(C∗) we get finallyw(S) ≥ (1

4
, 1

2
) ⋆ C∗ + 1

2
w(xy).

B.3 Final remarks

Note that ifC∗ is even-length then it “behaves” like a good odd cycle in the even case algorithm, i.e. it
always has a(+1)-support of large enough weight. On the other hand, ifC∗ is odd-length, it “behaves”
like an even cycle in the even case algorithm, i.e. if there is a loose-end,C∗ has a0-support of large
enough weight. Hence, ifC∗ is even, we process it in stage 1 (thus making a loose-end which may be
needed by some bad odd cycle) and otherwise we process it in stage 3.

Since the assumpions of Lemma B.3 are satisfied we get

Theorem B.6. Metric MAX-TSP problem can be7/8-approximated in polynomial time for any input
graph.

It is an interesing question whether one can avoid the overhead ofO(n4) in the time complexity of the
odd case.

15

