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Abstract

We present the first/8-approximation algorithm for the maximum traveling salesnprob-
lem with triangle inequality. Our algorithm is determiméstThis improves over both the random-
ized algorithm of Hassin and Rubinstein [3] with expectepragimation ratio of7 /8 — O(n~'/?)
and the deterministit7/8 — O(n—'/3))-approximation algorithm of Chen and Nagoya [1].

In the new algorithm, we extend the approach of processiogl lconfigurations using so-
called loose-ends, which we introduced in [6] for the asyinimeariant (ATSP).

1 Introduction

The Traveling Salesman Problem and its variants are among the most interssearched problems
in computer science and arise in a variety of applications. In its classicabwuegiven a set of vertices
V and a symmetric weight functian : V2 — R satisfying the triangle inequality one has to find a
Hamiltonian cycle of minimum weight.

There are several variants of TSP, e.g. one can look for a Hamilton@& afyminimum or maximum
weight (MAX-TSP), the weight function can be symmetric or asymmetric, itsaisfy the triangle
inequality or not, etc.

In this paper, we are concerned with the MAX-TSP variant, where thehtv&igction is symmetric
and satisfies the triangle inequality. This variant is often cahedmetric MAX-TSP

MAX-TSP (not necessarily metric) was first considered by Serdyukd®8], where he gives %
approximation. Next, %-approximation algorithm for the metric case was given by Kostochka and
Serdyukov [5]. Hassin and Rubinstein [3] used these two algorithms tegeith new ideas to achieve

a randomized approximation algorithm with expected approximation rat(é of O(n=1/2)). This
algorithm has later been derandomized by Chen and Nagoya [1], at ef @oslightly worse approxi-
mation factor of( £ — O(n=1/3)).

In this paper, we give a determinis@eapproximation algorithm for metric MAX-TSP. Our algorithm
builds on the ideas of Serdyukov and Kostochka, but is completely différem that of Hassin and
Rubinstein. We apply techniques similar to those used earlier in [6] for theteiteersion of MAX-
TSP with triangle inequality.

1.1 Closer look at previousresults

Classic undirected MAX-TSP algorithm of Serdyukov [8] starts by carsing two sets of edges of
the input graphG: a maximum weight cycle coveét and a maximum weight matchingy/, and then
removing a single edge from each cycletb&nd adding it tal/. It can be shown that we can avoid
creating cycles inV/, so in the end we get two sets of pat@sandM’. These sets can be extended to
Hamiltonian cycles arbitrarily. Since we started with a maximum weight cycle @wba maximum

*Institute of Informatics, University of Warsaw, Poland. E-mail adsess{kowal i k, mucha}@n muw. edu. pl .



weight matching, we have(€’) + w(M') > w(€) + w(M) > 3OPT. It follows that the better of
the two cycles has weight at Iea@)PT. Here, we used two standard inequalitieé€) > OPT and
w(M) > %OPT. The latter only holds for graphs with even number of vertices. The ofodd
number of vertices needs separate treatment.

Serdyukov’s algorithm works for any undirected graph, with weightfion not necessarily satisfying
the triangle inequality. However, if this inequality is satisfied, we can get a rhattler algorithm.
Kostochka and Serdykov observed the following useful fact (se¢3.fpr a proof).

Lemma 1.1 (Kostochka, Serdyukov [5])Let G = (V| E) be a weighted complete graph with a
weight functionw : £ — R satisfying the triangle inequality. L& be a cycle cover iz and let

Q = {e1,...,¢¢} be a set of edges with exactly one edge from each cyde ©hen the collection
of pathsC \ @ can be extended in polynomial time to a Hamiltonian cyéleith

€|

w(H) > w(€) = > wle;)/2.

=1

Kostochka and Serdyukov [5] propose an algorithm which starts binfiral maximum weight cycle
coverC and then applies the above lemma willtonsisting of the lightest edges of cycleinSince
all cycles have length at lea3t the weight of the removed edges amounts to at I’\éﬂﬁ{@), SO we
regain at Ieas%w(@), which leads tc%-approximation. (Note that if it happens that all the cycle§in
have length at least 4 we g@approximation).

2 Our approach

Similarly to Serdykov’s algorithm (as well as that of Hassin and Rubinsteur)algorithm starts by
constructing a maximum weight cycle cov@iand maximum weight matchindy/. In our reasoning
we need the inequality) (M) > %OPT, which holds only for graphs with even number of vertices. In
the remainder of this paper we only consider such graphs. Our resnllecaxtended to graphs with
odd number of vertices, this is discussed in Appendix B.

In all previous algorithms edges are moved from the cycle cGvier the matchingl/. We do not
follow this approach. Instead, we remove some edges ttamd add some edgesiAd. The edges we
add toM are not necessarily the edges we remove febrin fact, they might not even be cycle edges
in €. All we need to guarantee is that their total weight is sufficiently large coedptar the weight
loss inC.

Here is how it works. Letnin(C;) be the lightest edge of a cyclg; € €. Since removing a single
edge from eaclt’; and then joining the resulting paths using Lemma 1.1 results in the weight loss
equal to half the weight of the removed edges, it should be clear thatawdstemovenin(C;) from
eachC;. The weight loss is thel, w(min(C;))/2.

We are going to describe an iterative process of adding edges to a calletpathsP, initially equal

to M. Edges will be added iphaseseach phase corresponds to a single cggle C. After finishing

the phase corresponding@g we will call C; processedThe edges added in the phase corresponding
to C; will usually, but not neccessarily belongdg or at least connect vertices©f. Their total weight

will also be directly related ta(C;) andw(min(C;)). Let (o, 8) *x C; = aw(C;) + fw(min(C;)).

The following Lemma shows why this is a useful definition:

Lemma2.1. If during processing the cycles & we can add edges of total weight at least, _e(c, 1/2)%
C; to M, then we get &3/4 + «/2)-approximation algorithm.

Proof. Let H; be the Hamiltonian cycle obtained fro@by using Lemma 1.1, and Iéf, be the cycle
obtained fromM by processing all cycles @ and patching the resulting collection of paths into a
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Hamiltonian cycle. Then

w(Hy) + w(Hy) > |w(€) = > w(min(C;))/2

i

+

+ > (3/2 + a)OPT,

w(M) + aw(@) + Z w(min(C;))/2

so the heavier of the two cycles is3/4 + «/2)-approximation. O

In the remainder of the paper, we show that this can be done#oi /4, yielding a7/8-approximation.

2.1 Skeleton of thealgorithm

A graph P is sub-Hamiltonian if it is a family of disjoint paths or a Hamiltonian cycle (i.e. it can be
extended to a Hamiltonian cycle). L&t be a family of disjoint paths. We say that set of ed§eis
allowedw.r.t. P, if S is disjoint from P and the edge sum d? and.S is sub-Hamiltonian. We call an
edgee allowedw.r.t P if {e} is allowed w.r.t.P. If an edge is not allowed, we callfibrbidden

In the algorithm presented below, we maintain a sub-Hamiltonian graghtisfying the following
invariant.

Invariant 1. For any vertex, if degp(v) = 2 then the cycle belongs to has been already processed.

Consider a phase of our algorithm anddébe the cycle that is still unprocessed. In this situation a
setS of edges will be called aupportof C if S is allowed w.r.t.P, and after adding to P (and thus
makingC' processed) Invariant 1 is satisfied.

The following is the skeleton of the algorithm, that we will develop in the remaiofidre paper.

Algorithm 2.1 MAIN ALGORITHM
1: Let M be a heaviest matching afda heaviest cycle cover if.
Let H, be the Hamiltonian cycle obtained froénby using Lemma 1.1.
P=M
Mark all cycles inC asunprocessed
for each unprocessed cydléin € do
Find S, a support of” of large weight.
P=PUS
Mark C' as processed.
Arbitrarily patch P to a Hamiltonian cycleds.
: Return the heavier off; and Hs.

=
o

2.2 Loose-ends

When considering a cyclé;, we are going to exten® by adding some edges connecting the vertices
of C;. Ideally we would like to add; /2 new edges, where; is the length of”;. However, this is not
always possible, because some of the cycles have odd length &hid not an integer. Instead we are
going to use the idea of loose-ends introduced in [6].

A loose-endis a vertexv, for which degp(v) = 1 even though the cycle it belongs to is already
processed. A vertexof cycleC' € € becomes aloose-end if no edge adjacentitbadded taP when
C'is processed. This vertex can be connected with some other vertex atsidgeand cease being a
loose-end.



Consider two odd-length cyclé€s, andC5, say both of length 5. When we proceSs, we can only

add 2 edges td/, and some vertex € C; is not an endpoint of any of these edges, so it becomes a
loose-end. Later, when we proceSg, we can add 3 edges 1o, by connecting one of’y’s vertices

with v. Using the triangle inequality, we can guarantee that this edge has largetw&ig in this
case we get a little less weight froffy and a little more weight frond’s. It is important to process
cycles in order that guarantees that the weight lost when processimguier cycles (the ones that
give loose-ends) is dominated by the weight gained when processingdheylales (the ones that use
loose-ends). We will show that the algorithm can determine this order.

Let S be a support of” in some phase of the algorithm. We will say tttais a k-support if after
adding it toP (and thus processing cydl&) the number of loose-ends increases by at legstcould
be negative here).

In the following section we describe in detail how the cycles are processedr algorithm. For
even-length cycles we construct hedsgupports, and for odd-length cycles we construct ljeth)-
supports and-+1)-supports.

When constructing—1)-supports, we need to assume that at least one loose-end is availatdgun
nately, just one loose-end may be insufficient to guarantee the existea¢e b)-support. This could
happen if the loose-end is connected t@”, the cycle being processed, by a pathHnIn that case,
adding an edge betweenand a vertex of” to P may create a cycle i?. This is acceptable only if
that cycle is Hamiltonian (in particulaf; would have to be the last cycle processed). Luckily, it turns
out that two loose-ends are always sufficient to avoid creating swwhaJtles. Thus, when describ-
ing a(—1)-support for each odd cycle we will consider two situations: when therén loose-ends,
and when there is exactly one loose-end but the algorithm is in the lagt(i#h) phase.

3 Processing cycles

In this section we consider an arbitrary phase of the algorithm and weliesapports of unprocessed
cycles. The construction of a support of such a cy¢lmay depend on the number of loose-ends and
the way the collectio of paths constructed so far interacts within particular on which edges of
C are forbidden etc.

The following observations will be used in many of our proofs.

Observation 1. Let C' be an unprocessed cycle andiétC E(C') be a matching. Lef’ be any cycle
in P U M. Then ifC contains an allowed edge 8f, it contains at least two allowed edges. Also, if
C contains a forbidden edge 81, it contains exactly one edge 61. O

Observation 2. In any phase of the algorithm and for any unprocessed &ycferbidden edges with
both endpoints i form a matching. O

Consider an unprocessed cycle A set of edgess will be called asemi-supporbf C when P U

S contains vertices of degree at most 2, and after addirig P (and thus making”' processed)
Invariant 1 is satisfied. If after addintgto P the number of loose-ends increases:tie will also call

S ak-semi-supportk may be negative).

Note that the only difference between a semi-support and a support &ftdraadding a semi-support
to P we may get a non-Hamiltonian cycle iR. The following lemma, similar to the Kostochka-
Serdyukov technique, will be used to convert a semi-suppbtb a supportS without losing much
weight. The weight loss in this process depends on how the weiglitiefdistributed between allowed
and forbidden edges, on the weight of allowed edgek®/dhat belong to cycles i® U M, etc.

Lemma 3.1. Consider any phase of the algorithm and &tbe an unprocessed cycle. Lef be a
k-semi-support of®. Assume there is a vertey ¢ V(M ), such thatcy is a loose-end ory € V(C).
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Figure 1: Breaking the cycles in the proof of Lemma 3.1. Dashed edgdigarer than the corre-
sponding solid edges. Crossed-out edges are the edges remavetidroycles.

Moreover, assumé& U M contains cycles (possibly of length@j, ..., C,. For eachi, 1 <i < g, let
e; be any edge i/ N C;. Let@ = {e1,...,e,} and letD = |, C;. Finally, let us partition edges in
M into two sets:F' containing forbidden edges, anticontaining allowed edges.

Then one can find, a k-support ofC', such that

() w(S) > w(M\ Q)+ zw(Q),
(i) w(S) > w(A\ D)+ 2w(AN D)+ 3w(F).

Proof. Denote the ends aof; by 1 andy; in such a way thatqy; is heavier thamcgz;. Note that
w(zoyr) = max{w(zoz1), w(zoy1)} > 2(w(zoz1) + w(woy1)) > swler), where the last step
follows from the triangle inequality. Moreover, by replacingby zqy: we break the cycl€’; andz;
becomes a loose-end. We can proceed in this way for all cycles, i.eveorie= 1, .. ., g the ends of
e; are labelleds; andy; so that

w(@i—1y;) > yw(e;). 1)

LetS =M\{ei|i=1,...,q} U{zic1yi | i =1,...,¢}. Clearly, P U S does not contain cycles
hence it is sub-Hamiltonian. Also, observe that there are only 2 vertieeselyzo andz, whose
degrees differ in graphB U M andP U S. Sincedegp 5 o = 2 anddegp 5 x4 = 1, after addingS
to P (and thus processing) Invariant 1 is still satisfied, and s®is a support. Also note tha, is a
loose-end inP U M and it is not a loose-end iR U S, while z,, is not a loose-end i U M and it is
aloose-end irP U S. It follows thatS is ak-support.

Now let us bound the weight &f. By (1), w(S) > w(M \ Q) + 3w(Q), which is claim (i). To prove
(i), in each cycleC; we choose the lightest edgein M N C; and we assumé) consists of these
edges. Notice tha’ C @) (by Observation 1) and alsé\ D C M \ @, so by (i) we have,

w(S) = w(M\ Q) +w(@) = w(A\ D) +w((AND)\ Q) + 5w(ANQ) + zw(F). (2)
By Observation 1, and sine@ consists of the lightest edges in cycle(AN D)\ Q) > Jw(AND).
Thenw((AND)\ Q)+ 3w(ANQ) =w((AND)\ Q)+ tw((AND)NQ) = 2w((AND)\ Q) +
sw(AN D) > 2w(AnN D). By plugging it into (2) we get (ii). O
3.1 Even cycles

Lemma 3.2. LetC be an unprocessed 4-cycle and assume that there is at least oneclods&hen
there is a0-support ofC' of weight> (1, 1) x C.

Proof. We consider two cases:



Casel E(C) has at most one forbidden edge. We partitiofC') into two matchings)M; and Ma.
W.l.o.g. assumé/; does not contain forbidden edges. IStand.S; be the supports corresponding to
My and M, by Lemma 3.1 and le% be the heavier of them. Following the notation from Lemma 3.1,
defineA,, As (F1, F3) as the sets of allowed (resp. forbidden) edgedfef M,. Let D1, D, be the
sets of edges o (C') that belong to cycles if? U M; or P U M, respectively. Also led = A; U Ao,
F=F,UFyandD = Dy U Ds.

Notice that by mequallty (i) of Lemma 3.1 applied id;, i = 1,2 we getw(S;) > w(A; \ D;) +
3w(A4; N D;) + Sw(F;). Summing up the two inequalities ylelds

w($) = L(w(S1) + w(S)) > Jw(A\ D)+ dw(AN D) + Lu(F). 3)

Let us first assume thdt U M, contains a cycl€. By Observation 1 both allowed edgesidf are in

C. So either both chords @f are forbidden or both edges bf; are. Since we assumed tHatC') has

at most one forbidden edge, it is the chord¢’dhat are forbidden. It now follows from Observation 2

that both edges af/; are allowed, sl = C. From (3) we getv(S) > gw(A) = %w(C) > (3, 4)%C.

Hence, we may assumetHaIUMl contains no cycIe. It follows thdd, = (), so| A\ D| z 2. From (3)

we getw(S) 2w(A\D) % w(AND)+1w(F) > (w(A\D)+w(AND)+w(F))+iw(A\D) >
1w(C) + tw(A\ D) > (1, 3)xC, where the last mequallty follows frofal \ D| > 2.

| | | |
82 53 2 3 52 53 2 3
Sl SQ SS S4

Figure 2: Supports in Case 2 of the proof of Lemma 3.2

Case2 E(C) has two forbidden edges. Denote the verticeS' oy v+, . . . , v4 in the order they appear
on C and assume w.l.o.g. thatv, andvzv, are forbidden. Let. be a loose-end. Consider four edge
SGtSSl = {’U,’Ul,’l)gvgg}, SQ = {uvz,vlm}, 53 = {UU4, 1}2’03}, andS4 = {uvg, ’U1’U4}. Note that these
sets are allowed since for afiyedges ofS; belong to a single path i® U S; (ending inwvy, vs, v1
andwvs respectively). It follows that alb; are supports and we chooSethe heaviest of them. Then
w(S) > § Y w(Si) = f2w(vavs) + 2w(viva) + (w(uwr) + w(uws)) + (w(uvs) + w(uvy))] >
1[2w(vav3) 4 2w(viva) + w(vive) + w(vzve)], where the last step follows from triangle inequality.
Hencew(S) > 1w(C) + [w(vavs) + w(viva)] > (1, 3) * C. O

Lemma 3.3. Let C be an unprocessed even-length cy@e, > 6, and assume that there is at least
one loose-end. Then there i9asupport ofC of weight at Ieas(4, 2) *C.

Proof. We partitionE(C') into two matchingsj); and M, let'S; andS, be the supports correspond-
ing to M; and M, by Lemma 3.1, and lef be the heavier of these supports. We follow all the
definitions from the beginning of the proof of the previous lemma to obtain adeg3).

From that inequality we gab(S) > 3w(A) + fw(F) = 3w(C) + sw(A). It follows thatw(S) >
(1,3)xCif |A] > 4.

Since by Observation 2 we haj#| > |C|/2, the only case we need to consider is tha¢f= 6 and

|A] = 3. W.lL.o.g. assumé/; = A andM, = F. Let @ bet the set of the lightest edges from each
cycle in P U M; or P U M,, one edge from each cycle. There is at most one such cydbein\/,
since by Observation 1 each such cycle has to contain at least two d!d@ﬁsws that| A \ Q| > 2.

By inequality (i) in Lemma 3.1 we geb(S) > J(w (Sl) +w(%2)) > 3w(E(0)\ Q) + jw(Q) =
Tw(E(0)\ Q) + tw(C) = tw(A\ Q) + %w( ) > (L, hy«C,as requwed O



3.2 0Odd cycles
3.21 Triangles

For any cycleC’, by max(C') we denote the heaviest edge(in

11

Lemma 3.4. For any unprocessed triangl€, there is a(+1)-support ofC' of weight at least 7, 5

C — Lw(max(0)).

) *

Proof. Let z,y, z be the vertices of” and assume w.l.0.g. that botlx andyz are allowed. LetS
consist of the heavier of the edges, yz. Clearly, S is a support and () > % (w(zz) + w(yz)) >

%w(C) + %(fw(mz) +w(yz)) — iw(xy) > (i, %) *C — ifw(my) > (i, %) *C — %w(maX(C)). O

Lemma 3.5. LetC be an unprocessed triangle and assume that there are two loose-Emetsthere
is a(—1)-support ofC' of weight at leastl, 1) x C + 1w(max(C)).

Proof. Letz, y, z bet the vertices of’ and letu andv be the loose-ends. We consider 2 cases:

Case 1 Both loose-ends are connectedddy paths, say: is connected ta: andv to y. Note that
in this case all edges af’ are allowed. LetS; = {xy,zv} and Sy = {zy,zv}. Note that after
adding any of these sets i both added edges lie on a single path that ends(gee Figure 3), s®
remains sub-Hamiltonian. Hence baih and.S; are supports of’. The heavier of them has weight
max{w(wy) +w(zv), w(zy) +w(@v)} > 5(w(zy)+w(zy) +w(zv) +w(zv)) > 5(wlry)+w(zy)+
w(zz)) > 2w(C) + Jw(min(C)) + tw(max(C)) = (1, 3) * C + tw(max(C)).

Y Y
u T u T

v v

Sl S2

Figure 3: Supports in Case 1 of the proof of Lemma 3.5. Gray lines denoteathe connecting
loose-ends witht'.

Case 2 At least one loose-end, say is not connected t@’' by a path inP. W..0.g. assume that both
xz areyz allowed. LetS; = {zz,yu} andS; = {yz, zu}. Note that adding; to P does not create a
cycle. Indeedyu does not belong to a cycle becaysebelongs to a path that ends in a vertex different
fromz, y or z. Alsoxz does not belong to a cycle because it was allowed before adding it®imilar
reasoning shows that addirfy to P does not create a cycle. Hence béthand S, are supports.
Similarly to the previous case we getx{w(S1), w(S2)} > & (w(zz) +w(yu) +w(yz) +w(zu)) >

(3, 3) % C + Fw(max(C)). O
Observation 3. Let C' be an unprocessed odd cycle in the last phase of the algorithm and asstime
there is exactly one loose-end Thenw is connected by a path iR to a vertexz € C and E(C)
contains exactly|E(C)|/2] forbidden edges and none of them is adjacent to O

Lemma 3.6. Let C' be an unprocessed triangle in the last phase of the algorithm and assane th
there is exactly one loose-end Then there is §—1)-support ofC' of weight at Ieas(i, %) *C +
1w(max(C)).



Proof. Let x, y, z denote the vertices af’. By Observation 3 cycl€' contains a forbidden edge
— assume w.l.o.g. it isy — andwu is connected inP by a path toz. LetS; = {zz,yu} and

Sy = {yz,zu}. Clearly,zz andyu are in the same cycle iR U S; and it is a Hamiltonian cycle.
Hence,S; is a support of”, and similarly.S,. We pick the heavier of these cycle (its weight can be
estimated similarly as in the proof of Lemma 3.5). O

3.2.2 0Odd cyclesof length at least 5

The proofs of the remaining lemmas in this section have been moved to Appertliie A0 space
limitations.

Lemma 3.7. Let C' be an unprocesse@licycle with at most one forbidden edge. Then there is a
(+1)-support of weight at leadtl /4,1/2) x C.

Lemma 3.8. LetC be an unprocessegcycle with two forbidden edges. Lebe any of the forbidden
edges of”. Then there is &+1)-support ofC' of weight at least1, 3) x C — jw(e).

Lemma3.9. LetC be an unprocessegcycle with two forbidden edges and assume that there are two
loose-ends. Let be any of the forbidden edges@f Then there is 4—1)-support ofC' of weight at
least(1, 1) x C + Lw(e).

Lemma 3.10. Let C' be an unprocesse@icycle in the last phase of the algorithm and assume that
there is exactly one loose-end Lete be any of the two forbidden edges®fC'). Then there is a

(—1)-support ofC of weight at least], 1) x C + Jw(e).

Lemma3.11. LetC be an unprocessed odd cycle of length at least 7. Then thergtis asupport of
weight at least 1, 3) * C.

4 Orderingthecycles

4.1 Basicsetup

Based on the results from the previous section, we can see that eeéry clgelongs to one of three
categories:

even cycles: C has a)-support of weigh(i, %) * C, if there exists at least one loose-end,

good odd cycles: C has a+1)-support of weight at least;, 3) x C — that is the case if’ is an odd
cycle of length> 7 or a5-cycle with at most one forbidden edge,

bad odd cycles: C' has a(+1)-support of weight smaller thafy, 3) » C, and it also has &—1)-
support of weight greater tha(ri, %) * C', but only if there exist at least two loose-end or it is
the last cycle processed — that is the case foB-&lcles and fol-cycles with two forbidden
edges.

Remark 4.1. Notice that a good odd cycle might become bad when other cycles arespeacéf it is
initially a 5-cycle with zero (or one) forbidden edges and two (one, resp.) of itwetledges becomes
forbidden.

We say that a cycl€ is k-processed, if it is processed usingcaupport. The general order of
processing the cycles consistsiaftages:

(1) aslong as there exists a good odd cylel )-process it,
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(2) (+1)-process bad odd cycles until the number of loose-ends is greatemartedhe number of
remaining bad odd cycles,

(3) 0-process even cycles,
(4) (—1)-process the remaining odd cycles.

When we use the above processing order all the assumptions of preeiciien’s lemmas are satis-
fied. In particular in stag8, there exists at least one loose-end, so we can process the evesn cycle
This is because we can assume thabntains at least one triange, otherwise already the Kostochka-
Serdyukov algorithm gives/8-approximation.

Itis clear that we are getting enough weight from cycles processedjesitand3. We also gain some
extra weight in stag and lose weight in stage We want to select the cycles to be processed in stage
2 in such a way that the overall weight of edges added during staged4 is at Ieastzi(i, %) * Cj,
where the sum is over all cycles processed in these stages.

4.2 Ordering bad odd cycles

Let us first define certain useful notions. For any bad odd ayclet B_,(C) (B+1(C)) be the lower
bound on the weight of thé-1)-support (+1)-support), as guaranteed by the appropriate lemma in
the previous section. Suppose tlats the set of bad odd cycles processed in stage= 2, 4. If we
use previous section’s lemmas to lowerbound the weight of all edges atd&e and4, we are
going to get

> Bu(@+ ) B0,

Ceey ceey
and we need to show th@t andC4 can be chosen so that the value of this expression is at least

Y Gh)+C
CeCaUCy

For every bad odd cycl€' there exists a non-negative number, which we calldlose-end value for
C and denote LEYC) such that

B11(C) > (1,2)xC —LEV(C) and B_(C) > (1, 3) »C +LEV(C).
Note, that this number is equal §0u(e), wheree is the heaviest edge @f if C is a triangle, or the
heavier of the two forbidden edges@fif C' is a bads-cycle.

The reason why we call this number the loose-end valueCfas that it is essentially the price at
which C should be willing to buy/sell a loose-end. In this economic analogy, the cif@d¢are(+1)-
processed are selling loose-ends to cycles that-atg-processed. If we can make every cycle trade
a loose-end at a preferred price (LEV or better), the weight of astipp any cycleC together with

its profit/loss coming from trading a loose-end adds up to at Ke}ia%t) * C. But it is obvious how to
make every cycle trade a loose-end at a preferred price! It is ertfoughke the cycles with smallest
LEV sell loose-ends (process them in st&yeand make the remaining cycles buy loose-ends (process
them in stagd).

Note here, that some bad odd cycles will get loose-ends for free fomd gdd cycles processed in
stagel. Since we assume that the total number of vertices in the graph is even,ntienaf the
remaining bad odd cycles is also even, and so they can be divided evendgilers and buyers.

Using Lemma 2.1 we get

Theorem 4.2. Metric MAX-TSP problem can bg/8-approximated for graphs with even number of
vertices.

In Appendix B we show that this can be extended to graphs with odd nurhiertwes.
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A Proofs of thetechnical lemmas

A.l 5-cycles

Lemma 3.7. Let C' be an unprocesse@-cycle with at most one forbidden edge. Then there is a
(4+1)-support of weight at leagtl /4,1/2) x C..

Proof. Letwy, ..., vs be the vertices of' in the order they appear d@ri and assume w.l.o.g. thatvs

is the lightest edge i (C').

Let My = {vive,v3v4} and My = {veu3,vqvs}. Let Sy and S, be the supports corresponding to
M, and M, by Lemma 3.1 and le$ be the heavier of them. Also, assume all definitions leading to
inequality (3) in the proof of Lemma 3.2.

We consider three cases:

Case 1 vyvs is forbidden. Then;vs belongs to a path i® U M; (ending invs), hencevivs & D.
By Observation 1, then alsgvy ¢ D, soM; N D = (). By symmetry, alsd\/; N D = (). Hence
A\ D = A. By inequality (ii) in Lemma 3.1 we get(S) > 2(w(S1) + w(S2)) > sw(A) >
:- %w(C’) = %w(C) > 1w(C) + 3 min(C) > (3, 3) *C.

Case 2 One of the matchings, salf;, contains a forbidden edge. Hence the other edgklpis
allowed and by Observation 1 it does not belong*oAlso note that at least one of the edges M,
has a vertex in common with the forbidden edge frbfp. It follows thate does not lie on a cycle in
M, U P, because it lies on a path that ends with the forbidden edge #fgmBy Observation 1, the
other edge of\/, cannot lie on a cycle either. Altogether, this giyes\ D| > 3.

Using mequahty (3) we gews(S) > 2w(A\D)+ w(AmD)+ w(F) > 3w(C\ {vivs}) + Jw(A\
D)+ w(AﬂD) 4w(C\{vlv5})—|— ’LU(111U5) (4, 2)*0

Case 3 There are no forbidden edges#{C'). SupposeP U M; contains a cycle. Then the chords
v1vg andvgvy are forbidden. It follows that the edgesiah belong to a path i U M5 (one ending in
v1), SO they cannot lie on a cycle iU M,. We conclude that at least oneBfJ M, andP U M, does
not contain cycles, and $;A\D\ > 2. Using inequality (3) we gab(.S) > %w(A\D)+ w(AmD)
Sw(A) + tw(A\ D) > 3 - 2w(C) 4+ 1 min(C) = w(C) + w(C) + tmin(C) > (3, 5)xC. O

Lemma 3.8. Let C' be an unprocessegtcycle with two forbidden edges. Letbe any of the two
forbidden edges af'. Then there is d+1)-support ofC of weight at least1, 1) x C — Lw(e).

Proof. Letwy, ..., vs be the vertices of’' in the order they appear d@ri and assume w.l.o.g. thatvs
andvqvs the forbidden edges @f ande = viv;. Let My = {vyv2, v3va} andMy = {vovs, v4v5} and
assume the notation from the proof of the previous lemma.

Note that the edges dff; belong to a path if® U M; ending invs, henceM; N D = {. It follows that
|A\ D| > 2. Using inequality (3) we get(S) > Sw(A\ D) + 2w(AN D) + tw(F) > Y(w(A\
D) +w(AND)+w(F))+ jw(A\ D) = juw(C\{e}) + jw(A\ D) = jw(C\{e}) + 3 min(C) =
(%,%)*C—iw(e). O

Lemma3.9. LetC be an unprocessegcycle with two forbidden edges and assume that there are two
loose-ends. Let denote any of the two forbidden edgeg’of Then there is §—1)-support ofC' of
weight at least1, 3) x C + Lw(e).

Proof. Label the vertices of” as in the proof of the previous lemma. Observe that since there are at
least two loose-ends, at least one of them, cal] is not connected by a path @in P.
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Let My = {viva, v3v4, v5u} andMy = {uwvy, vovs, v4vs5}, let Sy andS, be the supports corresponding
to M7 and M> by Lemma 3.1, and lef be the heavier of them.

Note that the edges d#/; belong to a path il? U M; (the one ending im), henceP U M; does not
contain cycles and we havwy = M;. Also, neitheruv; norvsvs belong to a cycle inP U M,. Of
coursevsvs belongs to a 2-cycle i U M.

By inequality (i) in Lemma 3.1 we get(S) > 1(w(S1)+w(S2)) > $w(viv
w(uvr) + w(vgws)] + Fw(vevs). Using the trlangle inequality glves(S) >
w(v1vs) + w(vavs)] + Jw(vavs) > w(C) + 3 min(C) + Tw(vivs) > (1,

v2)+w(v3vs) +w(vsu)+
%[ (v1v2) + w(vzvy) +
3)*C + fw(e). O
Lemma 3.10. Let C' be an unprocesse@tcycle in the last phase of the algorithm and assume that
there is exactly one loose-end Lete be any of the two forbidden edges©BfC). Then there is a
(—1)-support ofC of weight at least$, 1) x C + Jw(e).

Proof. Label the vertices of" as in Lemma 3.8. By Observation 3,is connected inP to v4 by a
path.

Let Sl = {1)11)2,1)37}4,?}5u}, SQ = {uvl,v2v4,vgv5} and Sg = {uvl,v2v5,vgv4}. One may check
that for any; = 1,2, 3, S; is a support and in particuld? U S; is a Hamiltonian cycle. Le§ be the
heaviest of these supports.

Denotew (vavs) +w(v3vs) +w(vavs) +w(vgvs) by X. Thenw(S) > 3w (S1)+ fw(S2) + jw(Ss) =
2(w(v1v2) + w(vgvs) + w(vsu) + wluvy)) + $X.

By triangle inequality (used twice)X > 2w(vqus). By symmetry,X > 2w(v4qvs). Hence, X >

w(veu3) + w(vqvs). Let us apply triangle inequality one more timefvsu) + w(uvy) > w(vivs).

Putting it all together we geb(S) > F(w(vive) + w(vsva) + w(vivs)) + F(w(vevs) + w(vavs)) >
(1:3)*C + qule). O

A.2 0Odd cyclesof length at least 7

Lemma3.11. LetC be an unprocessed odd cycle of length at least 7. Then thergtis asupport of
weight at least 1, 3) * C.

Proof. Let |C| = 2k + 1, k > 3. We enumerate vertices I(C') so thatC' = vgvivs . . . vag_1V2k 00,
both vgv; andvgvy, are allowed andv(vgvi) > w(vouvar). Consider two subsets & (C): My, =
{voiv2i41 | 0 < i < k — 1} and My = {v9;41v242 | 0 < i < k — 1}. In other words we partition
E(C) \ {vovax } into two matchings.

LetCy,...,Cy, beall cycles inP U M; and LetC,, 11, ..., C, be all cycles inP U M. Similarly as in
Lemma3.1, leD = [ J!_, C; and we partition edges ih/; UM/ into two sets:F' containing forbidden
edges, andi containing allowed edges. Further, let us choose for each ¢j¢cle=1,...,q, some
edgee; in C; N E(C) and letQ = {e1,...,e,}. Since by Observation 1 each cydlg that contains
vpv1 contains also another edge frofnwe assume w.l.0.g. thagv; ¢ Q.

Using Lemma 3.1 we obtain suppoifs, S2. Let S be the heavier of these supports. Theft) >
$(w(S1) + w(S2)). Using Lemma 3.1 we obtain suppoits, S>. Let S be the heavier of these

supports Them(S) > 3 (w(S1) + w(S2)).

By inequality (i) in Lemma 3.1w(S) > sw((M; U M) \ Q) + tw(Q) = 3w(E(C) \ {vovar}) +

%w((Ml U Ms) \ Q). Sincevpvy € Q andw(vgv1) > w(vgvag), w(S) > iw(E(C)) + %w((Ml U

MQ) \ (Q U {1)01)1})). AsF C Q, (Ml U MQ) \ (Q U {7)01)1}) = (A\ {1)0111}) \ @ and hence

w(S) = qw(B(C)) + jw((A\ {vor1}) \ Q). (4)
It follows that|(A \ {vov1}) \ Q| > 2 impliesw(S) > (1/4,1/2) = C.
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First assume there afkeforbidden edges i (C'). Then one of the matchings, sa¥;, contains only
allowed edges (and the other matching contains all the forbidden edggs ldbte that inP U M; all
edges of\/; belong to a path with one endin,. It follows that)M; = S; andS; N Q = 0. It follows
thatA N @ = 0 and hencé A \ {vpv1}) \ Q contains at least — 1 > 2 edges, as required.

Now assume there are at mast- 1 forbidden edges i#(C). Then|A| > k + 1. By Observation 1,
1A\ Q| > [217. It follows that|(A\ {vov1}) \ Q| > [141] — 1. For|A| > 5, we get[ 4] — 1 > 2.
Hence we are left with the cagd| < 4. Since|A| > k + 1, k < 3. Sok = 3, |A| =4 and|F| = 2.
We consider two subcases.

Case 1. v5vg is forbidden. Then,vs is allowed and after adding the matching containings to P,
v4vs5 IS 0N a path ending ing, hencev vs does not belong to any;. Hence the three remainig edges
in A belong at most one cyclg;, so|A N Q| < 1 and further{(A \ {vov1}) \ Q| > 2, as required.

Case 2. wvsug is allowed. If F = {wvqus,v4v5}, One of the matchings, nameld,, contains only
allowed edges. Moreover, these edges belong to a pathun/, (ending invg), so My = So and
SoN@Q = (. There is just one allowed edge M; and hence it cannot belong to a cy¢le It follows
that) = F' and hencé(A \ {vov1}) \ Q| > 3. The caseF’ = {vjva, v3v4} IS Symmetric. Finally,
assume’ = {vjvg, v4v5}. By Observation 1, ilP U M; and P U M, there are at most 2 cycles with
edges fromA. If P U M, contains such cycle, thegus is forbidden. However, theR U M5 contains
no such cycle. Henced N Q| < 1 and|(A4 \ {vov1}) \ Q| > 2, as required. O

B Graphswith odd number of vertices

When the input graph has an odd number of vertices the algorithm deddréiere does not work
because there is no perfect matching. Itis easy to see that when weas@éaum weight near-perfect
matching instead (i.e. such that exactly one vertex is not matched) our atg@itles(7/8 — ﬁ)—
approximation, which is already better than the best known previous relsuttkily, even for the odd
case we can still retain 7/8-approximation by applying our algorithm in a motdstaated way.

The modified algorithm for the odd case also begins with a cycle céwerd a matching/. Note

that now we can assume that there is an unmatched vert@xr new algorithm processes cyclesof

as before, but the cycl€* that contains is processed in a special way. We show that this algorithm
returns a Hamiltonian cycle of weight at Ie%ﬂPT, provided that the initial cycle covet and the
matchingM satisfy certain special conditions. We show that such a pair of a matchethg eover is
contained in a set ad(n*) pairs which can be constructed in polynomial time. For each of these pairs
we apply the modified algorithm and we return the heaviest of the Hamiltonidesciorind.

B.1 Finding a special pair of cycle cover and matching

Now we are going to describe the aforementioned sét(af') matching-cover pairs. In what follows
we assume that the graph contains at least 4 vertices (otherwise thenprcdoiebe solved exactly
in O(1) time)). A simple pathvzyz will be called acandidate pathwhenw(zy) > w(vz) and
w(xy) > w(yz). For each candidate pathwe find €, the maximum weight cycle cover containing
pathp. (Such a cover can be found by finding a maximum weight cycle cover incifie graph, i.e.
with weights of edges on paghvery large). Similarly, for each candidate path- vryz we find M2,
the maximum weight matching i@ — {z} that contains edggz (again, we make the weight of edge
yz very large and we find the maximum weight matching). Next, for each caediddhp = vryz
we find M}, the maximum weight matching i — {y} that contains edgez. Note that

Proposition B.1. For any candidate path = vzyz,

(al) €, contains a cycle of length at least 4 containing edge
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(@2) matchingM? containsyz and matchingV/}] containsvz, and
(@3) w(zy) > w(vz) andw(zy) > w(yz).

Proposition B.2. For some candidate path= vzyz we have

(b1) w(€,) > OPT, and

(b2) w(MP) + 3w(zy) > JOPT wherea € {z,y}

Proof. Let H be a maximum weight Hamiltonian cycle. Ley be the heaviest edge di and letvx
andyz be the two edges incident witty in H. Condition (b1) is obvious then. Lét/, andM, be
the the near perfect matching that leawvgsesp.y) unmatched and consists of edgegbbnly. Note
thatw (ML) > w(M,) andw(M}) > w(M,). Clearlyw (M, )+w(My) +w(zy) = OPT. Itfollows
thatw(Mp) + w(M}) + w(zy) > OPT and hencenax{w(M?Z) + Jw(zy), w(M}) + Fw(zy)} >

Fw(ME) + w(M]) + w(zy)] > OPT, which is equivalent to (2). O

In what follows letC and M denote a cover and a matching satisfying conditions (al)—(a3) and (b1)—
(b2) and letp = vxyz be the corresponding candidate path. Cétbe the cycle of length at least 4 in
C that containgy and assume w.l.0.g. thatis unmatched in/ andyz € M.

Now we can prove an analog of Lemma 2.1.

Lemma B.3. If during processing the cycles ifi, we can add edges of total weight at least
>c, ee\{c*}(4v 3) % Cil + [(3,3) * C* + 3w(zy)] to M, then a Hamiltonian cycle of weight at

Ieast OPT is returned.

Proof. The sum of the welghts of the two Hamiltonian cycles found by the algorithm igstul€C) —

Y ceew(min(C)/2+w(M)+3w(€) + Y pee w(min(C))/2+ gw(zy) = Jw(C)+w(M)+w(zy).
By (b1) and (b2) this is at Iea%tOPT so the better of the two solutlons i aapproximation. [

B.2 Processing the cycle C* containing an unmatched vertex

Let us denote the vertices 6f* by xy,...,z|c+, in the order they appear arouddt and so that
V=21, T = T2,y =3 andz = x4.

LemmaB.4. Assume&’™ is even-length and consider any phase of the algorithm @/itinprocessed.
Then there is +1)-support ofC* of weight at leasts, 3)  C* + 2w (xy).

Proof. We partitionE(C*) into two matchings and then we replace eggen one of them byy, i.e.

flnaIIy we havelM; = {ngt_laﬁgt | t=1,..., |C*‘/2} \ {x3x4} @] {xg.rg} andMs = {SIZQt.TQH_l | t=
.,|C*|/2} (indices moduldC*|). Note that)M; and M, are (+1)-semi-supports (after adding

M to P vertexx, becomes a loose-end, and after addidgto P vertexxzs becomes a loose-end).

Similarly as in Lemma 3.1, choose one edge frbfmin each cycle inP U M; and one edge from/s

in each cycle inP U M5, and letQ be the set of these edges.

Let S; andS; be the(+1)-supports obtained from/; and M, using Lemma 3.1. Le$ denote the
heavier of them.

Note that edges 22, = vx andxoxzs = xy belong to a path inP U M; (ending inxz,4), because
x3xy = yz isin M. Also xox3 = zy andx4xs belong to a path iP U Ms (ending inze = x). It
follows thatvz, xy, z4zs5 € Q.

By inequality (i) in Lemma 3.1(5) > 3(w(S1) + w(92)) > w(zy) + sw(vz) + fw(zsws) +

>
%ZlQ‘g,w(wzsz) = 2w(C*\ {yz}) + 3w(zy) + Tw(vz) + tw(zsxs). Sincew(zy) > w(yz),
w(vz) > min(C*) andw(z4z5) > min(C*) we get finallyw(S) > (1, 1) x C* + Lw(zy). O
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LemmaB.5. Assume&’™ is odd-length. Consider any phase of the algorithm wittunprocessed and
with at least one loose-end. Then there &support ofC* of weight at Ieas(4, 2) *C* + %w(xy).

Proof. Note that|C*| > 5. Let|C*| = 2k + 1 and letu be a loose-end. LeV¥/; = {zo_172; | t =

. k} \ {$3$4} U {3}2.%'3, kaHu} andM, = {1’275.%'215_;,_1 ‘ t=1,..., ]C} U {u, .ZU1}. Note that)M;
and M, are0-semi-supports (after addinyy/; to P vertexx, becomes a loose-end, after adding
to P vertexzs becomes a loose-end, and in both casegases to be a loose-end). Similarly as in
Lemma 3.1, choose one edge frdmy in each cycle inP U M, and one edge from/, in each cycle
in P U M,, and letQ be the set of these edges.

Let S7 and.S; be the0-supports obtained from/; and M, using Lemma 3.1. Le$ denote the heavier
of them.

By the same argument as in the proof of Lemma BA,zy, x4x5 ¢ Q. Hence by inequality (i) in
Lemma 3.1w(S) > 3 (w(S)+w(S2)) > w(zy) + sw(ve) + Fw(zazs) + 3 [w(Tog+1u) +w(uwr) +
Zl s 1)) = 3w(C*\ {yz, app121}) + 2w(zy) + Hw(vz) + w(Tazs) + w(Topi1u) +wluz)].
Sincew(zop1u) + w(uwy) > w(:cgk+1x1) (azy) > w(yz), w(ve) > min(C*) andw(zszs) >
min(C*) we get finallyw(S) > (%, ) x C* + fw(xy). O

B.3 Final remarks

Note that ifC* is even-length then it “behaves” like a good odd cycle in the even casgthigoi.e. it
always has &+1)-support of large enough weight. On the other han@ifs odd-length, it “behaves”

like an even cycle in the even case algorithm, i.e. if there is a looseé&ntas a0-support of large
enough weight. Hence, &~ is even, we process it in stage 1 (thus making a loose-end which may be
needed by some bad odd cycle) and otherwise we process it in stage 3.

Since the assumpions of Lemma B.3 are satisfied we get

Theorem B.6. Metric MAX-TSP problem can b&/8-approximated in polynomial time for any input
graph.

It is an interesing question whether one can avoid the overhe@gdf) in the time complexity of the
odd case.
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