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In this chapter we introduce ordinal numbers and prove the Transfinite Re-
cursion Theorem.

loacw st pongeltle
Linear and Partial Ordering
<
Definition 2.1. A binary relation = on a set P is a partml ordering of P if:
(i) p £ p for any'p € P; \/pc? pse
(i1) if p< g and g <r, then p < r. > ML: ""L“’W“‘L peqnyse= 1%
2
(P, <) is called a partially ordered set. A partial ordering < of P is a linear
ordering if moreover oy

(iii) p<qgorp=gqorq<pforall p,qg € P.

If < is a partial (linear) ordering, then the relation < (where p < ¢ if either
P < gorp=q)is also called a partial (linear) ordering (and < is sometimes
called a strict ordering).

oty

Definition 2.2. If (P, <) is a partially ordered set, X is a nonempty subset
of P, and a € P, then:

aisa%’ﬁﬁ%elementoinfanand(Va:EX)a;(a:; a—|..'
a is a minimal element of X if a € X and (Vz € X))z £ q; §>\
a is the Melement of X ifa € X and (Va:eX)g:_Sa; ®x
a is the least element of X if a € X and (Vaz € X)a < z;

a is an upper bound of X if (Vo € X)z < a;

a is a lower bound of X if (V& € X)a < x;

a is the supremum of X if a is the least upper bound of X;

a is the infimum of X if a is the greatest lower bound of X.

The supremum (infimum) of X (if it exists) is denoted sup X (inf X).
Note that if X is linearly ordered by <, then a maximal element of X is its
greatest element (similarly for a minimal element).

If (P,<) and (Q, <) are partially ordered sets and [ : P — @, then f is
order-preserving if @ < y implies f(2z) < f(y). If P and Q are linearly ordered,
then an order-preserving function if\also called increasing.

s 49
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Serene

— — ¥ Gomovkin pangblacy-
A @ function of @ @IS an gsomorphism of P and @ if

both [f an are order-preserving; (P, <) is then isomorphic to (Q, < (Z 4)
An isomorphism of P onto itself is an ‘automorphism of (P, <).

Pobue gongdhe { j
s 5V ‘~<
Well-Ordering \/ \. )
P P '
Definition 2.3. A linear ordering < of a set P is a well-ordering if every

nonempty subset of P has a least glement. IN, € 2 ¢ [Z 5)
[ \ S

The concept of well-ordering is of fundamental importance. It is shown be-
low that well-ordered sets can be compared by their lengths; ordinal numbers
will be introduced as order-types of well-ordered sets.

'I xcy => fbd< £4)

Lemma 2.4. If (W, <) is o Well-ordered'set andf : W — W is an increasing

W o function, then f(x) > x for each x € W.
\ A Proof. Assume that the set X = {x € W : [(x) < 2} is nonempty and let =
s 2™ be the least element of X. If w = f(2), then f(w) < w, a contradiction. 0O° “
PwioA, u)“ )‘UVJ
Corollary, 2.5. The only @UtoHOIphism of o well-ordered set is the identity. ez
. () < f@D=0
v Proof. By Lemma 2.4, f(z) >  for all x, and f (z) > z for all 2. o e
pa7 7

Corollary 2.6. If two well-ordered sets Wy, Wao are isomorphic, then the
*(Q) isomorphism of W1 onto Wy lic szmw O
If W is a well-ordered set and v € W, then {z € W : « < u} is an initial

segment of W (given by ).

Lemma 2.7. No well-ordered set is isomorphic to an initial segment of itself.
Proof. If ran(f) = {x : x < u}, then f(u) < u, contrary to Lemma 2.4. O

Theorem 2.8. If ', and W5 are well-ordered sets, then exactly one of the wq_
following three cases holds: o

(i) W islisomorphicito Wo; - : ]
(if) W is isomorphic to an initial segment of Wa;
(ii1) Wa is isomorphic to an initial segment of W7.

w

Proof. For w € W, (i = 1, 2), let W;(u) denote the initial Segment of W; N
given by u. Let

f= {@%wQ : Wi(z) is isomorphic to Wa(y)}.

Using Lemma 2.7, it is easy to see that f is a one-to-one function. If@is
an isomorphism between Wi (z) and Wa(y), and 2/ < z, then W;i(2’) and
Wa(h(2')) are isomorphic. It follows that f is order-preserving.
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preiwdn .
If dom(f) = W and ran(f) = W, then case (i) holds.
If y1 < y2 and s € ran(f), then y; € ran(f). Thus if ran(f) # IV, and

Yo is the least element of W5 §ran(f), we have ran(f) = Wa(yo). Necessarily, .
dom(f) = Wy, for otherwise we would have (xg,y0) € f, where g = the least
element of Wy — dom(f). Thus case (ii) holds.

Similarly, if dom(f) # W1, then case (iii) holds.

In view of Lemma 2.7, the three cases are mutually exclusive. O

If 17 and W5 are isomorphic, we say that they have the same order-type.
Informally, an ordinal number is the order-type of a well-ordered set.
We shall now give a formal definition of ordinal numbers.

2 pukelny K€l 5 ez 0=
xeX

A= 401- 4¢
Ordinal Numbers wecp  2=49 A3 = 4 4¢33
3= 4o4.2%
The idea is to define ordinal numbers so that b= 40'4‘2’1?%‘ s ,.(O’ 4,,.,\/3
a < 3 if and only if (o€, and a={p:0<a}
N <wm &> o e oot = AMEN T <]
Definition 2.9. A set 7' is tmn?i}’iv if %very element of T is a subset of T'.

(Equivalently, | JT C T, or T'C P(T).) IN = 40,423, ___‘3

Definition 2.10. A set is an| ordinal number (an ordinal) if it is —

and WeIEGHASHag by € /b(Y&\iLJ

We shall denote ordinals by lowercase Greek letters o, 3, 7, .. .. The class

of all ordinals is denoted by Ord. X ecod
We define K-é (b @ -3
a< f ifand onlyif o € . 4 JLYSN)
® € @ € yc
Lemma 2.11. ﬂ:)“ﬂ(z = g %efé»/‘b
< ¢ < ¢ L= =
(i) 0=0 is an ordinal. 1 5EM

i) If a is an ordinal and 7 € . then B is an _ordinal. Té/b => Ke /s
—J

Iflo % B)are ordinals and then

) If e, 0 are ordinals, then either @ ¢ 3 or Bic a. 5 2
(gé‘( nS€p
Proof. (i), (ii) by definition. d /L

(iii) If @ C B, let e the least element of the set 35 ¢l Since a is
transitive, it follows that a is the initial segment of 3 given by@ Thus
a={{epf: &<y} =~,and so a € 5.

(iv) Clearly, a N § is an ordinal,/@MB =(5.) We have|y = (\1_7\ or m
for otherwise v € o, and v € 3, by (iii). Then 7 € v, which contradicts the
definition of an ordinal (namely that € is a strict ordering of ). O

Fean =Y geatd 5

@, AA vioBvdon2hv. .. = OuAuvlvdu ...
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{0 3= qud2h = do1dh

°< @ g B Using Lemma 2.11 one gets the following facts about{c ‘ordinal numbers
((0 A :)] fzhe pr(;ofs are routine):

,(0 1 l 3 }2 1) 2 is a linear ordering of the class Ord.
(2.2) Foreacha,a={0:0 < a}.

(2.3) If C is a nonempty class of ordinals, then () C is an ordinal, (| C € C
‘N‘A‘NB and ((C =inf C. ~ L"

Ky

(dlot &> (b€

———
If X is a nonempty set of ordinals, the s an ordinal, and | J X =

| e @
g 2.5) For every « s an ordinal and a U {a} = inf{8: 8 > a}.
- gaith ’
c" =20 IM\MI}\% = .{o../(,’l,,,,/ NG
g *V We thus define @ + 1 =qaeld-{a} (the successor of @). In view of (2.4), the
N class Ord is a proper class; otherwise, consider sup Ord + 1.

0 We can now prove that the above definition of ordinals provides us with

order-types of well-ordered sets. N= O P T |NU4(N) N,M

Theorem 2.12. Every well-ordered setl is isomorphic to,alunique ordinal W
number.

Proof. The uniqueness follows from Lemma 2.7. Given a well-ordered set W,
we find an isomorphic ordinal as follows: Define F'(z) = « if « is isomorphic
to the initial segment of W given by z. If such an « exists, then it is unique.
By the Replacement Axioms, F(W) is a set. For each # € W, such an «
exists (otherwise consider the least z_for which such an a_does not exist). If
« is the least v ¢ F(W), then F(W) =~ and we have an isomorphism of W

onto 7. o .{fk‘) O

" mﬁs\ﬁvﬂb ®
If@: G hen « is a_successor ordingl. If « is not a successor ordinal,
hen « : = ﬁa is called ae also consider 0 (Z ) 2)
) limit ordinal and define sup §) = 0. divloe. qromiona,

The existence of limit ordinals other than 0 follows from the Axiom of
nfinity; see Exercise 2.3.

IN

8 Definition 2.13 (Natural Numbers). We denote the least nonzero limit

Y ordinal w (or IN). The ordinals less than w (elements of IN') are called finite
ordinals, or natural numbers. Specifically,

o |—Fo
(")"N 0=0, 1=0+1, 2=14+1, 3=2+1, etc ‘g

A set X is finite if there is a one-te=one mapping of X onto somen € IN.
X is infinite if it is not finite.

We use letters Lz\/_l\k J, ¢ (most of the time) to denote matural numbers.

1 {Z.ﬁ)
L'\Qf/f K% i Raen™ > @ @[’—é)
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(W(O) v Vo (W nli)) ) > i@

(] 0 L
O /’ 2 "b ‘1 \ -~ *
Induction and Recursion
poruoviona A€ [}
Theorem 2.14 (Transfinite Induction). Let(C |be a class of ordinals and .
assume that: ° [
(i) 0 € C; ¢
@) ifaeC, thena+1eC; o

(ill) if @ 1s a nonzero limit ordinal and B € C for all § < a, then a € C.

Then C is the class of all ordinals.

Proof. Otherwise, let/@ be the least ordinal & ¢ C" and appbc.or.

A function whose domain is the set IN is called an (infinite) sequence
(A sequence in X is a function f : N — X.) rd notation for

—

a sequence is sq 1.
(an :n < w) A  oun 1
or variants thereof. A finite sequemei\s_a_ﬁﬁction ssuch dom(s) = {i:i < n} a

for some n € IN; then s is a sequence of length n.
A ‘transfinite sequence is a function whose domain is an ordinal:

(ag : € <@.

It is also called an a-sequence or a sequence of length . We also say that
a sequence (ag : { < «) is anlenumeration of its range {ae : £ < a}. If
s is a sequence of length «, then s™x or simply sx denotes the sequence of
length o + 1 that extends s and whose ath term is x: ‘SQL

B =52 =sU{(x,z)}

> xe

Sometimes we shall call a “sequence”
(aq : o € Ord)

a function (a proper class) on Ord.

“Definition by transfinite recursion” usually takes the following form:
Given a function G (on the class of transfinite sequences), then for every 6
there exists a unique #-sequence

(aq 1 v < 0)
such that
ao = G({ag : £ < a))

for every o < 6.
We shall give a general version of this theorem, so that we can also con-

struct sequences (a, : a € Ord).
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Theorem 2.15 (Transfinite Recursion). Let G be a function (on V),
then (2.6) below defines a unique function F' on Ord such that
F(a) = G(Fla)
for each «.
In other words, if we let a, = F(«), then for each a,
ao = G({ag : £ < a)).
(Note that we tacitly use Replacement: F'[« is a set for each «.)

Corollary 2.16. Let X be a set and 0 an ordinal number. For every func-
tion G on the set of all transfinite sequences in X of length < 6 such that
ran(G) C X there exists a unique 0-sequence {(aq : a < 0) in X such that

o = G((ag : £ <)) for every o < 6. O
Proof. Let
(2.6) F(«) = z < there is a sequence {a¢ : £ < «) such that:

(i) (V€ <a)ag = G({ay 11 <&));
(i) x =G((ae : £ < ).

For every a, if there is an a-sequence that satisfies (i), then such a sequence is
unique: If (a¢ : £ < o) and (b : £ < @) are two a-sequences satisfying (i), one
shows a¢ = b¢ by induction on &. Thus F'(«) is determined uniquely by (ii),
and therefore F' is a function. It follows, again by induction, that for each a
there is an a-sequence that satisfies (i) (at limit steps, we use Replacement
to get the a-sequence as the union of all the ¢-sequences, § < «). Thus F is
defined for all & € Ord. It obviously satisfies

If F’ is any function on Ord that satisfies

F'(a) = G(F'la)
¥ 80
then it follows by induction that F’(a) = F(a) for all a. Ko, Atﬁr"‘\s:"' g P
Definition 2.17. Let o > 0 be a limit ordinal and let (ye : & <@> be
a nondecreasing sequence of ordinals (i.e., & < n implies v¢ < 7,). We define
the limit of the sequence by n&\m&&ﬁm .

lime_.o Ve + sup{ve : £ < a}.

A sequence of ordinals (7, : o € Ord) is normal if it is increasing and
continuous, i.e., for every limit o)/ vo) = lime_., ve. “

v
° . wie

(o . ‘ o
’ N, Do D 2. A f

10 Q.———’x » -
Vo pmRomoe n )
> S .
o o0 STNT7, “. B L et

Qe
>

s ° °
o N 2 o =W
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rdinal Arithmetic

e shall now define addition, multiplication and exponentiation of ordinal
umbers, using Transfinite Recursion. .9 &

o+
efinition 2.18 (Addition). For all ordinal numbers « ‘ B
(i) a@o = a, »
i)+ (B +1),=a+8)+1, for all g,

(iii) o+ 8 = lime_,gla + &) for all limit(5 > 0.

Definition 2.19 (Multiplication). For all ordi bers «
(i) a-0 =0,
(i) o - (,Q_—t,l\—oz 6+aforallﬂ,

(i) v /8 =lime_ g o - € for all limit 5 > 0.

Definition 2.20 (Exponentiation). For all ordinal numbers o

@ o=
(i) o _for all 3,
(iii) \Q@—Jhmgﬁgﬁfor all limit 5 > 0.

As defined, the operatlons a+ 3, a- 3 and o are normal functions in the o
second variable 3. Their properties can be proved by transfinite induction.
For instance, + and - are associative:

Lemma 2.21. For all ordinals o, 8 and v,
i) a+(B+7)=(a+6)+7, (qomost

(i) a«(3-7)=(a-0) 7. (2= - (1H)
Proof. By induction on . =W ./: + W m] (2 Q )
o onne w-6 f\‘(\) T
Neither 4+ norf: are tommutative: ‘"W'( Zn M""}) O4WtW
s 1 1l
ltw=w#w+1 | @w#wﬂ—uﬁ& (24)
mp {1k v\elnj P ,(.,\)H'wﬂ, (,H’) ?;

be also defined geometrlcally, as can sums
and products of arbitrary linear orders:

Definition 2.22. Let\( |, <4) hnd (//, <p) be disjoint linearly ordered sets.
The sum. of @ase linear is the set AU B with the ordering defined as

follows: if and only if ‘
x,yEAandx<Ay,or 0 ) AowR
r,y € Band x <py, or ;

(i) x € Aand y € B.
I —

IN¢

=
® @ o o 0 -
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Definition 2.23. Let (4, <) and (B, <) be linearly ordered sets. The product
of these linear orders is the setwith the ordering defined by

(a1,b1) < (az,bs) if and only if either by < by or (12,:,?9 and<.

Lemma 2.24. For all ordinals a and B, a + 0 and « = 3 are, respectively,
isomorphic to the sum and to the product of o and [3.

Proof. By induction on f. ]

Ordinal sums and products have some properties of ordinary addition and
multiplication of integers. For instance: o= w Y

o =
Lemma 2.25.

(i) If <y thena$f<a+-y. ( <

(ii) If v < [J then there exists a unique § such that o+ 6 = [3.

(i) If p < v and a > 0, then o= < a#7. ‘

(iv) If o> 0_and 7 is arbitrary, then there exist a unique B and a unique
p < « such that 7 = a: B+ p.

(v) If B <~ and a > 1, then o’ < .

Proof. (i), (iii) and (v) are proved by induction on . §
(ii) Let § be the order-type of the set {€ : o < & < 3}; 4 is unique by (i).
(iv) Let ( be the greatest ordinal such that o - 8 < . O
For more, see Exercises 2.10 and 2.11. ( Z‘O \

Theorem 2.26 (Cantor’s Normal Form Theorem). FEvery ordinal o >
0 can be represented uniquely in the form

a=w ko WPk,

where n > 1, o« > (B1 > ... > B, and ki, ..., k, are nonzero natural
numbers.

Proof. By induction on a. For o = 1 we have 1 = w - 1; for arbitrary a > 0
let 3 be the greatest ordinal such that w® < a. By Lemma 2.25(iv) there
exists a unique § and a unique p < w? such that o = w? - § + p; this &
must necessarily be finite. The uniqueness of the normal form is proved by
induction. O

In the normal form it is possible to have a = w®; see Exercise 2.12. The z \’l
least ordinal with this property is called q. !

2.15



2. Ordinal Numbers 25

Well-Founded Relations

Now we shall define an important generalization of well-ordered sets.
A binary relation F on a set P is well-founded if every nonempty X C P

has an E-minimal element, that is a € X such that there is no z € X with 2

z E a. . ’( l']
Clearly, a well-ordering of P is a well-founded relation.
Given a well-founded relation E on a set P, we can define the height of E,

and assign to each x € P an ordinal number, the rank of x in E.

Theorem 2.27. If E is a well-founded relation on P, then there exists
a unique function p from P into the ordinals such that for all x € P,

(2.7) p(z) =sup{p(y) +1:y E x}.

The range of p is an initial segment of the ordinals, thus an ordinal num-
ber. This ordinal is called the height of E.

Proof. We shall define a function p satisfying (2.7) and then prove its unique-
ness. By induction, let

Py =10, Poan={zeP:Vy(lyEz—yeP,)},

P,= | P: if o is alimit ordinal.
(<a

Let 6 be the least ordinal such that Py11 = Py (such 6 exists by Replacement).
First, it should be easy to see that P, C P,4+1 for each « (by induction).
Thus Pp € P, C ... C Py. We claim that Py = P. Otherwise, let a be
an F-minimal element of P — Py. It follows that each x F a is in Py, and
so a € Pyy1, a contradiction. Now we define p(x) as the least o such that
x € P,y1. It is obvious that if z E y, then p(z) < p(y), and (2.7) is easily
verified. The ordinal € is the height of F.

The uniqueness of p is established as follows: Let p’ be another function
satisfying (2.7) and consider an F-minimal element of the set {x € P : p(z) #

p'(x)}. 9 e

O
Pl

Exercises bl
T #3<46) é»};ﬁ)’)
r)

2.1. The relation “ is isomorphig to (Q,<)” is an equivalence relation (on
the class of all partially ordered sets).

2.2. « is a limit ordinal if d:?l if B <f&)impli +1<a, f .
a is a limit ordinal if an @nylﬁ @mplesﬁ a, for every 0

2.3. If a set X is inductive, then X N Ord is inductive. The set N = (|{X : X is
inductive} is the least limit ordinal # 0.

@u&ﬁﬁ
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2.4. (Without the Axiom of Infinity). Let w = least limit o # 0 if it exists, w = Ord
otherwise. Prove that the following statements are equivalent:

(i) There exists an inductive set.
(if) There exists an infinite set.
(iii) w is a set.

[For (ii) — (iii), apply Replacement to the set of all finite subsets of X ]

25 IfWisa v’gg\lj\—pyigm\g_“ then there exists no sequence (an :m € N) in W

such that.@g > a1 > as > . X = {Q a A 3
> Q@ , z.r--

2.6. There are arbitrarily large limit ordinals; i.e., Vo33 > a (0 is a limit).
[Consider limy,—., an, where a1 = apn + 1.]

2.7. Every normalisequence (v : @ € Ord) has arbitrarily large fized points, i.e.,
a such that.o. = o-
Let Q1 )= Yo | and(a )= limp, .|

2.8. For all a, 3 and v, “"”"(M L
() a-(B+y)=a-B+a-7, .
(ii) ot =ab . oﬂ,‘ \‘ . ;-

(iii) (@®) =a"7. . N o = i

2.9. (i) Show that@ +1) 22w 240 - 2]
(ii) Show that (w-2)* # w* - 2°.

J&

2.10. fa<Bthena+vy< B8+, a-7y<B-v,and a” < 37,

2.11. Find «, (3, vy such that
(i) a<pand a+vy=p+7,

(i) a<Banda-vy=06-7,
(iii) a < B and a7 = §7.

2.12. Let g9 = limp—, o, where ap = w and ap4+1 = w™ for all n. Show that
€o is the least ordinal € such that w® = e.

A limit ordinal v > 0 is called indecomposable if there exist no o < «y and 3 < ~y
such that a4+ 8 = ~.

2.13. A limit ordinal v > 0 is indecomposable if and only if a4~y = for all @ < 7y
if and only if v = w® for some «.

2.14. If E is a well-founded relation on P, then there is no sequence {(a, : n € N)
in P such that a1 E ao, a2 F a1, as F as, ....

2.15 (Well-Founded Recursion). Let E be a well-founded relation on a set P,

and let G be a function. Then there exists a function F' such that for all « € P
m

F(z) =G, Fl{ye P:y E z}). s 9

Historical Notes

The theory of well-ordered sets V\;z;side{/eloﬁé& by Cantor, who also introduced
transfinite induction. The idea of identifying an ordinal number with the set of
smaller ordinals is due to Zermelo and von Neumann.
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