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Twelve Cardinals and their Relations

The consonances are those intervals which are
formed from the natural steps.

An interval may be diminished when one of its
steps is replaced by a smaller one.

Or it may be augmented when one of its steps is
replaced by a larger one.

GIOSEFFO ZARLINO
Le Istitutioni Harmoniche, 1558

In this chapter we investigate twelve cardinal characteristics and their
relations to one another. A cardinal characteristic of the continuum is an
uncountable cardinal number which is less than or equal to ¢ that describes
a combinatorial or analytical property of the continuum. Like the power of
the continuum itself, the size of a cardinal characteristic is often independent
from. However, some restrictions on possible sizes follow from ZFC, and
we shall give a complete list of what is known to be provable in ZFC about
their relation. Later in Part I, but mainly in Part ITI, we shall see how one
can diminish or augment some of these twelve cardinals without changing
certain other cardinals. In fact, these cardinal characteristics are also used to
investigate combinatorial properties of the various {orcing notions introduced
in Part IIT. forsing.

We shall encounter some of these cardinal characteristics (e.g., n) more
often than others (e.g., i). However, we shall encounter each of these twelve
cardinals again, and like the twelve notes of the chromatic scale, these twelve
cardinals will build the framework of our investigation of the combinatorial
properties of forcing notions that is carried out in Part ITI.

On the one hand, it would be good to have the definition of a cardinal
characteristic at hand when it is needed; but on the other hand, it is also
convenient to have all the definitions together (especially when a cardinal
characteristic is used several times), rather than scattered over the entire
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190 8 Twelve Cardinals and their Relations

book. Defining all twelve cardinals at once also gives us the opportunity to
show what is known to be provable in ZFC about the relationship between
these twelve cardinals. Thus, one might first skip this chapter and go back to
it later and take bits and pieces when necessary.

A, k- o-m o-1 P g
The Cardinals cgl and ¢ 40, 4’5 Y g wobg

N A

"z No We have already met both cardinals, ¢ and wy: ¢ is the ardlna y of the contin-
uum R, and w; is the smallest uncountable cardi dmg to FACT 4.3,
¢ = 2% is also the cardinality of the sets [0, 1], “2, ‘*’w and | \ 0Q); and
d"p by LEMMA 4.10, w; can also be considered as the set of order types of well-

orderings of Q.
The Continuum Hypothesis, denoted CH, states that ¢ is the least uncount-
> \} / able cardinal, i.e., ¢ = wy (cf. Chapter 4), which is equivalent to saying that
Meis either countableror of the same cardinality as R. Fur-
thermore, the Generalised Continuum Hypothesis, denoted GCH, states that for
every ordinal a € Q, 29> = w, 1. Godel showed that L E GCH, where L is the
Q&Q \\ constructible universe (see the corresponding note in Chapter 5), thus, GCH

is consistent with ZFC. 5%, 2%, «© Z mOnagy nlas ke dpnoine

Each of the followingten combinatorial cardinal characteristics of the con-
\ \ - tinuum is uncountab¥ and less than or equal to ¢. Thus, if we assume CH, then
D" these cardinals are all equal to ¢. However, as we shall see in Part IT, CH is not
provable in ZFC. In other words, if ZFC is consistent then there are models of
‘(, ZFC in which CH fails, i.e., models in which w; < ¢. In those models, possible
(i.e., consistent) relations between the following cardinal characteristics will

be provided in Part IT and Part III.

The Cardinal p
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3{,\ For two sets #,y C . we/say that = is almost contained in y, denoted
<y, if @\ y is finite,/i.e., all but finitely many elements of x belong to
f y. For example a finite fubset of w is almost contained in @, and o is almost
contained in every ¢ f7ite subset of w (i.e., in every y C w such that w\ y is
\ seudo-int of a famﬂy 7 C |w* of infinite subsets of w
: subset of w that is @li@st contained in every member of .%. For
e Me- ample w is a pseudo-intersection of the family of © )-fini s. Furthermore,
=) St a family 7 - (x" ' has the strong ﬁnite intersection property (sfip) if
P* P' every fini ibfamily has infinite i n. Notice that evéyy family with
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g 5eude - recgu
DEFINITION OF p. The pseudo-intersection number p is the smallest car-
dinality of any family .7 C [w]* which has the sfip but which does not have
a pseudo-intersection; more formally

P)=min {|.7| : & C[w]® has the §fip but no-psendo=intersection} .

W
Since ultrafilters on [w]¥ are families which have the sfip but do not have
a pseudo-intersection, and since every ultrafilter on [w]“ is of cardinalit
the cardinal p is well-defined and % < ¢ It is natural to ask whether p can
be smaller than ¢; however, the following result shows that p cannot be too
small. i} w

"
A
THEOREM 8.1.[ % = 1 a’o =IN %‘o < P
Proof. Let & = {X,, € [w]* : n € w} be a countable family which hgi the sfip,

We construct a pseudo-intersection of & as follows: Let ag := and for
positive integers n let " N

PSwW"' an —K((ﬂ{xi Lie n)\ {ai:ie n}) , i

o) Further, let Y = {a, : n € w}; then for every n € w, Y\ {a; : i € n} C X,
which shows that Y C* X,,, hence, Y is a pseudo-intersection of &. -

\% The Cardinals b and_? .
Nj.rt’p' = v rq

For two functions f,g € “w we say t at ¢ domina J e
for all but finitely many integers k € w, f(k) < g(k), i.e., if there is an@ Ew
such that for all k > ng, f(k) < g(k). Notice that orderlng “<*7 is transitive,
however, “<*” it is not a linear ordering (we leave it as an exercise to the
reader to ﬁnd functions f, g e w such that neither [ <" g nor g — = f).
A family 7 C “w is “ ing if forjeach there is a function
€ 2 such that WB4°4 0 - —
0720p01-. —
DEFINITION OF 0. The dominating number 0 is the smallest cardinality

of any dominating family; more formally

9 =min{|%|: 2 C “w is dominating} .

A family £ C “w is 1‘1‘:1b unded if there is no single function f € “w
which dominates all functions of 4, i.e., for every f € “w thereis a g € #
such that g £* f. Since “<*” is not a linear ordering, an unbounded family is
not necessarily dominating — but vice versa (see FACT 8.2).

DEFINITION OF b. The bounding number b is the smallest cardinality of
any unbounded family; more formally

b = min {|4| : Z C “w is unbounded } .
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Obviously, the family@tself is dominating and therefore unbounded,

which.shows that 0 and b well-defined and bz 0 < ¢. Moreover, we have the
following

FacT 8.2. b <

Proof. Tt is enough to show that every dominating family is unbounded. So,
let 2 C “w be a dominating family and let = ¢ = o be an arbitrary function.
Since Z is dominating, there is a ¢ € Z such that f <* g, i.e., there is an
nog € w such that for all k& > ng, (k) < g(k). Hence we get g £* [, and since
f was arbitrary this implies that ~/ is unbounded. —

It is natural to ask whether b can be smaller than 9, or at least smaller
than ¢; however, the following result shows that b cannot be too small.

THEOREM 8.3. 7% < b. ;\Ao < b £

T
Proof. Let & = {y, € “w:n € w} be a« blenfamily. chns ruct| a
function f € “w which donunarei all functions of &: For each k

:J&gi(k):iek}. "

—_—
Then for every k € w and each i € k we have f(k) > g;(k) wh1ch shows t
for all n € w, g, <* f, hence, f dominates all functions of &

One could also define dominating and unbounded families with respect to

the ordering “<” defined by stipulating f < g <= Vk € w(f(k) < g(k:))

Then the corresponding dominating number would be the same as 0, as any

dominating family can be made dominating in the new sense by adding all

finite modifications of its members; but the correspending bounding number

y would drop to w, as the family of all constant functions is unbounded (we
we the details to the reader).

1ie Cardinals s and ¢

vordadlin
A set © C w gplits an infinite set y € [w|” if both y M » and ¢ \ © are infinite
(i.e., ly N z| = |y \@|=w). Notice that any + C w which splits a set y € [w]”
must be infinite. A splitting family is a family@g [w]“ such that each

2 € [ g split by at least one g ~
EFINITION OF s. Thesplitting number s is the smallest cardinalify of any

splitting family; more formally

w}l 40‘5\0 s =min {|.7| : & C [w]” is splitting} .
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it as an
exercise to the reader to find a direct proof of the tincountability of s.

In the proof of the following result we will see how to construct a splitting
family from a dominating family.

THEOREM 8.4. 5 <

Proof. For each strictly increasing function f € “w with f(0) > 0 let

O)-U{lr#0.£40) :new}, g"'(o) =§(g;g))

) OO where for a,b € w, [a,b) :={k € w:a <k < b} andf2H(0)= f(t"(O)! with
(b ’ f9(0) := 0. Let Z C “w be a dominating family. Without loss of generality
we may assume that every [ € 7 is strictly increasing and f(0) > 0, and let

y@Z{df:fE’”}.

We show that 7 is a splitting family. So, fix an arbitrary € [w]“ and let
fr € “w be the (unique) strictly increasing bijection between w and z. More
formally, define [ :w & by stipulating

Min

Lolk) =R (\ {fali) : 1 €R})

Notice that for all £ « w, /| ) > k. Since 2 is dominating there is an f € &
such that <* f, which mmplies that there is an 7y € w such that for all
L > ng we have k< + Foreach k € w we have k < f*(0) as well as
- < {0 ). Moreover, ior & =~ ng we have

f&s (/' (0 B(h0) = 5(0),

and therefore fo(f*(0)) € [f*(0), f**1(0)). Thus, for all k > ny we have
f2(f"(0)) € oy iff k is even, which shows that both » @ W and 2 \@
are infinite. Hence, o/ splits =, and since x was arbitrary, ./ is a splitting
family. —
yﬁamu pApasin  wd mdncdalne

A .aaping family — also known as refining or unsplittable family — is
a family % C [w]¥ such that there is no single sot 01" which splits all
elements of Z, i.e., for every x € [w]¥ there is a y € % such that y 0z or
y \ x is finite. In other words, a family &7 is reaping if for every [w]¥ there
isayc 7 such that 1. C* (w\ z) or y C* 2. The origin of “reaping” in this
context is that A reaps B iff A splits B, by analogy with a scythe cutting

the stalks of grain when one reaps the grain. So, a #eaping family would be a
splitting family. However, the more logical approach, where “0c1ps” means “is
unsplit by”, seems to have no connection with the everyday meaning of the

word “reap”.
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DEFINITION OF t. The reaping number t is the smallest cardinality of any
reaping family; more formally

R|: # C [w]” is reaping} .

t = min {

Since the family is vy reaping, v is well-defined and © < «c.
Furthermore, by THEOREM 8.3, the following result implies that every reaping
family is uncountable:

i [ |
THEOREM 8.5. b <.

Proof. Let & = {7 € [w]¥ : £ € ¥ < O} be an arbitrary family of infinite
subsets of w of cardinality strictly less than b. We show that & is not a reaping
family. For each z; € & let g¢ € “w be the unique strictly increasing bijection
between w and ¢\ {0}. Further, let ge (k) := g£(0), where g; ' (0) = g (9£(0))

and gg(O) := 0. Consider & = {@ : £ €lg}. Since s < b, the family & is
bounded, i.e.,.there exists an =~ < “w such that for all £ € k. o [ Let
€= Ui [p(O),ﬁ:’.(O) or each £ € k there is an € w such
that for all k& > ng, f*(0) < < _-(MJ) This implies that neither
ze C* z nor z¢ C* (w \ ), and 1IeNce, & 1s not alyeaping family. =

The Cardinals a and i

Two sets z,y € [w]¥ are almost disjoint if z Ny is finite. A family &7 C [w]¥
of pairwise almost disjoint sets is called an almost disjoint family; and a
maximal almost disjoint (mad) family is an infinite almost disjoint family
o/ C [w]¥ which is maximal with respect to inclusion, i.e., & is not properly
contained in any almost disjoint family &7’ C [w]*.

DEFINITION OF a. The almost disjoint number a is the smallest cardinality
of any maximal almost disjoint family; more formally

a=min {|«/|: & C [w]” is mad} .

Before we show that b < a (which implies that a is uncountable), let us
show first that there is a mad family of cardinality c.

PROPOSITION 8.6. There exists a maximal almost disjoint family of cardinal-
ity «c.

Proof. Notice that by Teichmiiller's Principle, every almost disjoint family can
be extended to a mad family. So, it is enough to construct an almost disjoint
family @4 of cardinality c. Let {s; : i € w} be an enumeration of | J, .., "w,
i.e., for each t : n — w there is a unique 7 € w such that ¢t = s;. For f € “w let

zp={icw:Incw(fl,=s)}.



The cardinals a and i 195

Then, for any distinct functions f,g € “w, ¢ Nz, is finite. Indeed, if f # g,
then there is an ng € w such that f(ng) # ¢g(no) which implies that for all
k> ng, flk # glk, and hence, |zyNx4| < ng+1. Now, let o := {z; : f € Yw}.
Then o C [w]¥ is a set of pairwise almost disjoint infinite subsets of w,
therefore, o7 is an almost disjoint family of cardinality |“w| = c. —

The following result implies that a is uncountable and in the proof we will
show how one can construct an unbounded family from a mad family.

THEOREM 8.7. b < a.

Proof. Let o = {z¢ : £ € Kk} be a mad family. It is enough to construct
an unbounded family of cardinality |/|. Let z = w \ U, z¢; then z is finite
(otherwise, &7U{z} would be an almost disjoint family which properly contains
). Let zfy := 29UzU{0} and for positive integers n € w let z/, := (z,U{n})\
Uken 7k Then, since &7 is an almost disjoint family, {z], : n € w} is a family
of pairwise disjoint infinite subsets of w and by construction, (J,c,, =7,
Moreover, (@ \{z¢ : £ € w})U{x}, : n € w} is still mad. For n € wlet g, € “w
be the unique strictly increasing bijection from z/, to w, and let b : w — w X W
defined by stipulating

= W.

h(m) = (n,k) where m € z}, and k = g,(m).

By definition, for each n € w, hlz]] = {(n, k) : k€ w}, and for all £ € k&,
hlzw+e] N ), is finite. Further, for each ¢ € k define f; € “w by stipulating

fe(k) = (hlwwse] N i)

and let B = {fe € “w : £ € k}. Then by definition |#| = |&/|; moreover, A
is unbounded. Indeed, if there would be a function f € “w which dominates
all functions of %, then the infinite set {h~*((n, f(n))) : n € w} would have
finite intersection which each element of ./ contrary to maximality of «/. -

A family .# C [w]¥ is called independent if the intersection of any finitely
many members of .# and the complements of any finitely many other members
of .# is infinite. More formally, .# C [w]“ is independent if for any n,m € w
and disjoint sets {z; : i € n},{y; : j e m} C .7,

ﬂ x; N ﬂ (w\y;) Iis infinite,
SO JjEM

where we stipulate [0 := w. Equivalently, .# C [w]* is independent if for any
I,J € fin(#) with INJ = () we have

(YI\J 7 isinfinite,

We leave it as an exercise to the reader to show that if .# is infinite, then
# is independent iff for any disjoint sets I,.J € fin(.#), NI\ U J # 0.
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A maximal independent family is an independent family .# C [w]*

which is maximal with respect to inclusion, i.e., . is not properly contained
w

in any independent family ./ C [w]“.

DEFINITION OF i. The independence number i is the smallest cardinality
of any maximal independent family; more formally

i=min {|.#]: .# C [w]” is independent } .

We shall see that max{tr,9} <i (which implies that i is uncountable), but
first let us show that there is a maximal independent family of cardinality c.

PRroOPOSITION 8.8. There is a maximal independent family of cardinality c.

Proof. Tt is enough to construct an independent family of cardinality ¢ on
some countably infinite set. So, let us construct an independent family of
cardinality ¢ on the countably infinite set

C={(s,A):sefinw)NAC P(s)}.
Further, for each x C [w]* define
P, :={(s,A)eC:anseA}.

Notice that for any distinct x,y € [w]“ there is a finite set s € fin(w) such
that £ N's # y N s, and consequently we get P, # P, which implies that
the set Sy = {P, : € [w]*} C [C]* is of cardinality c. Moreover, .%, is
an independent family on C. Indeed, for any finitely many distinct infinite
subsets of w, say zg,...,%m, ., Tm+n Where m,n € w, there is a finite set
s C w such that for all ¢,5 with 0 <i < j < m +n we have x; N's # x; N s.
Let A= {snz; : 0<i<m} C H(s), and for every k € w\ s let s, := sU{k}
and Ay := AU {tU{k}:t € A}. Then

{(sk, Ar) 1k ew\ s} C ﬂ P, \ U Prpiis

0<i<m 1<j<n

which shows that (\{Py, : 0 <4 <m}\ U{Px,.,, : 1 <j < n} is infinite, and
therefore, .#) is an independent family on C' of cardinality c. —

The following result implies that i is uncountable.
THEOREM 8.9. max{t,0} <i.

Proof. v < i: The idea is to show that every maximal independent family
yields a reaping family of the same cardinality. For this, let .# C [w]¥ be a
maximal independent family of cardinality i and let

#={N\UJ:1,Jetm(s) 10T =0}
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Then Z is a family of cardinality i. Furthermore, since .# is a maximal inde-
pendent family, for every = € [w]¥ we find ay € Z (i.e., y=(I\JJ) such
that either z Ny or (w\ x) Ny is finite, and because (w\ z) Ny =y \ =, this
shows that = does not split all elements of #Z. Thus, Z is a reaping family of
cardinality i, and therefore v <.
0 < i: The idea is to show that an independent family of cardinality strictly
less than 9 cannot be maximal. For this, suppose & = {X¢ : { € k <2} C [w]
is an infinite independent family of cardinality x < 0. We shall construct a
set Z € [w]* such that .# U {Z} is still independent, which implies that the
independent family .# is not maximal. For this it is enough to show that for
any finite, disjoint subfamilies of .#, say I and J, the infinite set (7 \ U J
meets both Z and w \ Z in an infinite set.

Let £, :={X,, : n € w} C # be a countably infinite subfamily of .# and
for each n € w let X := X,, and X! := w \ X,,. Further, for each g € “2 let

Cn7g - ﬂ X]g(k)
ken

and for &' := .7\ .7, define
F = {ﬂ[' \ U J': I' and J' are finite, disjoint subfamilies of .#" } )

CLAIM. The family € = {C, 4 : n € w} has a pseudo-intersection that has
infinite intersection with every set in % .

Proof of Claim. Since . is an infinite independent family of cardinality x < 0,
F C |w]“ is a family of cardinality x such that each set in .% has infinite
intersection with every member of %. For any h € “w define

th = U (Cn,g N h(n)) .
necw
Since (Cp,q : n € w) is decreasing (i.e., Cp g O Cp g Whenever n < m), th
is almost contained in each member of ¥ — however, th is not necessarily
infinite. It remains to choose the function h € “w so that th is infinite (i.e.,
th is a pseudo-intersection of ¥’) and has infinite intersection with every set in

# . Notice first that for every A € .# and for every n € w, ANC,, 4 is infinite;
thus, for every A € .7 we can define a function f4(n) € “w by stipulating

fa(n) = the n'" element (in increasing order) of AN C,, ,.

Since |#| < 0, the family {fa : A € #} is not dominating. In particular,
there is a function hy € “w with the property that for each A € .F the set

Da={new:ho(n)> fa(n)}

is infinite. Now, for each A € # and every n € D4 we have ho(n) > fa(n)+1
which implies that |ANhg(n)| > |AN fa(n)+1] = n, and since D4 is infinite,
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also AN tho is infinite. Finally, by construction tho is a pseudo-intersection
of ¢ that has infinite intersection with every set in .%. Actaim

By the CLAIM, for every g € “2 there is a set, say Y, € [w]“, which has the
following two properties:

(1) Foralln € w, Yy € N;cp, Xlg(k)'

(2) Yyn (NI'\UJ’) is infinite whenever I’ and J' are finite, disjoint sub-
families of .#".

It follows from (1) that for any distinct ¢g,¢’ € “w, Y, and Y, are almost
disjoint. Let now

Qo = {ge‘*’w:Elno € wVk > ng (Q(k) :0)}

and
Qr={g€“w:3Ing €wVk >ny (g(k)=1)}.
Then Qo U Q; is a countably infinite subset of “w. Let {g, : n € w} be an

enumeration of Qo U Q1 and for each n € wlet Y, =Y, \U{Yy, : k € n}.
Then {Y, :n € w} is a countable family of pairwise disjoint infinite subsets

of w. Finally let
Z= )y, and 7= []V].
9€Qo g€
Then Z and Z' are disjoint. Now we show that Z has infinite intersection with
every (1I\JJ, where I and J are arbitrary finite subfamilies of .#; and since
the same also holds for Z’ C w\ Z, # U{Z} is an independent family, i.e.,
the independent family .# of cardinality < 0 is not maximal.

Given any finite, disjoint subfamilies I,J C ., and let Iy = I N %,
Jo=JNSA,, I'=1I\1Iy, J =J\ Jy, where .9, = {X,, : n € w}. Further, let
m € w be such that Io U Jy C {X,, : n € m} C .4, and fix g € Qo such that
for all n € m,

(Xn € IoUJo) Ag(n) =0) + X,, € I.

We get the following inclusions:
NNU7 2 (N N7)n x> () oy,
nem

The intersection on the very right is infinite (by property (2) of Y,) and is
contained in Z (because g € Qo). Hence, we have found an infinite set which

is almost contained in Z N ((NI\ |JJ), and therefore Z is infinite. -
{o,54+H
The Cardinals par and hom q 43
nsSk. _ "
By RAMSEY’S THEOREM 2.1, for every colouring 7 : [w|?> — 2 there is an

# € |w]* which is homogeneous for 7, i.e., 7|[,)2 is constant. This leads to the
following cardinal charactetfistic:
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DEFINITION OF hom. The homogeneity number hom is the smallest car-
dinality of any family C [w]¥ with the property that for every colouring
7 : [w]?> — 2 there is an + € .# which is homogeneous for 7.

The following result implies that hom is uncountable. In fact we will show
that each family which contains a homogeneous set for every 2-colouring of
[w]? is reaping and that each such family yields a dominating family of the

same cardinality. ‘70
m2 T
THEOREM 8.10. max{t,0} < hom. ho“,.; P |

Proof. Let@g [w]“ be a family such that for every colouring 7 : [w]? — 2
there is an + € % which is homogeneous for 7. We shall show that .7 is

reaping and that Z = f Y 7} is dominating, where f; is the
strictly increasing bijection between w and .

0 < hom: Firstly we show that F'is a dominating family. For any strictly
increasing function f € “w with f(0) = Q define 74 : [w]®> — 2 by stipulating

n_m
mi({n,m}) =0 = Fkew(f(L) <@ f2k+2)).
Then, for every x € % which is homogeneous for 7y we have f <* ’g; which
implies that .#’ is dominating.
t < hom: Now we show that Z is a reaping family. Take any y € [w]*“ and
]2 ; ;
define m, : [w]* — 2 by stipulating 3 = { 0’4. 3‘ S" 1{.3’1' ) J_"l’
my({n,m}) =0 <= {n,m} Cyv{nm}iny=0.

New for ever@ # which is homogeneous for 7, we have either z C y or
x Ny =0, and since v was arbitrary, .# is reaping. —

Recall that a set H € [w]® is called almost homogeneous for a colouring
7 1 [w]? — 2 if there is a finite set K C H such that H \ K is homogeneous
for 7. This leads to the following cardinal characteristic:

DEFINITION OF pat. The partition number par is the smallest cardinality
of any family & of 2-colourings of [w]? such that no single H € [w]* is almost
homogeneous for all T € £,

By PROPOSITION 2.8 we get that par is uncountable, and the following
result gives an upper bound for pac.

THEOREM 8.11. par = min{s, b}.

Proof. First we show that par < min{s, b} and then we show that par >
min{s, b}. par < s: Let . C [w]¥ be a splitting family and for each z € .%
define the colouring 7, : [w]?> — 2 by stipulating

To({n,m}) =0 <= {n,m} Cav{nm}nz =90

)
"
()}
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and let & = {m, : © € }. Then, since .¥ is splitting, no infinite set is almost
homogeneous for all 7 € Z.

par < b: Let Z C “w be an unbounded family. Without loss of generality we
may assume that each g € £ is strictly increasing. For each g € % define the
colouring 7, : [w]? — 2 by stipulating

Tg({n,m}) =0 < g(n) <m where n <m.

Assume towards a contradiction that some infinite set H € [w]“ is almost
homogeneous for all colourings in & = {n, : g € #B}. We shall show that
H yields a function which dominates the unbounded family %, which is
obviously a contradiction. Consider the function A € “w which maps each
natural number n to the second member of H above n; more formally,
h(n) := min{m € H : 3k € H(n < k < m)}. For each n € w we have
n < k < h(n) with both k& and h(n) in H. By almost homogeneity of H,
for each g € Z there is a finite set K C w such that H \ K is homogeneous
for my, i.e., for all {n,m} € [H \ K]* with n < m we have either g(n) < m
or g(n) > m. Since H is infinite, the latter case is impossible. On the other
hand, the former case implies that for all n € H \ K, g(n) < h(n), hence, h
dominates g and consequently h dominates each function of A.

par > min{s, b}: Suppose & = {7T§ e r < min{ﬁ,b}} is a family of
2-colouring of [w]?. We shall construct a set H € [w]“ which is almost homo-
geneous for all colourings 7 € . For each £ € k and all n € w define the
function f¢, € “2 by stipulating

me({n,m}) for m # n,
0 otherwise.

fen(m) = {

Since [{fen: € € kAN €W} =Kk -w =k <5, there is an infinite set A C w
on which all functions f¢ , are almost constant; more formally, for each £ € k
and each n € w there are g¢(n) € w and je¢(n) € {0,1} such that for all
m > ge(n), fen(m) = je(n). Moreover, since k < s there is an infinite set
B C A on which each function je € “2 is almost constant, say je(n) = i
for all n € B with n > b¢. Further, since £ < b there is a strictly increasing
function h € “w which dominates each ge, i.e., for each £ € & there is an
integer c¢ such that for all n > c¢¢, ge(n) < h(n). Let H = {xy, : k € w} C B
be such that for all k € w, h(zx) < 2x+1- Then H is almost homogeneous for
each m¢ € . Indeed, if n,m € H are such that max{b¢,c¢} < n < m, then
ge(n) < h(n) < m and therefore m¢({n,m}) = fen(m) = je(n) = ic, ie.,
H \ max{b¢, c¢} is homogeneous for . =

The Cardinal §

A family 57 = { : £ € K} C P([w]”) of mad families of cardinality ¢ is
called shattering if for each x € [w]¥ there is a £ € x such that  has infinite
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intersection with at least two distinct members of o7, i.e., at lest two sets of
o, split x. We leave it as an exercise to the reader to show that there are
shattering families of cardinality ¢ (for each = € [w]* take two disjoint sets
¥,y C x such that w \ (y Uy’) is infinite and extend {y,y’} to a mad family
of cardinality c).

DEFINITION OF §. The shattering number b is the smallest cardinality of
a shattering family; more formally

b = min {|#| : A is shattering} .

If one tries to visualise a shattering family, one would probably draw a
kind of matrix with ¢ columns, where the rows correspond to the elements of
the family (i.e., to the mad families). Having this picture in mind, the size of
the shattering family would then be the height of the matrix, and this where
the letter “h” comes from.

In order to prove that h < par we shall show how to construct a shattering
family from any family & of 2-colourings of [w]? such that no single set is
almost homogeneous for all 7 € &; the following lemma is the key idea in
that construction:

LEMMA 8.12. For every colouring 7 : [w]®> — 2 there is a mad family </, of
cardinality ¢ such that each A € <7, is homogeneous for 7.

Proof. Let &/ C [w]“ be an arbitrary almost disjoint family of cardinality
¢ and let m be a 2-colouring of [w]?. By RAMSEY’S THEOREM 2.1, for each
A € & we find an infinite set A’ C A such that A’ is homogeneous for 7.
Let o/ = {A': A € &/}; then &’ is an almost disjoint family of cardinality
¢ where each member of &7’ is homogeneous for 7. Let {z¢ : £ € k < ¢} be
an enumeration of [w]* \ &/’. By transfinite induction define o = &’ and for
each € € k let

e U{xe} if z¢ is homogeneous for = and
A1 = for each A € @, x¢ N A is finite,

e otherwise.

By construction, o7, = U§EN /¢ is an almost disjoint family of cardinality «,
all whose members are homogeneous for w. Moreover, o/, is a mad family.
Indeed, if there would be an x € [w]¥ such that for all A € o, x N A is
finite, then, by RAMSEY’S THEOREM 2.1, there would be an z¢, € [z]“ (for
some &y € x) which is homogeneous for 7. In particular, z¢, would belong to
eo+1. Hence, x N ¢, is infinite, where z¢, € &/, which is a contradiction to
the choice of x. —

THEOREM 8.13. b < par.
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Proof. Let & be a family of 2-colourings of [w]? such that no single set is
almost homogeneous for all 7 € &2 and let #p = {oy : 7 € P}, where oy,
is like in LEMMA 8.12. We claim that 7% is shattering. Indeed, let H C w
be an arbitrary infinite subset of w. By the property of &2, thereis a m € &
such that H is not almost homogeneous for 7. Consider 7, € J#%: Since
o is mad, there is an A € 7, such that H N A is infinite, and since A is
homogeneous for 7w, H \ A is infinite too; and again, since 7, is mad, there
isan A’ € o (distinct from A) such that (H \ A) N A’ is infinite. This shows
that H has infinite intersection with two distinct members of o7;. Hence, ¢
is shattering. —

In order to prove that p < h we have to introduce some notions: If &7 and
&/’ are mad families (of cardinality c), then o/’ refines <, denoted &’ >,
if for each A’ € &7’ there is an A € o such that A’ C* A A shattering family
{o : £ € k} is called refining if o > .o/ whenever £ > ¢.

The next result is the key lemma in the proof that every shattering family
of size h induces a refining shattering family of the same cardinality.

LEMMA 8.14. For every family & = {a/ : £ € k < i} of cardinality x < h of
mad families of cardinality ¢ there exists a mad family /' which refines each
e € &. Furthermore, </’ is of cardinality c.

Proof. Let & = {a/ : £ € k < h} be a family of less than b mad families of
cardinality ¢. For every x € [w]¥ we find an 2z’ € [z]* with the property that
for each o € S there is an A € Ag such that 2/ C* A. Indeed, if there is
no such 2’ (for some given x € [w]*), then a bijection between z and w would
yield a shattering family of cardinality x < b, contrary to the definition of §.
Now, if &’ C {2’ : © € [w]*} is a mad family, then o7’ is of cardinality ¢ (since
2 is of cardinality c¢) and refines each o7 € & (since &7’ C {2’ : x € [W]¥}).
It remains to show that mad families &’ C {2’ : © € [w]*} exist. Indeed, if
o C{z' 1z € [w]“} is an almost disjoint family which is not maximal, then
there exists an = € [w]“ such that for all A € &/, x N A is finite. Notice that
&/ U {x'} is still an almost disjoint family, hence, by Teichmiiller's Principle,
every almost disjoint family o/ C {2’ : z € [w]*} can be extended to a mad
family &’ C {a’ : x € [w]*}. —

PROPOSITION 8.15. If 5 = {7 : { € b} is a shattering family of cardinality
b, then there exists a refining shattering family ' = {ﬁfg’ : £ € b} such that
for each £ € b we have </ ;.

Proof. The proof is by transfinite induction: Let 7] := <% and assume we
have already defined JZ%E’ for all £ € n where n € h. Apply LEMMA 8.14 to the
family {<7/ : £ € n} U {7} to obtain &7, and let 7" = {<7/ : £ € b}. —

Now, the proof of p < b is straightforward.

THEOREM 8.16. p < h.
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Proof. By PROPOSITION 8.15 there exists a refining shattering family 57 =
{e : € € b} of cardinality h. With 52 we shall build a family .# C [w]“ of
cardinality h which has the sfip but which does not have a pseudo-intersection:
Chose any xo € % and assume we have already chosen z¢ € o7 for all £ € n
where 1 € bh. Since S is refining we can chose a z,, € 4, such that z, is a
pseudo-intersection of {z¢ : £ € n}. Finally let .% = {x¢ : £ € h}. Then ¥ is
a family of cardinality < h which has the sfip, but since 7 is shattering, no
infinite set is almost contained in every member of .%, i.e., % does not have
a pseudo-intersection. —

Summary

The diagram below shows the relations between the twelve cardinals. A line
connecting two cardinals indicates that the cardinal lower on the diagram is
less than or equal to the cardinal higher on the diagram (provably in ZFC).

/ ﬁ
Jl par
b
W
Mo

Later we shall see that each of following relations is consistent with ZFC:

e a< ¢ (PROPOSITION 18.5)
e i< ¢ (PROPOSITION 18.11)
e w; <p=c (PROPOSITION 19.1)
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a <0 =rt (COROLLARY 21.11)
5 =D0b <0 (PROPOSITION 21.13)
0 < v (PROPOSITION 22.4)

0 > ¢t (PROPOSITION 23.7)

p < b (PROPOSITION 24.12)

NOTES

Most of the classical cardinal characteristics and their relations presented here can
be found for example in van Douwen [42] and Vaughan [43], where one finds also
a few historical notes (for ? see also Kanamori [27, p.179f.]). PROPOSITION 8.8 is
due to Fichtenholz and Kantorovitch [22], but the proof we gave is Hausdorfl’s, who
generalised in [26] the result to arbitrary infinite cardinals (see also Exercise (A6)
on p.288 of Kunen [29]). THEOREM 8.9 is due to Shelah [33], however, the proof
is taken from Blass [5] (see also [4, Theorem 21]), where the claim in the proof is
due to Ketonen [28, Proposition 1.3]. THEOREM 8.10 and THEOREM 8.11 are due to
Blass and the proofs are taken from Blass [5] (see also [4, Section 6]). The shattering
cardinal h was introduced and investigated by Balcar, Pelant, and Simon in [2]
(cf. RELATED RESULT 51).

RELATED RESULTS

50. The Continuum Hypothesis. There are numerous statements from areas like
Algebra, Combinatorics, or Topology, which are equivalent to CH. For example
Erdss and Kakutani showed that CH is equivalent to the statement that R is
the union of countably many sets of rationally independent numbers (cf. [20,
Theorem 2]). Many more equivalents to CH can be found in Sierpinski [39]. For
the historical background of CH we refer the reader to Felgner [21].

51. On the shattering number f. Balcar, Pelant, and Simon showed that h < cf(c)
(see [2, Theorem 4.2]), gave a direct prove for h < b (see [2, Theorem 4.5])
and for h < s (follows from [2, Lemma 2.11.(c)]), and showed that b is regular
(see [2, Lemma 2.11.(b)]. Furthermore, Lemma 2.11.(c) of Balcar, Pelant, and
Simon [2] states that there are shattering families of size h which have a very
strong combinatorial property:

BAsE MATRIX LEMMA. There exists a shattering family 7 = {a; C [w]” :
€ € b} which has the property that for each X € [w]* there is a £ € b and an
A € o such that A C* X.

Proof. Let # = {@; C [w]* : £ € h} be an arbitrary but fixed refining shatter-
ing family of cardinality . We first prove the following

CrAM. For every infinite set X € [w]* there exists an ordinal £ € § such that
HCed:|ICNX|=w}|=c

Proof of Claim. Let X € [w]* be an arbitrary infinite subset of w. Firstly we
show that there exists a strictly increasing sequence (£, : n € w) in b, such that
for each n € w and f € "2 we find a set C'y € %, with the following properties:
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52.

53.

54.

e |CiNX|=w,

e if f, f' € "2 are distinct, then Cf # C/, and

e forall fe"2andmen,CrC" Cy,,.

The sequence (£, : n € w) is constructed by induction on n: First we choose an
arbitrary & € h. Now, suppose we have already found &,, € h for some n € w.
Since .7 is a shattering family, for every h € "2 there exists a (5, > &, such that
the infinite set C; N X has infinite intersection with at least two members of
e, Let €ny1 = U {Cn : b € "2}. Then, since .Z is refining, we find a family
{Cy: fem™t'2} C o, with the desired properties.

Let £ := Unecw &ns then the ordinal € is smaller than h: Otherwise, since .7 is
refining, the family {<%, : n € w} would be a shattering family of cardinality
w, contradicting the fact that h > w;.

By construction, for each f € “2 we find a Cy € % such that Cy N X is infinite
(notice that for each n € w, [Cy),, N X| = w), and since .# is refining we have
Cy # Cy whenever f, f’ € “2 are distinct. Thus, |{Cf cag: fe “’2}| =cand
for each f € “2 we have |C; N X| = w. Aclaim

Now we construct the shattering family # = {@% C [w]” : £ € b} as follows:
For each £ € b, let Z¢ be the family of all X € [w]“ such that

HC e [CNX|=w}|=c.

If Z¢ =0, then let o/; = o%. Otherwise, define (e.g., by transfinite induction)
an injection g¢ : Z¢ < @ such that for each X € Z¢, [X N ge(X)| = w.
Now, for each C' € o, let €c C [C]* be an almost disjoint family such that
U%c = C, and whenever C = g¢(X) for some X € 2 (ie, [X NC| = w),
then there exists an A € ¢ with A C* X. Let o := {A € 6¢ : C € o} and
let 57 := {o% : £ € h}. Then, by construction, for every X € [w]* we find an
ordinal £ € h and an infinite set A € &% such that A C* X. -

The tower number t7 A family . = {T : @ € k} C [w]¥ is called a tower if
7 is well-ordered by *D (i.e., Tz C* To <> a < ) and does not have a pseudo-
intersection. The tower number t is the smallest cardinality (or height) of a
tower. Obviously we have p < t and the proof of THEOREM 8.16 shows that
t < h. However, it is open whether p < t is consistent with ZFC (for partial
results see for example van Douwen [42], Blass [5], or Shelah [35]).

A linearly ordered subset of [w]“ of size ¢. Let {g» € Q : n € w} be an
enumeration of the rational numbers @ and for every real number » € R let
Cr:={n € w: gy <r}. Then, for any real numbers ro < 71 we have Cy, & Cr,
and |Cr, \Cr,| = w. Thus, with respect to the ordering “¢”, {Cy : r € R} C [w]*
is a linearly ordered set of size ¢. In general one can show that whenever M is
infinite, the partially ordered set (39 (M), g) contains a linearly ordered subset
of size strictly greater than |M]|.

The o-reaping number v,* A family Z C [w]® is called o-reaping if no count-
ably many sets suffice to split all members of Z. The o-reaping number t, is
the smallest cardinality of any o-reaping family (for a definition of t, in terms
of bounded sequences see Vojtas [44]). Obviously we have v < t,, but it is not
known whether v = t, is provable in ZFC, i.e., it is not known whether t < t, is
consistent with ZFC (see also Vojtas [44] and Brendle [8]).
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55.

56.

57.

58.

59.

8 Twelve Cardinals and their Relations

On i and hom? We have seen that max{r,0} < hom (see THEOREM 8.10) and
that max{r,0} < i (see THEOREM 8.9). Moreover, Blass [4, Section 6] showed
that hom = max{t,,0} (see also Blass [5]). Thus, in every model in which ¢t =
t, we have hom < i. Furthermore, one can show that hom < i is consistent
with ZFC: In Balcar, Hernandez-Hernandez, and Hru§ak [1] it is shown that
max{t, cof ()} < i, where cof (/) is the cofinality of the ideal of meagre sets.
On the other hand, it is possible to construct models in which 0 = v, = w;
and cof () = wz = ¢ (see for example Shelah and Zapletal [36] or Brendle and
Khomskii [15]). Thus, in such models we have wi = hom < i = w2. However, it
is open whether i < hom (which would imply t < t,) is consistent with ZFC.

The ultrafilter number u. A family .# C [w]” is a base for an ultrafilter
U C w*if % ={y € w”:3xe F(xCy)} The ultrafilter number u is
the smallest cardinality of any ultrafilter base. We leave it as an exercise to the
reader to show that vt < u.

Consistency results. The following statements are consistent with ZFC:

v < u (cf. Goldstern and Shelah [23])

u < 0 (cf. Blass and Shelah [6] or see Chapter 23 | RELATED RESULT 130)

u < a (cf. Shelah [34], see also Brendle [13])

h < par (cf. Shelah [32, Theorem 5.2] or Dow [19, Proposition 2.7])

hom < ¢ (see Chapter 23 | RELATED RESULT 138)

0 < a (cf. Shelah [34], see also Brendle [10])

w1 =b < a=s5=0=uws (cf. Shelah [32, Sections 1 & 2])

k=b=a<s =\ for any regular uncountable cardinals k < A (cf. Brendle
and Fischer [14])

b=x < kT =a=cfor k> ws (cf Brendle [7])

w1 =86 <b=0=rt=a=uws (cf. Shelah [32, Section 4])

cf(a) = w (cf. Brendle [11])

e ) = wy + there are no towers of height w> (cf. Dordal [17]).

Some more results can be found for example in Blass [5], Brendle [9, 12],
van Douwen [42], Dow [19], and Dordal [18].

Combinatorial properties of mazimal almost disjoint families. An uncountable
set of reals is a o-set if every relative Borel subset is a relative G5 set. Brendle
and Piper showed in [16] that CH implies the existence of a mad family which
is also a o-set (in that paper, they also discuss related results assuming Martin’s
Axiom).

Applications to Banach space theory. Let £,(k) denote the Banach space of
bounded functions f : kK — R with finite £,-norm, where for 1 < p < oo,

I£1 = # > If (@I,

Il = sup {|f(a)] : o € K}
As mentioned above, Hausdorff generalised PROPOSITION 8.8 to arbitrary in-
finite cardinals k, i.e., if x is an infinite cardinal then there are independent
families on k of cardinality 2”. Now, using independent families on k of cardi-
nality 2" it is quite straightforward to show that ¢ (%) contains an isomorphic

and for p = oo,
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10.

11.

12.

copy of ¢1(2") (the details are left to the reader), and Halbeisen [24] showed
that the dual of £ (k) contains an isomorphic copy of ¢2(2") (for an analytic
proof in the case k = w see Rosenthal [31, Proposition 3.4]).

We have seen that there are almost disjoint families on w of cardinality ¢ = 2
Unlike for independent families, this result cannot be generalised to arbitrary
cardinals k, i.e., it is consistent with ZFC that for some infinite x, there no almost
disjoint family on s of cardinality 2" (see Baumgartner[3, Theorem 5.6 (b)]).
However, one can prove that for all infinite cardinals x there is an almost disjoint
family on « of cardinality > « (cf. Tarski [41], Sierpiniski [37, 38| or [40, p. 448£.],
or Baumgartner [3, Theorem 2.8]). Using an almost disjoint family of cardinality
> k it is not hard to show that every infinite dimensional Banach space of
cardinality x has more than x pairwise almost disjoint normalised Hamel bases
(cf. Halbeisen [25]), and Pelczyriski and Sudakov [30] showed that co(x), which
is a subspace of £ (), is not complemented in £ (k).

g
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