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Twelve Cardinals and their Relations

The 
onsonan
es are those intervals whi
h are

formed from the natural steps.

An interval may be diminished when one of its

steps is repla
ed by a smaller one.

Or it may be augmented when one of its steps is

repla
ed by a larger one.

Gioseffo Zarlino

Le Istitutioni Harmoni
he, 1558

In this 
hapter we investigate twelve 
ardinal 
hara
teristi
s and their

relations to one another. A 
ardinal 
hara
teristi
 of the 
ontinuum is an

un
ountable 
ardinal number whi
h is less than or equal to c that des
ribes

a 
ombinatorial or analyti
al property of the 
ontinuum. Like the power of

the 
ontinuum itself, the size of a 
ardinal 
hara
teristi
 is often independent

from ZFC. However, some restri
tions on possible sizes follow from ZFC, and

we shall give a 
omplete list of what is known to be provable in ZFC about

their relation. Later in Part II, but mainly in Part III, we shall see how one


an diminish or augment some of these twelve 
ardinals without 
hanging


ertain other 
ardinals. In fa
t, these 
ardinal 
hara
teristi
s are also used to

investigate 
ombinatorial properties of the various for
ing notions introdu
ed

in Part III.

We shall en
ounter some of these 
ardinal 
hara
teristi
s (e.g., p) more

often than others (e.g., i). However, we shall en
ounter ea
h of these twelve


ardinals again, and like the twelve notes of the 
hromati
 s
ale, these twelve


ardinals will build the framework of our investigation of the 
ombinatorial

properties of for
ing notions that is 
arried out in Part III.

On the one hand, it would be good to have the de�nition of a 
ardinal


hara
teristi
 at hand when it is needed; but on the other hand, it is also


onvenient to have all the de�nitions together (espe
ially when a 
ardinal


hara
teristi
 is used several times), rather than s
attered over the entire
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book. De�ning all twelve 
ardinals at on
e also gives us the opportunity to

show what is known to be provable in ZFC about the relationship between

these twelve 
ardinals. Thus, one might �rst skip this 
hapter and go ba
k to

it later and take bits and pie
es when ne
essary.

The Cardinals ω1 and c

We have already met both 
ardinals, c and ω1: c is the 
ardinality of the 
ontin-

uum R, and ω1 is the smallest un
ountable 
ardinal. A

ording to Fa
t 4.3,

c = 2ω is also the 
ardinality of the sets [0, 1], ω2, ωω, and [0, 1] \ Q; and

by Lemma 4.10, ω1 
an also be 
onsidered as the set of order types of well-

orderings of Q.

The Continuum Hypothesis, denoted CH, states that c is the least un
ount-

able 
ardinal, i.e., c = ω1 (
f. Chapter 4), whi
h is equivalent to saying that

every subset of R is either 
ountable or of the same 
ardinality as R. Fur-

thermore, the Generalised Continuum Hypothesis, denoted GCH, states that for

every ordinal α ∈ Ω, 2ωα = ωα+1. Gödel showed that L � GCH, where L is the


onstru
tible universe (see the 
orresponding note in Chapter 5), thus, GCH

is 
onsistent with ZFC.

Ea
h of the following ten 
ombinatorial 
ardinal 
hara
teristi
s of the 
on-

tinuum is un
ountable and less than or equal to c. Thus, if we assume CH, then

these 
ardinals are all equal to c. However, as we shall see in Part II, CH is not

provable in ZFC. In other words, if ZFC is 
onsistent then there are models of

ZFC in whi
h CH fails, i.e., models in whi
h ω1 < c. In those models, possible

(i.e., 
onsistent) relations between the following 
ardinal 
hara
teristi
s will

be provided in Part II and Part III.

The Cardinal p

For two sets x, y ⊆ ω we say that x is almost 
ontained in y, denoted
x ⊆∗ y, if x \ y is �nite, i.e., all but �nitely many elements of x belong to

y. For example a �nite subset of ω is almost 
ontained in ∅, and ω is almost


ontained in every 
o-�nite subset of ω (i.e., in every y ⊆ ω su
h that ω \ y is

�nite). A pseudo-interse
tion of a family F ⊆ [ω]ω of in�nite subsets of ω
is an in�nite subset of ω that is almost 
ontained in every member of F . For

example ω is a pseudo-interse
tion of the family of 
o-�nite sets. Furthermore,

a family F ⊆ [ω]ω has the strong �nite interse
tion property (s�p) if

every �nite subfamily has in�nite interse
tion. Noti
e that every family with

a pseudo-interse
tion ne
essarily has the s�p, but not vi
e versa. For example

any �lter F ⊆ [ω]ω has the s�p, but no ultra�lter on [ω]ω has a pseudo-

interse
tion.







The 
ardinals b and d 191

Definition of p. The pseudo-interse
tion number p is the smallest 
ar-

dinality of any family F ⊆ [ω]ω whi
h has the s�p but whi
h does not have

a pseudo-interse
tion; more formally

p = min
{
|F | : F ⊆ [ω]ω has the s�p but no pseudo-interse
tion

}
.

Sin
e ultra�lters on [ω]ω are families whi
h have the s�p but do not have

a pseudo-interse
tion, and sin
e every ultra�lter on [ω]ω is of 
ardinality c,

the 
ardinal p is well-de�ned and p ≤ c. It is natural to ask whether p 
an

be smaller than c; however, the following result shows that p 
annot be too

small.

Theorem 8.1. ω1 ≤ p.

Proof. Let E = {Xn ∈ [ω]ω : n ∈ ω} be a 
ountable family whi
h has the s�p.

We 
onstru
t a pseudo-interse
tion of E as follows: Let a0 :=
⋂
X0 and for

positive integers n let

an =
⋂(⋂

{Xi : i ∈ n} \ {ai : i ∈ n}
)
.

Further, let Y = {an : n ∈ ω}; then for every n ∈ ω, Y \ {ai : i ∈ n} ⊆ Xn

whi
h shows that Y ⊆∗ Xn, hen
e, Y is a pseudo-interse
tion of E . ⊣

The Cardinals b and d

For two fun
tions f, g ∈ ωω we say that g dominates f , denoted f <∗ g, if
for all but �nitely many integers k ∈ ω, f(k) < g(k), i.e., if there is an n0 ∈ ω
su
h that for all k ≥ n0, f(k) < g(k). Noti
e that ordering �<∗

� is transitive,

however, �<∗
� it is not a linear ordering (we leave it as an exer
ise to the

reader to �nd fun
tions f, g ∈ ωω su
h that neither f <∗ g nor g <∗ f).
A family D ⊆ ωω is dominating if for ea
h f ∈ ωω there is a fun
tion

g ∈ D su
h that f <∗ g.

Definition of d. The dominating number d is the smallest 
ardinality

of any dominating family; more formally

d = min
{
|D | : D ⊆ ωω is dominating

}
.

A family B ⊆ ωω is unbounded if there is no single fun
tion f ∈ ωω
whi
h dominates all fun
tions of B, i.e., for every f ∈ ωω there is a g ∈ B

su
h that g ≮∗ f . Sin
e �<∗
� is not a linear ordering, an unbounded family is

not ne
essarily dominating� but vi
e versa (see Fa
t 8.2).

Definition of b. The bounding number b is the smallest 
ardinality of

any unbounded family; more formally

b = min
{
|B| : B ⊆ ωω is unbounded

}
.
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Obviously, the family

ωω itself is dominating and therefore unbounded,

whi
h shows that d and b are well-de�ned and b, d ≤ c. Moreover, we have the

following

Fa
t 8.2. b ≤ d.

Proof. It is enough to show that every dominating family is unbounded. So,

let D ⊆ ωω be a dominating family and let f ∈ ωω be an arbitrary fun
tion.

Sin
e D is dominating, there is a g ∈ D su
h that f <∗ g, i.e., there is an

n0 ∈ ω su
h that for all k ≥ n0, f(k) < g(k). Hen
e we get g ≮∗ f , and sin
e

f was arbitrary this implies that D is unbounded. ⊣

It is natural to ask whether b 
an be smaller than d, or at least smaller

than c; however, the following result shows that b 
annot be too small.

Theorem 8.3. ω1 ≤ b.

Proof. Let E = {gn ∈ ωω : n ∈ ω} be a 
ountable family. We 
onstru
t a

fun
tion f ∈ ωω whi
h dominates all fun
tions of E : For ea
h k ∈ ω let

f(k) =
⋃{

gi(k) : i ∈ k
}
.

Then for every k ∈ ω and ea
h i ∈ k we have f(k) ≥ gi(k) whi
h shows that

for all n ∈ ω, gn <
∗ f , hen
e, f dominates all fun
tions of E . ⊣

One 
ould also de�ne dominating and unbounded families with respe
t to

the ordering �< � de�ned by stipulating f < g ⇐⇒ ∀k ∈ ω
(
f(k) < g(k)

)
.

Then the 
orresponding dominating number would be the same as d, as any

dominating family 
an be made dominating in the new sense by adding all

�nite modi�
ations of its members; but the 
orresponding bounding number

would drop to ω, as the family of all 
onstant fun
tions is unbounded (we

leave the details to the reader).

The Cardinals s and r

A set x ⊆ ω splits an in�nite set y ∈ [ω]ω if both y ∩ x and y \ x are in�nite

(i.e., |y ∩ x| = |y \ x| = ω). Noti
e that any x ⊆ ω whi
h splits a set y ∈ [ω]ω

must be in�nite. A splitting family is a family S ⊆ [ω]ω su
h that ea
h

y ∈ [ω]ω is split by at least one x ∈ S .

Definition of s. The splitting number s is the smallest 
ardinality of any

splitting family; more formally

s = min
{
|S | : S ⊆ [ω]ω is splitting

}
.
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By Theorem 8.1 and later results we get ω1 ≤ s�we leave it as an

exer
ise to the reader to �nd a dire
t proof of the un
ountability of s.

In the proof of the following result we will see how to 
onstru
t a splitting

family from a dominating family.

Theorem 8.4. s ≤ d.

Proof. For ea
h stri
tly in
reasing fun
tion f ∈ ωω with f(0) > 0 let

σf =
⋃{[

f2n(0), f2n+1(0)
)
: n ∈ ω

}
,

where for a, b ∈ ω, [a, b) := {k ∈ ω : a ≤ k < b} and fn+1(0) = f
(
fn(0)

)
with

f0(0) := 0. Let D ⊆ ωω be a dominating family. Without loss of generality

we may assume that every f ∈ D is stri
tly in
reasing and f(0) > 0, and let

SD =
{
σf : f ∈ D

}
.

We show that SD is a splitting family. So, �x an arbitrary x ∈ [ω]ω and let

fx ∈ ωω be the (unique) stri
tly in
reasing bije
tion between ω and x. More

formally, de�ne fx : ω ։ x by stipulating

fx(k) =
⋂(

x \
{
fx(i) : i ∈ k

})
.

Noti
e that for all k ∈ ω, fx(k) ≥ k. Sin
e D is dominating there is an f ∈ D

su
h that fx <
∗ f , whi
h implies that there is an n0 ∈ ω su
h that for all

k ≥ n0 we have fx(k) < f(k). For ea
h k ∈ ω we have k ≤ fk(0) as well as
k ≤ fx(k). Moreover, for k ≥ n0 we have

fk(0) ≤ fx
(
fk(0)

)
< f

(
fk(0)

)
= fk+1(0)

and therefore fx
(
fk(0)

)
∈

[
fk(0), fk+1(0)

)
. Thus, for all k ≥ n0 we have

fx
(
fk(0)

)
∈ σf i� k is even, whi
h shows that both x ∩ σf ∩ x and x \ σf

are in�nite. Hen
e, σf splits x, and sin
e x was arbitrary, SD is a splitting

family. ⊣

A reaping family�also known as re�ning or unsplittable family� is

a family R ⊆ [ω]ω su
h that there is no single set x ∈ [ω]ω whi
h splits all

elements of R, i.e., for every x ∈ [ω]ω there is a y ∈ R su
h that y ∩ x or

y \ x is �nite. In other words, a family R is reaping if for every x ∈ [ω]ω there

is a y ∈ R su
h that y ⊆∗ (ω \ x) or y ⊆∗ x. The origin of �reaping� in this


ontext is that A reaps B i� A splits B, by analogy with a s
ythe 
utting

the stalks of grain when one reaps the grain. So, a reaping family would be a

splitting family. However, the more logi
al approa
h, where �reaps� means �is

unsplit by�, seems to have no 
onne
tion with the everyday meaning of the

word �reap�.
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Definition of r. The reaping number r is the smallest 
ardinality of any

reaping family; more formally

r = min
{
|R| : R ⊆ [ω]ω is reaping

}
.

Sin
e the family [ω]ω is obviously reaping, r is well-de�ned and r ≤ c.

Furthermore, by Theorem 8.3, the following result implies that every reaping

family is un
ountable:

Theorem 8.5. b ≤ r.

Proof. Let E = {xξ ∈ [ω]ω : ξ ∈ κ < b} be an arbitrary family of in�nite

subsets of ω of 
ardinality stri
tly less than b. We show that E is not a reaping

family. For ea
h xξ ∈ E let gξ ∈ ωω be the unique stri
tly in
reasing bije
tion

between ω and xξ\{0}. Further, let g̃ξ(k) := gkξ (0), where g
k+1
ξ (0) = gξ

(
gkξ (0)

)

and g0ξ (0) := 0. Consider Ẽ = {g̃ξ : ξ ∈ κ}. Sin
e κ < b, the family Ẽ is

bounded, i.e., there exists an f ∈ ωω su
h that for all ξ ∈ κ, g̃ξ <
∗ f . Let

x =
⋃
k∈ω

[
f2k(0), f2k+1(0)

)
. Then for ea
h ξ ∈ κ there is an nξ ∈ ω su
h

that for all k ≥ nξ, f
k(0) ≤ g̃ξ

(
fk(0)

)
< f

(
fk(0)

)
. This implies that neither

xξ ⊆∗ x nor xξ ⊆∗ (ω \ x), and hen
e, E is not a reaping family. ⊣

The Cardinals a and i

Two sets x, y ∈ [ω]ω are almost disjoint if x∩ y is �nite. A family A ⊆ [ω]ω

of pairwise almost disjoint sets is 
alled an almost disjoint family; and a

maximal almost disjoint (mad) family is an in�nite almost disjoint family

A ⊆ [ω]ω whi
h is maximal with respe
t to in
lusion, i.e., A is not properly


ontained in any almost disjoint family A ′ ⊆ [ω]ω.

Definition of a. The almost disjoint number a is the smallest 
ardinality

of any maximal almost disjoint family; more formally

a = min
{
|A | : A ⊆ [ω]ω is mad

}
.

Before we show that b ≤ a (whi
h implies that a is un
ountable), let us

show �rst that there is a mad family of 
ardinality c.

Proposition 8.6. There exists a maximal almost disjoint family of 
ardinal-

ity c.

Proof. Noti
e that by Tei
hmüller's Prin
iple, every almost disjoint family 
an

be extended to a mad family. So, it is enough to 
onstru
t an almost disjoint

family A0 of 
ardinality c. Let {si : i ∈ ω} be an enumeration of

⋃
n∈ω

nω,
i.e., for ea
h t : n→ ω there is a unique i ∈ ω su
h that t = si. For f ∈ ωω let

xf =
{
i ∈ ω : ∃n ∈ ω (f |n = si)

}
.
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Then, for any distin
t fun
tions f, g ∈ ωω, xf ∩ xg is �nite. Indeed, if f 6= g,
then there is an n0 ∈ ω su
h that f(n0) 6= g(n0) whi
h implies that for all

k > n0, f |k 6= g|k, and hen
e, |xf ∩xg| ≤ n0+1. Now, let A0 := {xf : f ∈ ωω}.
Then A0 ⊆ [ω]ω is a set of pairwise almost disjoint in�nite subsets of ω,
therefore, A0 is an almost disjoint family of 
ardinality |ωω| = c. ⊣

The following result implies that a is un
ountable and in the proof we will

show how one 
an 
onstru
t an unbounded family from a mad family.

Theorem 8.7. b ≤ a.

Proof. Let A = {xξ : ξ ∈ κ} be a mad family. It is enough to 
onstru
t

an unbounded family of 
ardinality |A |. Let z = ω \⋃ξ∈κ xξ; then z is �nite

(otherwise,A ∪{z} would be an almost disjoint family whi
h properly 
ontains

A ). Let x′0 := x0∪z∪{0} and for positive integers n ∈ ω let x′n :=
(
xn∪{n}

)
\⋃

k∈n x
′
k. Then, sin
e A is an almost disjoint family, {x′n : n ∈ ω} is a family

of pairwise disjoint in�nite subsets of ω and by 
onstru
tion,

⋃
n∈ω x

′
n = ω.

Moreover,

(
A \{xξ : ξ ∈ ω}

)
∪{x′n : n ∈ ω} is still mad. For n ∈ ω let gn ∈ ωω

be the unique stri
tly in
reasing bije
tion from x′n to ω, and let h : ω → ω×ω
de�ned by stipulating

h(m) = 〈n, k〉 where m ∈ x′n and k = gn(m) .

By de�nition, for ea
h n ∈ ω, h[x′n] =
{
〈n, k〉 : k ∈ ω

}
, and for all ξ ∈ κ,

h[xω+ξ] ∩ x′n is �nite. Further, for ea
h ξ ∈ κ de�ne fξ ∈ ωω by stipulating

fξ(k) =
⋃(

h[xω+ξ] ∩ x′k
)

and let B = {fξ ∈ ωω : ξ ∈ κ}. Then by de�nition |B| = |A |; moreover, B

is unbounded. Indeed, if there would be a fun
tion f ∈ ωω whi
h dominates

all fun
tions of B, then the in�nite set

{
h−1

(
〈n, f(n)〉

)
: n ∈ ω

}
would have

�nite interse
tion whi
h ea
h element of A 
ontrary to maximality of A . ⊣

A family I ⊆ [ω]ω is 
alled independent if the interse
tion of any �nitely

many members of I and the 
omplements of any �nitely many other members

of I is in�nite. More formally, I ⊆ [ω]ω is independent if for any n,m ∈ ω
and disjoint sets {xi : i ∈ n}, {yj : j ∈ m} ⊆ I ,

⋂

i∈n

xi ∩
⋂

j∈m

(ω \ yj) is in�nite ,

where we stipulate

⋂ ∅ := ω. Equivalently, I ⊆ [ω]ω is independent if for any

I, J ∈ fin(I ) with I ∩ J = ∅ we have

⋂
I \

⋃
J is in�nite .

We leave it as an exer
ise to the reader to show that if I is in�nite, then

I is independent i� for any disjoint sets I, J ∈ fin(I ),
⋂
I \⋃ J 6= ∅.
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A maximal independent family is an independent family I ⊆ [ω]ω

whi
h is maximal with respe
t to in
lusion, i.e., I is not properly 
ontained

in any independent family I ′ ⊆ [ω]ω.

Definition of i. The independen
e number i is the smallest 
ardinality

of any maximal independent family; more formally

i = min
{
|I | : I ⊆ [ω]ω is independent

}
.

We shall see that max{r, d} ≤ i (whi
h implies that i is un
ountable), but

�rst let us show that there is a maximal independent family of 
ardinality c.

Proposition 8.8. There is a maximal independent family of 
ardinality c.

Proof. It is enough to 
onstru
t an independent family of 
ardinality c on

some 
ountably in�nite set. So, let us 
onstru
t an independent family of


ardinality c on the 
ountably in�nite set

C =
{
〈s, A〉 : s ∈ fin(ω) ∧ A ⊆ P(s)

}
.

Further, for ea
h x ⊆ [ω]ω de�ne

Px :=
{
〈s, A〉 ∈ C : x ∩ s ∈ A

}
.

Noti
e that for any distin
t x, y ∈ [ω]ω there is a �nite set s ∈ fin(ω) su
h
that x ∩ s 6= y ∩ s, and 
onsequently we get Px 6= Py whi
h implies that

the set I0 =
{
Px : x ∈ [ω]ω

}
⊆ [C]ω is of 
ardinality c. Moreover, I0 is

an independent family on C. Indeed, for any �nitely many distin
t in�nite

subsets of ω, say x0, . . . , xm, . . . , xm+n where m,n ∈ ω, there is a �nite set

s ⊆ ω su
h that for all i, j with 0 ≤ i < j ≤ m + n we have xi ∩ s 6= xj ∩ s.
Let A = {s∩xi : 0 ≤ i ≤ m} ⊆ P(s), and for every k ∈ ω \ s let sk := s∪{k}
and Ak := A ∪

{
t ∪ {k} : t ∈ A

}
. Then

{
〈sk, Ak〉 : k ∈ ω \ s

}
⊆

⋂

0≤i≤m

Pxi
\

⋃

1≤j≤n

Pxm+j
,

whi
h shows that

⋂{Pxi
: 0 ≤ i ≤ m} \⋃{Pxm+j

: 1 ≤ j ≤ n} is in�nite, and

therefore, I0 is an independent family on C of 
ardinality c. ⊣

The following result implies that i is un
ountable.

Theorem 8.9. max{r, d} ≤ i.

Proof. r ≤ i: The idea is to show that every maximal independent family

yields a reaping family of the same 
ardinality. For this, let I ⊆ [ω]ω be a

maximal independent family of 
ardinality i and let

R =
{⋂

I \
⋃
J : I, J ∈ fin(I ) ∧ I ∩ J = ∅

}
.
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Then R is a family of 
ardinality i. Furthermore, sin
e I is a maximal inde-

pendent family, for every x ∈ [ω]ω we �nd a y ∈ R (i.e., y =
⋂
I \⋃ J) su
h

that either x ∩ y or (ω \ x) ∩ y is �nite, and be
ause (ω \ x) ∩ y = y \ x, this
shows that x does not split all elements of R. Thus, R is a reaping family of


ardinality i, and therefore r ≤ i.

d ≤ i: The idea is to show that an independent family of 
ardinality stri
tly

less than d 
annot be maximal. For this, suppose I = {Xξ : ξ ∈ κ < d} ⊆ [ω]ω

is an in�nite independent family of 
ardinality κ < d. We shall 
onstru
t a

set Z ∈ [ω]ω su
h that I ∪ {Z} is still independent, whi
h implies that the

independent family I is not maximal. For this it is enough to show that for

any �nite, disjoint subfamilies of I , say I and J , the in�nite set

⋂
I \ ⋃

J
meets both Z and ω \ Z in an in�nite set.

Let Iω := {Xn : n ∈ ω} ⊆ I be a 
ountably in�nite subfamily of I and

for ea
h n ∈ ω let X0
n := Xn and X1

n := ω \Xn. Further, for ea
h g ∈ ω2 let

Cn,g =
⋂

k∈n

X
g(k)
k

and for I ′ := I \ Iω de�ne

F =
{⋂

I ′ \
⋃
J ′ : I ′ and J ′

are �nite, disjoint subfamilies of I
′
}
.

Claim. The family C = {Cn,g : n ∈ ω} has a pseudo-interse
tion that has

in�nite interse
tion with every set in F .

Proof of Claim. Sin
e I is an in�nite independent family of 
ardinality κ < d,

F ⊆ [ω]ω is a family of 
ardinality κ su
h that ea
h set in F has in�nite

interse
tion with every member of C . For any h ∈ ωω de�ne

Y hg =
⋃

n∈ω

(
Cn,g ∩ h(n)

)
.

Sin
e 〈Cn,g : n ∈ ω〉 is de
reasing (i.e., Cn,g ⊇ Cm,g whenever n ≤ m), Y hg
is almost 
ontained in ea
h member of C �however, Y hg is not ne
essarily

in�nite. It remains to 
hoose the fun
tion h ∈ ωω so that Y hg is in�nite (i.e.,

Y hg is a pseudo-interse
tion of C ) and has in�nite interse
tion with every set in

F . Noti
e �rst that for every A ∈ F and for every n ∈ ω, A∩Cn,g is in�nite;
thus, for every A ∈ F we 
an de�ne a fun
tion fA(n) ∈ ωω by stipulating

fA(n) = the nth

element (in in
reasing order) of A ∩Cn,g.

Sin
e |F | < d, the family {fA : A ∈ F} is not dominating. In parti
ular,

there is a fun
tion h0 ∈ ωω with the property that for ea
h A ∈ F the set

DA =
{
n ∈ ω : h0(n) > fA(n)

}

is in�nite. Now, for ea
h A ∈ F and every n ∈ DA we have h0(n) ≥ fA(n)+1
whi
h implies that |A∩h0(n)| ≥ |A∩fA(n)+1| = n, and sin
e DA is in�nite,
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also A ∩ Y h0
g is in�nite. Finally, by 
onstru
tion Y h0

g is a pseudo-interse
tion

of C that has in�nite interse
tion with every set in F . ⊣
Claim

By the Claim, for every g ∈ ω2 there is a set, say Yg ∈ [ω]ω, whi
h has the

following two properties:

(1) For all n ∈ ω, Yg ⊆∗
⋂
k∈nX

g(k)
k .

(2) Yg ∩
(⋂

I ′ \ ⋃
J ′
)
is in�nite whenever I ′ and J ′

are �nite, disjoint sub-

families of I ′
.

It follows from (1) that for any distin
t g, g′ ∈ ωω, Yg and Yg′ are almost

disjoint. Let now

Q0 =
{
g ∈ ωω : ∃n0 ∈ ω ∀k ≥ n0

(
g(k) = 0

)}

and

Q1 =
{
g ∈ ωω : ∃n1 ∈ ω ∀k ≥ n1

(
g(k) = 1

)}
.

Then Q0 ∪ Q1 is a 
ountably in�nite subset of

ωω. Let {gn : n ∈ ω} be an

enumeration of Q0 ∪Q1 and for ea
h n ∈ ω let Y ′
gn

:= Ygn \⋃{Ygk : k ∈ n}.
Then {Y ′

gn
: n ∈ ω} is a 
ountable family of pairwise disjoint in�nite subsets

of ω. Finally let

Z =
⋃

g∈Q0

Y ′
g and Z ′ =

⋃

g∈Q1

Y ′
g .

Then Z and Z ′
are disjoint. Now we show that Z has in�nite interse
tion with

every

⋂
I \⋃J , where I and J are arbitrary �nite subfamilies of I ; and sin
e

the same also holds for Z ′ ⊆ ω \ Z, I ∪ {Z} is an independent family, i.e.,

the independent family I of 
ardinality < d is not maximal.

Given any �nite, disjoint subfamilies I, J ⊆ I , and let I0 = I ∩ Iω ,

J0 = J ∩ Iω , I
′ = I \ I0, J ′ = J \ J0, where Iω = {Xn : n ∈ ω}. Further, let

m ∈ ω be su
h that I0 ∪ J0 ⊆ {Xn : n ∈ m} ⊆ Iω and �x g ∈ Q0 su
h that

for all n ∈ m, (
Xn ∈ (I0 ∪ J0) ∧ g(n) = 0

)
↔ Xn ∈ I0 .

We get the following in
lusions:

⋂
I \

⋃
J ⊇

(⋂
I ′ \

⋂
J ′
)
∩

⋂

n∈m

Xg(n)
n

∗⊇
(⋂

I ′ \
⋂
J ′
)
∩ Yg

The interse
tion on the very right is in�nite (by property (2) of Yg) and is


ontained in Z (be
ause g ∈ Q0). Hen
e, we have found an in�nite set whi
h

is almost 
ontained in Z ∩
(⋂

I \⋃ J
)
, and therefore Z is in�nite. ⊣

The Cardinals par and hom

By Ramsey's Theorem 2.1, for every 
olouring π : [ω]2 → 2 there is an

x ∈ [ω]ω whi
h is homogeneous for π, i.e., π|[x]2 is 
onstant. This leads to the

following 
ardinal 
hara
teristi
:
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Definition of hom. The homogeneity number hom is the smallest 
ar-

dinality of any family F ⊆ [ω]ω with the property that for every 
olouring

π : [ω]2 → 2 there is an x ∈ F whi
h is homogeneous for π.

The following result implies that hom is un
ountable. In fa
t we will show

that ea
h family whi
h 
ontains a homogeneous set for every 2-
olouring of

[ω]2 is reaping and that ea
h su
h family yields a dominating family of the

same 
ardinality.

Theorem 8.10. max{r, d} ≤ hom.

Proof. Let F ⊆ [ω]ω be a family su
h that for every 
olouring π : [ω]2 → 2
there is an x ∈ F whi
h is homogeneous for π. We shall show that F is

reaping and that F ′ = {fx ∈ ωω : x ∈ F} is dominating, where fx is the

stri
tly in
reasing bije
tion between ω and x.

d ≤ hom : Firstly we show that F is a dominating family. For any stri
tly

in
reasing fun
tion f ∈ ωω with f(0) = 0 de�ne πf : [ω]2 → 2 by stipulating

πf
(
{n,m}

)
= 0 ⇐⇒ ∃k ∈ ω

(
f(2k) ≤ n,m < f(2k + 2)

)
.

Then, for every x ∈ F whi
h is homogeneous for πf we have f <∗ fx whi
h

implies that F ′
is dominating.

r ≤ hom : Now we show that F is a reaping family. Take any y ∈ [ω]ω and

de�ne πy : [ω]2 → 2 by stipulating

πy
(
{n,m}

)
= 0 ⇐⇒ {n,m} ⊆ y ∨ {n,m} ∩ y = ∅ .

Now, for every x ∈ F whi
h is homogeneous for πy we have either x ⊆ y or

x ∩ y = ∅, and sin
e y was arbitrary, F is reaping. ⊣

Re
all that a set H ∈ [ω]ω is 
alled almost homogeneous for a 
olouring

π : [ω]2 → 2 if there is a �nite set K ⊆ H su
h that H \K is homogeneous

for π. This leads to the following 
ardinal 
hara
teristi
:

Definition of par. The partition number par is the smallest 
ardinality

of any family P of 2-
olourings of [ω]2 su
h that no single H ∈ [ω]ω is almost

homogeneous for all π ∈ P.

By Proposition 2.8 we get that par is un
ountable, and the following

result gives an upper bound for par.

Theorem 8.11. par = min{s, b}.

Proof. First we show that par ≤ min{s, b} and then we show that par ≥
min{s, b}. par ≤ s : Let S ⊆ [ω]ω be a splitting family and for ea
h x ∈ S

de�ne the 
olouring πx : [ω]2 → 2 by stipulating

πx
(
{n,m}

)
= 0 ⇐⇒ {n,m} ⊆ x ∨ {n,m} ∩ x = ∅
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and let P = {πx : x ∈ S }. Then, sin
e S is splitting, no in�nite set is almost

homogeneous for all π ∈ P.

par ≤ b : Let B ⊆ ωω be an unbounded family. Without loss of generality we

may assume that ea
h g ∈ B is stri
tly in
reasing. For ea
h g ∈ B de�ne the


olouring πg : [ω]
2 → 2 by stipulating

πg
(
{n,m}

)
= 0 ⇐⇒ g(n) < m where n < m .

Assume towards a 
ontradi
tion that some in�nite set H ∈ [ω]ω is almost

homogeneous for all 
olourings in P = {πg : g ∈ B}. We shall show that

H yields a fun
tion whi
h dominates the unbounded family B, whi
h is

obviously a 
ontradi
tion. Consider the fun
tion h ∈ ωω whi
h maps ea
h

natural number n to the se
ond member of H above n; more formally,

h(n) := min
{
m ∈ H : ∃k ∈ H(n < k < m)

}
. For ea
h n ∈ ω we have

n < k < h(n) with both k and h(n) in H . By almost homogeneity of H ,

for ea
h g ∈ B there is a �nite set K ⊆ ω su
h that H \K is homogeneous

for πg, i.e., for all {n,m} ∈ [H \ K]2 with n < m we have either g(n) < m
or g(n) ≥ m. Sin
e H is in�nite, the latter 
ase is impossible. On the other

hand, the former 
ase implies that for all n ∈ H \K, g(n) < h(n), hen
e, h
dominates g and 
onsequently h dominates ea
h fun
tion of B.

par ≥ min{s, b} : Suppose P =
{
πξ : ξ ∈ κ < min{s, b}

}
is a family of

2-
olouring of [ω]2. We shall 
onstru
t a set H ∈ [ω]ω whi
h is almost homo-

geneous for all 
olourings π ∈ P. For ea
h ξ ∈ κ and all n ∈ ω de�ne the

fun
tion fξ,n ∈ ω2 by stipulating

fξ,n(m) =

{
πξ
(
{n,m}

)
for m 6= n,

0 otherwise.

Sin
e |{fξ,n : ξ ∈ κ ∧ n ∈ ω}| = κ · ω = κ < s, there is an in�nite set A ⊆ ω
on whi
h all fun
tions fξ,n are almost 
onstant; more formally, for ea
h ξ ∈ κ
and ea
h n ∈ ω there are gξ(n) ∈ ω and jξ(n) ∈ {0, 1} su
h that for all

m ≥ gξ(n), fξ,n(m) = jξ(n). Moreover, sin
e κ < s there is an in�nite set

B ⊆ A on whi
h ea
h fun
tion jξ ∈ ω2 is almost 
onstant, say jξ(n) = iξ
for all n ∈ B with n ≥ bξ. Further, sin
e κ < b there is a stri
tly in
reasing

fun
tion h ∈ ωω whi
h dominates ea
h gξ, i.e., for ea
h ξ ∈ κ there is an

integer cξ su
h that for all n ≥ cξ, gξ(n) < h(n). Let H = {xk : k ∈ ω} ⊆ B
be su
h that for all k ∈ ω, h(xk) < xk+1. Then H is almost homogeneous for

ea
h πξ ∈ P. Indeed, if n,m ∈ H are su
h that max{bξ, cξ} ≤ n < m, then

gξ(n) < h(n) < m and therefore πξ
(
{n,m}

)
= fξ,n(m) = jξ(n) = iξ, i.e.,

H \max{bξ, cξ} is homogeneous for πξ. ⊣

The Cardinal h

A family H = {Aξ : ξ ∈ κ} ⊆ P
(
[ω]ω

)
of mad families of 
ardinality c is


alled shattering if for ea
h x ∈ [ω]ω there is a ξ ∈ κ su
h that x has in�nite
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interse
tion with at least two distin
t members of Aξ, i.e., at lest two sets of

Aξ split x. We leave it as an exer
ise to the reader to show that there are

shattering families of 
ardinality c (for ea
h x ∈ [ω]ω take two disjoint sets

y, y′ ⊆ x su
h that ω \ (y ∪ y′) is in�nite and extend {y, y′} to a mad family

of 
ardinality c).

Definition of h. The shattering number h is the smallest 
ardinality of

a shattering family; more formally

h = min
{
|H | : H is shattering

}
.

If one tries to visualise a shattering family, one would probably draw a

kind of matrix with c 
olumns, where the rows 
orrespond to the elements of

the family (i.e., to the mad families). Having this pi
ture in mind, the size of

the shattering family would then be the height of the matrix, and this where

the letter �h� 
omes from.

In order to prove that h ≤ par we shall show how to 
onstru
t a shattering

family from any family P of 2-
olourings of [ω]2 su
h that no single set is

almost homogeneous for all π ∈ P; the following lemma is the key idea in

that 
onstru
tion:

Lemma 8.12. For every 
olouring π : [ω]2 → 2 there is a mad family Aπ of


ardinality c su
h that ea
h A ∈ Aπ is homogeneous for π.

Proof. Let A ⊆ [ω]ω be an arbitrary almost disjoint family of 
ardinality

c and let π be a 2-
olouring of [ω]2. By Ramsey's Theorem 2.1, for ea
h

A ∈ A we �nd an in�nite set A′ ⊆ A su
h that A′
is homogeneous for π.

Let A ′ = {A′ : A ∈ A }; then A ′
is an almost disjoint family of 
ardinality

c where ea
h member of A ′
is homogeneous for π. Let {xξ : ξ ∈ κ ≤ c} be

an enumeration of [ω]ω \A ′
. By trans�nite indu
tion de�ne A0 = A ′

and for

ea
h ξ ∈ κ let

Aξ+1 =






Aξ ∪ {xξ} if xξ is homogeneous for π and

for ea
h A ∈ Aξ, xξ ∩ A is �nite,

Aξ otherwise.

By 
onstru
tion, Aπ =
⋃
ξ∈κ Aξ is an almost disjoint family of 
ardinality c,

all whose members are homogeneous for π. Moreover, Aπ is a mad family.

Indeed, if there would be an x ∈ [ω]ω su
h that for all A ∈ Aπ, x ∩ A is

�nite, then, by Ramsey's Theorem 2.1, there would be an xξ0 ∈ [x]ω (for

some ξ0 ∈ κ) whi
h is homogeneous for π. In parti
ular, xξ0 would belong to

Aξ0+1. Hen
e, x ∩ xξ0 is in�nite, where xξ0 ∈ A , whi
h is a 
ontradi
tion to

the 
hoi
e of x. ⊣

Theorem 8.13. h ≤ par.
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Proof. Let P be a family of 2-
olourings of [ω]2 su
h that no single set is

almost homogeneous for all π ∈ P and let HP = {Aπ : π ∈ P}, where Aπ

is like in Lemma 8.12. We 
laim that HP is shattering. Indeed, let H ⊆ ω
be an arbitrary in�nite subset of ω. By the property of P, there is a π ∈ P

su
h that H is not almost homogeneous for π. Consider Aπ ∈ HP : Sin
e

Aπ is mad, there is an A ∈ Aπ su
h that H ∩ A is in�nite, and sin
e A is

homogeneous for π, H \ A is in�nite too; and again, sin
e Aπ is mad, there

is an A′ ∈ Aπ (distin
t from A) su
h that (H \A)∩A′
is in�nite. This shows

that H has in�nite interse
tion with two distin
t members of Aπ. Hen
e, HP

is shattering. ⊣

In order to prove that p ≤ h we have to introdu
e some notions: If A and

A ′
are mad families (of 
ardinality c), then A ′

re�nes A , denoted A ′≻≻A,

if for ea
h A′ ∈ A ′
there is an A ∈ A su
h that A′ ⊆∗ A. A shattering family

{Aξ : ξ ∈ κ} is 
alled re�ning if Aξ′≻≻Aξ whenever ξ
′ > ξ.

The next result is the key lemma in the proof that every shattering family

of size h indu
es a re�ning shattering family of the same 
ardinality.

Lemma 8.14. For every family E = {Aξ : ξ ∈ κ < h} of 
ardinality κ < h of

mad families of 
ardinality c there exists a mad family A ′
whi
h re�nes ea
h

Aξ ∈ E . Furthermore, A ′
is of 
ardinality c.

Proof. Let E = {Aξ : ξ ∈ κ < h} be a family of less than h mad families of


ardinality c. For every x ∈ [ω]ω we �nd an x′ ∈ [x]ω with the property that

for ea
h Aξ ∈ H there is an A ∈ Aξ su
h that x′ ⊆∗ A. Indeed, if there is

no su
h x′ (for some given x ∈ [ω]ω), then a bije
tion between x and ω would

yield a shattering family of 
ardinality κ < h, 
ontrary to the de�nition of h.

Now, if A ′ ⊆ {x′ : x ∈ [ω]ω} is a mad family, then A ′
is of 
ardinality c (sin
e

A0 is of 
ardinality c) and re�nes ea
h Aξ ∈ E (sin
e A ′ ⊆ {x′ : x ∈ [ω]ω}).
It remains to show that mad families A ′ ⊆ {x′ : x ∈ [ω]ω} exist. Indeed, if

A ⊆ {x′ : x ∈ [ω]ω} is an almost disjoint family whi
h is not maximal, then

there exists an x ∈ [ω]ω su
h that for all A ∈ A , x ∩ A is �nite. Noti
e that

A ∪ {x′} is still an almost disjoint family, hen
e, by Tei
hmüller's Prin
iple,

every almost disjoint family A ⊆ {x′ : x ∈ [ω]ω} 
an be extended to a mad

family A ′ ⊆ {x′ : x ∈ [ω]ω}. ⊣

Proposition 8.15. If H = {Aξ : ξ ∈ h} is a shattering family of 
ardinality

h, then there exists a re�ning shattering family H ′ = {A ′
ξ : ξ ∈ h} su
h that

for ea
h ξ ∈ h we have A ′
ξ≻≻Aξ.

Proof. The proof is by trans�nite indu
tion: Let A ′
0 := A0 and assume we

have already de�ned A ′
ξ for all ξ ∈ η where η ∈ h. Apply Lemma 8.14 to the

family {A ′
ξ : ξ ∈ η} ∪ {Aη} to obtain A ′

η and let H ′ = {A ′
ξ : ξ ∈ h}. ⊣

Now, the proof of p ≤ h is straightforward.

Theorem 8.16. p ≤ h.
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Proof. By Proposition 8.15 there exists a re�ning shattering family H =
{Aξ : ξ ∈ h} of 
ardinality h. With H we shall build a family F ⊆ [ω]ω of


ardinality h whi
h has the s�p but whi
h does not have a pseudo-interse
tion:

Chose any x0 ∈ A0 and assume we have already 
hosen xξ ∈ Aξ for all ξ ∈ η
where η ∈ h. Sin
e H is re�ning we 
an 
hose a xη ∈ Aη su
h that xη is a

pseudo-interse
tion of {xξ : ξ ∈ η}. Finally let F = {xξ : ξ ∈ h}. Then F is

a family of 
ardinality ≤ h whi
h has the s�p, but sin
e H is shattering, no

in�nite set is almost 
ontained in every member of F , i.e., F does not have

a pseudo-interse
tion. ⊣

Summary

The diagram below shows the relations between the twelve 
ardinals. A line


onne
ting two 
ardinals indi
ates that the 
ardinal lower on the diagram is

less than or equal to the 
ardinal higher on the diagram (provably in ZFC).

c

i

MMMMMMMMMMM

a

���������������
hom

r

���������������
d

LLLLLLLLLL

b

::::::::::::::

qqqqqqqqqqq
s

par

rrrrrrrrrr

h

p

ω1

Later we shall see that ea
h of following relations is 
onsistent with ZFC:

• a < c (Proposition 18.5)

• i < c (Proposition 18.11)

• ω1 < p = c (Proposition 19.1)
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• a < d = r (Corollary 21.11)

• s = b < d (Proposition 21.13)

• d < r (Proposition 22.4)

• d > r (Proposition 23.7)

• p < h (Proposition 24.12)

Notes

Most of the 
lassi
al 
ardinal 
hara
teristi
s and their relations presented here 
an

be found for example in van Douwen [42℄ and Vaughan [43℄, where one �nds also

a few histori
al notes (for d see also Kanamori [27, p. 179 f.℄). Proposition 8.8 is

due to Fi
htenholz and Kantorovit
h [22℄, but the proof we gave is Hausdor�'s, who

generalised in [26℄ the result to arbitrary in�nite 
ardinals (see also Exer
ise (A6)

on p. 288 of Kunen [29℄). Theorem 8.9 is due to Shelah [33℄, however, the proof

is taken from Blass [5℄ (see also [4, Theorem 21℄), where the 
laim in the proof is

due to Ketonen [28, Proposition 1.3℄. Theorem 8.10 and Theorem 8.11 are due to

Blass and the proofs are taken from Blass [5℄ (see also [4, Se
tion 6℄). The shattering


ardinal h was introdu
ed and investigated by Bal
ar, Pelant, and Simon in [2℄

(
f. Related Result 51).

Related Results

50. The Continuum Hypothesis. There are numerous statements from areas like

Algebra, Combinatori
s, or Topology, whi
h are equivalent to CH. For example

Erd®s and Kakutani showed that CH is equivalent to the statement that R is

the union of 
ountably many sets of rationally independent numbers (
f. [20,

Theorem 2℄). Many more equivalents to CH 
an be found in Sierpi«ski [39℄. For

the histori
al ba
kground of CH we refer the reader to Felgner [21℄.

51. On the shattering number h. Bal
ar, Pelant, and Simon showed that h ≤ cf(c)
(see [2, Theorem 4.2℄), gave a dire
t prove for h ≤ b (see [2, Theorem 4.5℄)

and for h ≤ s (follows from [2, Lemma 2.11.(
)℄), and showed that h is regular

(see [2, Lemma 2.11.(b)℄. Furthermore, Lemma 2.11.(
) of Bal
ar, Pelant, and

Simon [2℄ states that there are shattering families of size h whi
h have a very

strong 
ombinatorial property:

Base Matrix Lemma. There exists a shattering family H =
{
Aξ ⊆ [ω]ω :

ξ ∈ h
}
whi
h has the property that for ea
h X ∈ [ω]ω there is a ξ ∈ h and an

A ∈ Aξ su
h that A ⊆∗ X.

Proof. Let F =
{
Aξ ⊆ [ω]ω : ξ ∈ h

}
be an arbitrary but �xed re�ning shatter-

ing family of 
ardinality h. We �rst prove the following

Claim. For every in�nite set X ∈ [ω]ω there exists an ordinal ξ̄ ∈ h su
h that∣∣{C ∈ Aξ̄ : |C ∩X| = ω
}∣∣ = c.

Proof of Claim. Let X ∈ [ω]ω be an arbitrary in�nite subset of ω. Firstly we

show that there exists a stri
tly in
reasing sequen
e 〈ξn : n ∈ ω〉 in h, su
h that

for ea
h n ∈ ω and f ∈ n2 we �nd a set Cf ∈ Aξn with the following properties:



Related Results 205

• |Cf ∩X| = ω,
• if f, f ′ ∈ n2 are distin
t, then Cf 6= Cf ′ , and
• for all f ∈ n2 and m ∈ n, Cf ⊆∗ Cf |m .

The sequen
e 〈ξn : n ∈ ω〉 is 
onstru
ted by indu
tion on n: First we 
hoose an
arbitrary ξ0 ∈ h. Now, suppose we have already found ξn ∈ h for some n ∈ ω.
Sin
e F is a shattering family, for every h ∈ n2 there exists a ζh > ξn su
h that

the in�nite set Ch ∩ X has in�nite interse
tion with at least two members of

Aζh . Let ξn+1 =
⋃{

ζh : h ∈ n2
}
. Then, sin
e F is re�ning, we �nd a family{

Cf : f ∈ n+12
}
⊆ Aξn+1 with the desired properties.

Let ξ̄ :=
⋃
n∈ω ξn; then the ordinal ξ̄ is smaller than h: Otherwise, sin
e F is

re�ning, the family {Aξn : n ∈ ω} would be a shattering family of 
ardinality

ω, 
ontradi
ting the fa
t that h ≥ ω1.

By 
onstru
tion, for ea
h f ∈ ω2 we �nd a Cf ∈ Aξ̄ su
h that Cf ∩X is in�nite

(noti
e that for ea
h n ∈ ω, |Cf |n ∩X| = ω), and sin
e F is re�ning we have

Cf 6= Cf ′ whenever f, f
′ ∈ ω2 are distin
t. Thus,

∣∣{Cf ∈ Aξ̄ : f ∈ ω2
}∣∣ = c and

for ea
h f ∈ ω2 we have |Cf ∩X| = ω. ⊣
Claim

Now we 
onstru
t the shattering family H =
{
Aξ ⊆ [ω]ω : ξ ∈ h

}
as follows:

For ea
h ξ ∈ h, let Xξ be the family of all X ∈ [ω]ω su
h that

∣∣{C ∈ Aξ : |C ∩X| = ω
}∣∣ = c .

If Xξ = ∅, then let Aξ = Aξ. Otherwise, de�ne (e.g., by trans�nite indu
tion)

an inje
tion gξ : Xξ →֒ Aξ su
h that for ea
h X ∈ Xξ,

∣∣X ∩ gξ(X)
∣∣ = ω.

Now, for ea
h C ∈ Aξ, let CC ⊆ [C]ω be an almost disjoint family su
h that⋃
CC = C, and whenever C = gξ(X) for some X ∈ Xξ (i.e., |X ∩ C| = ω),

then there exists an A ∈ CC with A ⊆∗ X. Let Aξ := {A ∈ CC : C ∈ Aξ} and

let H := {Aξ : ξ ∈ h}. Then, by 
onstru
tion, for every X ∈ [ω]ω we �nd an

ordinal ξ ∈ h and an in�nite set A ∈ Aξ su
h that A ⊆∗ X. ⊣

52. The tower number t∗. A family T = {Tα : α ∈ κ} ⊆ [ω]ω is 
alled a tower if

T is well-ordered by

∗⊇ (i.e., Tβ ⊆∗ Tα ↔ α < β) and does not have a pseudo-

interse
tion. The tower number t is the smallest 
ardinality (or height) of a

tower. Obviously we have p ≤ t and the proof of Theorem 8.16 shows that

t ≤ h. However, it is open whether p < t is 
onsistent with ZFC (for partial

results see for example van Douwen [42℄, Blass [5℄, or Shelah [35℄).

53. A linearly ordered subset of [ω]ω of size c. Let {qn ∈ Q : n ∈ ω} be an

enumeration of the rational numbers Q and for every real number r ∈ R let

Cr := {n ∈ ω : qn ≤ r}. Then, for any real numbers r0 < r1 we have Cr0  Cr1
and |Cr1 \Cr0 | = ω. Thus, with respe
t to the ordering � �, {Cr : r ∈ R} ⊆ [ω]ω

is a linearly ordered set of size c. In general one 
an show that whenever M is

in�nite, the partially ordered set

(
P(M), 

)

ontains a linearly ordered subset

of size stri
tly greater than |M |.

54. The σ-reaping number rσ
∗
. A family R ⊆ [ω]ω is 
alled σ-reaping if no 
ount-

ably many sets su�
e to split all members of R. The σ-reaping number rσ is

the smallest 
ardinality of any σ-reaping family (for a de�nition of rσ in terms

of bounded sequen
es see Vojtá² [44℄). Obviously we have r ≤ rσ, but it is not

known whether r = rσ is provable in ZFC, i.e., it is not known whether r < rσ is


onsistent with ZFC (see also Vojtá² [44℄ and Brendle [8℄).
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55. On i and hom∗
. We have seen that max{r, d} ≤ hom (see Theorem 8.10) and

that max{r, d} ≤ i (see Theorem 8.9). Moreover, Blass [4, Se
tion 6℄ showed

that hom = max{rσ, d} (see also Blass [5℄). Thus, in every model in whi
h r =
rσ we have hom ≤ i. Furthermore, one 
an show that hom < i is 
onsistent

with ZFC: In Bal
ar, Hernández-Hernández, and Hru²ák [1℄ it is shown that

max{r, 
of (M )} ≤ i, where 
of (M ) is the 
o�nality of the ideal of meagre sets.

On the other hand, it is possible to 
onstru
t models in whi
h d = rσ = ω1

and 
of (M ) = ω2 = c (see for example Shelah and Zapletal [36℄ or Brendle and

Khomskii [15℄). Thus, in su
h models we have ω1 = hom < i = ω2. However, it

is open whether i < hom (whi
h would imply r < rσ) is 
onsistent with ZFC.

56. The ultra�lter number u. A family F ⊆ [ω]ω is a base for an ultra�lter

U ⊆ [ω]ω if U =
{
y ∈ [ω]ω : ∃x ∈ F (x ⊆ y)

}
. The ultra�lter number u is

the smallest 
ardinality of any ultra�lter base. We leave it as an exer
ise to the

reader to show that r ≤ u.

57. Consisten
y results. The following statements are 
onsistent with ZFC:

• r < u (
f. Goldstern and Shelah [23℄)

• u < d (
f. Blass and Shelah [6℄ or see Chapter 23 |Related Result 130)

• u < a (
f. Shelah [34℄, see also Brendle [13℄)

• h < par (
f. Shelah [32, Theorem 5.2℄ or Dow [19, Proposition 2.7℄)

• hom < c (see Chapter 23 |Related Result 138)

• d < a (
f. Shelah [34℄, see also Brendle [10℄)

• ω1 = b < a = s = d = ω2 (
f. Shelah [32, Se
tions 1&2℄)

• κ = b = a < s = λ for any regular un
ountable 
ardinals κ < λ (
f. Brendle

and Fis
her [14℄)

• b = κ < κ+ = a = c for κ > ω1 (
f. Brendle [7℄)

• ω1 = s < b = d = r = a = ω2 (
f. Shelah [32, Se
tion 4℄)

• cf(a) = ω (
f. Brendle [11℄)

• h = ω2 + there are no towers of height ω2 (
f. Dordal [17℄).

Some more results 
an be found for example in Blass [5℄, Brendle [9, 12℄,

van Douwen [42℄, Dow [19℄, and Dordal [18℄.

58. Combinatorial properties of maximal almost disjoint families. An un
ountable

set of reals is a σ-set if every relative Borel subset is a relative Gδ set. Brendle

and Piper showed in [16℄ that CH implies the existen
e of a mad family whi
h

is also a σ-set (in that paper, they also dis
uss related results assuming Martin's

Axiom).

59. Appli
ations to Bana
h spa
e theory. Let ℓp(κ) denote the Bana
h spa
e of

bounded fun
tions f : κ→ R with �nite ℓp-norm, where for 1 ≤ p <∞,

‖f‖ = p

√∑

α∈κ

|f(α)|p ,

and for p = ∞,

‖f‖ = sup
{
|f(α)| : α ∈ κ

}
.

As mentioned above, Hausdor� generalised Proposition 8.8 to arbitrary in-

�nite 
ardinals κ, i.e., if κ is an in�nite 
ardinal then there are independent

families on κ of 
ardinality 2κ. Now, using independent families on κ of 
ardi-

nality 2κ it is quite straightforward to show that ℓ∞(κ) 
ontains an isomorphi
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opy of ℓ1(2
κ) (the details are left to the reader), and Halbeisen [24℄ showed

that the dual of ℓ∞(κ) 
ontains an isomorphi
 
opy of ℓ2(2
κ) (for an analyti


proof in the 
ase κ = ω see Rosenthal [31, Proposition 3.4℄).

We have seen that there are almost disjoint families on ω of 
ardinality c = 2ℵ0
.

Unlike for independent families, this result 
annot be generalised to arbitrary


ardinals κ, i.e., it is 
onsistent with ZFC that for some in�nite κ, there no almost

disjoint family on κ of 
ardinality 2κ (see Baumgartner[3, Theorem 5.6 (b)℄).

However, one 
an prove that for all in�nite 
ardinals κ there is an almost disjoint

family on κ of 
ardinality > κ (
f. Tarski [41℄, Sierpi«ski [37, 38℄ or [40, p. 448 f.℄,

or Baumgartner [3, Theorem 2.8℄). Using an almost disjoint family of 
ardinality

> κ it is not hard to show that every in�nite dimensional Bana
h spa
e of


ardinality κ has more than κ pairwise almost disjoint normalised Hamel bases

(
f. Halbeisen [25℄), and Peª
zy«ski and Sudakov [30℄ showed that c0(κ), whi
h
is a subspa
e of ℓ∞(κ), is not 
omplemented in ℓ∞(κ).
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