Seminarium z teorii zbiorów i kombinatoryki nieskończonej, 2020/2021

spotkanie 9. Aksjomaty teorii mnogości – rozwiązania

17 grudnia 2020

- 1. Verify that (a, b) = (c, d) if and only if a = c and b = d.
- 2. Prove, that there is no set X such that $P(X) \subseteq X$
- 3. Prove that if X is inductive, then the set $Y = \{x \in X : x \subseteq X\}$ is inductive. Hence \mathbb{N} (the smallest inductive set) is transitive and for each $n \in \mathbb{N}$, $n = \{m \in \mathbb{N} : m < n\}$.
- 4. Prove that if X is inductive, then the set Y of those elements $x \in X$ that are transitive is inductive. Hence every $n \in \mathbb{N}$ is transitive.
- 5. Prove, that if X is inductive, then Y the set of those transitive $x \in X$, that $x \notin x$ is inductive. Hence for all $n \in \mathbb{N}$ $n \notin n$ and $n \neq n + 1$.
- 6. Prove that if X is inductive then the set Y of those $x \in X$ that are transitive and every nonempty $z \subseteq x$ has ϵ -minimal element is inductive.
- 7. Prove that for every nonempty $X \subseteq \mathbb{N}$ X has a ϵ -minimal element.
- 8. Prove that if X is inductive, then so is $Y = \{x \in X : x = \emptyset \lor \exists_{z \in X} x = z \cup \{z\}\}$. Hence each $n \neq 0$ is m + 1 for some n.
- 9. Let $A \subseteq \mathbb{N}$ such that $\emptyset \in A$ and if $n \in A$, then $n+1 \in A$. Prove that $A = \mathbb{N}$.
- 10. Prove that every $n \in \mathbb{N}$ is T-finite.
- 11. Prove that \mathbb{N} is T-infinite.
- 12. Prove that every finite set is T-finite.
- 13. Prove that every infinite set is T-infinite.
- 14. Prove that the Separation Axiom follows from the Replacement Schema.
- 15. Instead of Union, Power Set and Replacement Axioms consider the following weaker versions:
 - $\forall X \exists Y (\forall x \in X) (\forall u \in x) u \in Y$,
 - $\forall X \exists Y \forall u (u \subseteq X \rightarrow u \in Y),$
 - $\forall x \forall y \forall z (\varphi(x,y,p) \land \varphi(x,z,p) \rightarrow y = z) \rightarrow \forall X \exists Y ((\exists x \in X) \varphi(x,y,p) \rightarrow y \in Y)$

Prove Union, Power Set and Replacement Axioms from these versions using Separation Schema.