Mathematical analysis 2, WNE, 2018/2019 meeting 27.

6 June 2019

1. a) Calculate integral

$$\int \frac{\cos x}{1 + \sin^2 x} \, dx.$$

b) Calculate improper integral

$$\int_0^\infty x e^{-x} \, dx.$$

2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by the formula

$$f(x,y) = x^3 + y^3 + 6xy + 3.$$

Find all points $(x,y) \in \mathbb{R}^2$ such that $\nabla f(x,y) = (0,0)$ and determine which are local minima, local maxima or saddle points.

3. Let $F: \mathbb{R}^3 \to \mathbb{R}$ be defined by the formula

$$F(x, y, z) = x \exp(z) - 2 + \cos(yz).$$

- a) Prove that there exists a neighbourhood of (x,y)=(1,1) on which it is possible to define a function z=z(x,y) of C^1 class such that z(1,1)=0 and F(x,y,z(x,y))=0. Calculate $\frac{\partial z}{\partial x}(1,1)$ and $\frac{\partial z}{\partial y}(1,1)$.
- b) Find an equation of a plane tangent to

$$M = \{(x, y, z) \in \mathbb{R}^3 \colon F(x, y, z) = 0\}$$

at
$$(1, 1, 0)$$
.

4. Find the maximal and minimal value of f(x, y, z) = 2x - 4y + 2z under conditions

$$g_1(x, y, z) = x^2 + y^2 + z^2 - 1 = 0,$$

$$g_2(x, y, z) = x + y + z = 0.$$

5. Calculate double integrals:

a)

$$\iint_{x^2+y^2 \leqslant 1} \sin(x^2 + y^2) \, dx \, dy,$$

b)

$$\int_0^1 \int_y^1 e^{-x^2} \, dx \, dy.$$