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We use substitution ®(r,0) = (rcos 0, rsin @) = (x,%). So 2 + y?> = r?(cos? § + sin® §) = r2. Moreover,
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2. Using the above problem calculate
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3. Calculate the surface area between |y| = o —1 and z — 2y — 4 = 0.

The curves intersect for © = 2 and « = 10. But for = € [1, 2] the area is bounded from above by a parabola
(symmetric to OX), and for z € [2,10] it is bounded from above by a parabola and from below by a line.

Thus,
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4. In the instant t = 0[s] the dancer which moves along OX is at the point 0. He moves with velocity
v = 2tsint?m [m/s]. At which point he will be after 1s?

The velocity is the derivative of the position, so the position is an integral of the velocity:
1
x = / 2t sin t*7 dt
0
we substitute u = t?m, du/dt = 2tm, u(0) = 0,u(1) = 1 so:
1
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x = / sinur du = —— cosur|y = =.
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5. Calculate (using integrals!) the area of a circle of radius 1.
The circle is parametrized by: (cost,sint) for ¢ € [0, 27]. Thus:
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6. Calculate the length of a curve y = 2“;)/2, for 0 <z <1
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We substitute u = v/1+1, so du/dt = 3~ and u(0) = 1,u(1) = V2
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7. Consider a three-dimensional block with base bounded by x = 0,y = 0 and /2 + ,/y = 1. The height at
point x,y is equal to h(x,y) = 22%y. Calculate its volume.

2
The surface are of a section along y (for given x) is fo(lfﬁ) 222y dy, so the volume is:
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8. Derive the formula for surface are of a cone of height [ and radius of the base r,
The section at height z has (I — z)r/l = r(1 — z/l). So the circumference is 27r(1 — z/l) and the area is
7r?(1 — 2/1)? = mr?(1 — 22/l + 22/1?). Thus, the volume is
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/ mr2(1 — 22/l + 22)12) dz = 12 (2 — 22 )1+ 23 /312)|, = mr2(1 — 1 +1/3) = %T
0
and the area
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9. Calculate the volume of a subset of R? bounded by planes z = 0 and z =  and the surface of the cylinder
224+ 92 =4.
Section for x € [0, 2] is a rectangle of height z and base 2v/4 — 22, so the volume is
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We substitute t = 4 — 22, so dt/dz = —2x, t(0) = 4, t(2) = 0, thus
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10. Using the polar coordinates find the volume of the subset of R? bounded by the plane z = 0 and the
surface of the paraboloid described by z = 25 — 22 — 2.

Let this fragment of the paraboloid is P. Let ®(r, 6, z) = (r cos6,rsin, z). Then det ' = r and P = ®[K],
where

K={(r,0,2z): 7€ (0,v/25 —2),0 € (0,2m),z € (0,25)}.
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