# Mathematical analysis 2, WNE, 2018/2019 meeting 26.

4 June 2019

## **Problems**

1. Calculate

$$\int \int_{\mathbb{R}^2} e^{-x^2 - y^2} \, dx \, dy.$$

2. Using the above problem calculate

$$\int_{-\infty}^{\infty} e^{-x^2} dx.$$

- 3. Calculate the surface area between  $|y| = \sqrt{x-1}$  and x-2y-4=0.
- 4. In the instant t = 0[s] the dancer which moves along OX is at the point 0. He moves with velocity  $v = 2t \sin t^2 \pi \, [m/s]$ . At which point he will be after 1s?
- 5. Calculate (using integrals!) the area of a circle of radius 1.
- 6. Calculate the length of a curve  $y = \frac{2x^{3/2}}{3}$ , for  $0 \le x \le 1$ .
- 7. Consider a three-dimensional block with base bounded by x = 0, y = 0 and  $\sqrt{x} + \sqrt{y} = 1$ . The height at point x, y is equal to  $h(x, y) = 2x^2y$ . Calculate its volume.
- 8. Derive the formula for surface are of a cone of height l and radius of the base r,
- 9. Calculate the volume of a subset of  $\mathbb{R}^3$  bounded by planes z=0 and z=x and the surface of the cylinder  $x^2+y^2=4$ .
- 10. Using the polar coordinates find the volume of the subset of  $\mathbb{R}^3$  bounded by the plane z=0 and the surface of the paraboloid described by  $z=25-x^2-y^2$ .

#### Homework

#### Group 8:00

Using the polar coordinates find the surface area of a subset of  $\mathbb{R}^2$  bounded from the inside by the circle  $x^2 + y^2 = 1$  and from the outside by the curve described in the polar coordinates by  $r = 2 + \cos \varphi$ .

### Group 9:45

Using the polar coordinates find the surface area of a subset of  $\mathbb{R}^2$  bounded from the inside by the circle  $x^2 + y^2 = 4$  and from the outside by the curve described in the polar coordinates by  $r = 4 + 2\cos\varphi$ .