Mathematical Analysis 2 – WNE – Colloquium 2 C – solutions 30 May 2019.

1. Calculate $\nabla f(0,0)$ for the function $f(x,y) = |2x^3\sqrt{y+1}|$, or state that it does not exist.

$$\lim_{h \to 0} \frac{|2 \cdot h^3 \sqrt{1}| - |2 \cdot 0 \sqrt{y+1}|}{h} = \lim_{h \to 0} 2|h|h = 0,$$

$$\lim_{h \to 0} \frac{|2 \cdot 0 \sqrt{1+h}| - |2 \cdot 0 \sqrt{1}|}{h} = 0,$$

So f'(0,0) = [0,0].

2. Let $f(x,y) = e^{x+y^2}$. Find the maximum of f on the set

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Obviously, there is no extremum in the interior since $\frac{\partial f}{\partial x} = e^{x+y^2} \neq 0$. We check the boundary $F(x,y) = x^2 + y^2 - 1 = 0$. $f' = [e^{x+y^2}, 2ye^{x+y^2}]$, F' = [2x, 2y], so $e^{x+y^2} = \lambda 2x$ and $2ye^{x+y^2} = \lambda 2y$. If $y \neq 0$, then $e^{x+y^2} = \lambda \neq 0$, so $\lambda = \lambda 2x$. Then x = 1/2, hence $y = \pm \sqrt{3}/2$. Meanwhile, if y = 0, to $x = \pm 1$. We get four points: $(1/2, \pm \sqrt{3}/2)$ and $(\pm 1, 0)$ with values $e^{5/4}$, $e^{5/4}$, $e^{5/4}$, and the minimum is 1/e.

3. Let $K = \{(x,y) \in \mathbb{R}^2 : 0 \leqslant x \leqslant 1, -1/4 \leqslant y \leqslant 0\}$ and let $f(x,y) = \ln(2xy+1)$. Find the maximum and the minimum of f on the set K.

We look for critical points: f' = (2y/(2xy+1), 2x/(2xy+1)), so the only critical point is (0,0) with value 0. We check for the sides and vertices are

- $x = 0, f(y) = \ln 1 = 0$, no extrema,
- x = 1, $f(y) = \ln(2y + 1)$, f' = 2/(2y + 1), no extrema,
- y = -1/4, $f(x) = \ln(-x/2 + 1)$, f' = -/2(-x/2 + 1), no extrema,
- y = 0, $f(x) = \ln 1 = 0$, no extrema,
- w (0, -1/4) value 0,
- w (0,0) value 0,
- w (1, -1/4) value $\ln(1/2)$,
- w (1,0) value 0.

So the maximum is 0, and the minimum is $-\ln(1/2)$.

4. Find and classify the critical points of the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = x^8 + y^4 - 8xy + 3.$$

 $f' = (8x^7 - 8y, 4y^3 - 8x)$, so $y = x^7$ i $x^{21} = 2x$, hence x = 0 or $x = \sqrt[20]{2}$ or $x = -\sqrt[20]{2}$. We get three points (0,0), $(\sqrt[20]{2}, 2^{\frac{7}{20}})$, $(-\sqrt[20]{2}, -2^{\frac{7}{20}})$. The matrix of second order derivative is

$$\begin{bmatrix} 56x^6 & -8 \\ -8 & 12y^2 \end{bmatrix},$$

at (0,0) is

$$\left[\begin{array}{cc} 0 & -8 \\ -8 & 0 \end{array}\right],$$

so the matrix is non-definite. There is no extremum here.

At points $(\sqrt[20]{2}, 2^{\frac{7}{20}})$ and $(-\sqrt[20]{2}, -2^{\frac{7}{20}})$ we get that the matrix is positive definite. We get a local minimum here.

5. Is $f(x,y) = (x^2 + y, 2x - y)$ a local C^1 diffeomorphism of $(-1,1) \times (-1,1)$?

$$f' = \left[\begin{array}{cc} 2x & 1 \\ 2 & -1 \end{array} \right],$$

so det $f' = -2x - 2 = -2(x+1) \neq 0$, because $x \in (-1,1)$. Thus, the answer is yes.

6. Is $f(x,y) = (x^2 + y, 2x - y)$ a C^1 diffeomorphism of $(-1,1) \times (-1,1)$?

If $a = x^2 + y$ and b = 2x - y, then $x = \pm \sqrt{a + b + 1} - 1$, $y = \pm 2\sqrt{a + b + 1} - b - 2$, but only with plus we end up in the specified interval. So there exists an inverse function

$$g(a,b) = (\sqrt{a+b+1} - 1, 2\sqrt{a+b+1} - b - 2).$$

7. Let z(x,y) be determined by the equation $\sin(yz^2 + \pi/2) = xz$ and z(1,0) = 1. Calculate $\frac{\partial z}{\partial x}(1,0)$ and $\frac{\partial z}{\partial y}(1,0)$.

 $F(x,y,z) = \sin(yz^2 + \pi/2) - xz$, so $F' = [-z, z^2 \cos(yz + \pi/2), 2zy \cos(yz + \pi/2) - x]$ at point (1,0,1) we get F' = [-1,0,-1], in particular $-1 \neq 0$, so the implicit function theorem can be applied and

$$z' = (F_z')^{-1} \cdot F_{xy}' = \frac{1}{-1}[-1, 0] = [1, 0],$$

thus $\frac{\partial z}{\partial x}(1,0) = 1$ i $\frac{\partial z}{\partial y}(1,0) = 0$.

8. Find the equation of the plane tangent to the surface

$$S = \{(x, y, z) \in \mathbb{R}^3 : \sin(yz^2 + \pi/2) = xz\}.$$

at the point (1,0,1).

Since F'(1,0,1) = [-1,0,-1], the equation of the parallel plane going through (0,0) is -x-z=0, so the equation of the plane going through (1,0,1) is -x-z=-2.

9. Is the following subset of \mathbb{R}^3 a manifold

$$M = \{(x, y, z) \in \mathbb{R}^3 : 2x + 2y = z, x^2 + y^2 = z - 2\}.$$

We get: $F(x, y, z) = (x^2 + y^2 - z + 2, 2x + 2y - z) = (0, 0)$, so

$$f' = \left[\begin{array}{ccc} 2x & 2y & -1 \\ 2 & 2 & -1 \end{array} \right]$$

and the rows of this matrix are linearly dependent if x = y = 1, so z = 4. Which may happen, so it is not a manifold.

10. Decide whether the quadratic form given by the matrix $\begin{bmatrix} -1 & -1 & -1 \\ 0 & -2 & -1 \\ 0 & 0 & -1 \end{bmatrix}$ is: positive definite,

positive semidefinite, negative definite, negative semidefinite, or indefinite.

The determinants are -1 < 0, 2 > 0, -2 < 0, so by the Sylvester's criterion it is negative definite (and thus also negative semi-definite).