Mathematical analysis 2, WNE, 2018/2019 meeting 25.

28 May 2019

1. Is there a function of C^2 class, $f: \mathbb{R}^2 \to \mathbb{R}$, such that

$$\frac{\partial f}{\partial x} = x \sin y,$$

$$\frac{\partial f}{\partial y} = y \cos x?$$

2. Let $f(x,y) = x + y^2$. Find the maximum of f on the set

$$A = \{(x, y) \in \mathbb{R}^2 : 3x^2 + 2y^2 + 8x \le 1\}.$$

- 3. Let $K = \{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1, \ 0 \le y \le 2\}$ and let $f(x,y) = x^2 + y xy^2$. Find the maximum and the minimum of f on the set K.
- 4. Find and classify the critical points of the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = x^3 + y^3 + 3xy + 3.$$

- 5. Let $f(r,\theta) = (r^2 \cos(2\theta), r^2 \sin(2\theta))$ where $(r,\theta) \in (0,1) \times (0,2\pi)$. Sketch the image of f.
- 6. Let f be the function from the previous problem.
 - a) Is f a local diffeomorphism of the set $(0,1) \times (0,2\pi)$?
 - b) Is f a diffeomorphism of the set $(0,1) \times (0,2\pi)$?
- 7. Let z(x,y) be determined by the equation $\sin(xz) = yz$ and z(1,0) = 0. Calculate $\frac{\partial z}{\partial x}(1,0)$ and $\frac{\partial z}{\partial y}(1,0)$.
- 8. Find the equation of the plane tangent to the surface

$$S = \{(x, y, z) \in \mathbb{R}^3 : \sin(xz) = yz\}.$$

at the point (1,0,0).

9. Is the following subset of \mathbb{R}^3 a manifold

$$M = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1, z = x^2 + y^2\}.$$

10. Decide whether the quadratic form given by the matrix $\begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ is: positive definite, positive semi-definite, negative definite, negative semidefinite, or indefinite.