Mathematical analysis 2, WNE, 2018/2019 meeting 23. – homework solutions

21 May 2019

Group 8:00

Among the points which belong to the intersection of the plane x + y + z = 12 and the paraboloid $z = x^2 + y^2$ find those closest and farthest from the origin.

We study $f(x, y, z) = x^2 + y^2 + z^2$ for $F(x, y, z) = (x + y + z - 12, x^2 + y^2 - z) = (0, 0)$. Thus, f' = (2x, 2y, 2z), $F'_1 = (1, 1, 1)$ and $F'_2 = (2x, 2y, -1)$. Hence,

$$\begin{cases} 2x = \lambda_1 + 2\lambda_2 x \\ 2y = \lambda_1 + 2\lambda_2 y \\ 2z = \lambda_1 - \lambda_2 \\ x + y + z = 12 \\ z = x^2 + y^2 \end{cases}$$

If $\lambda_2 = 1$, to $\lambda_1 = 0$, then z = -1/2, which is impossible, because by the last equation, $z \ge 0$. Therefore,

$$x = \frac{\lambda 1}{2 - 2\lambda_2} = y$$

Thus, z = 12 - 2x and $12 - 2x = 2x^2$, so $x^2 + x - 6 = 0$ and x = y = 2 or x = y = -3. Then z = 8 or z = 18 respectively, so the points are (2, 2, 8) i (-3, -3, 18). The values of f are 72 and 342 respectively, so (2, 2, 8) is the nearest and (-3, -3, 18) is the furthest.

Grupa 9:45

Among the points which belong to the intersection of the plane x + y + z = 12 and the paraboloid $x = y^2 + z^2$ find those closest and farthest from the origin.

We study $f(x, y, z) = x^2 + y^2 + z^2$ for $F(x, y, z) = (x + y + z - 12, -x + y^2 + z^2) = (0, 0)$. So f' = (2x, 2y, 2z), $F'_1 = (1, 1, 1)$ and $F'_2 = (-1, 2y, 2z)$. Thus,

$$\begin{cases} 2x = \lambda_1 - \lambda_2 \\ 2y = \lambda_1 + 2\lambda_2 y \\ 2z = \lambda_1 + 2\lambda_2 z \\ x + y + z = 12 \\ x = y^2 + z^2 \end{cases}$$

If $\lambda_2 = 1$, to $\lambda_1 = 0$, then x = -1/2, which is impossible, because by the last equation, $x \ge 0$. Hence,

$$y = \frac{\lambda 1}{2 - 2\lambda_2} = z$$

Therefore, x = 12 - 2y and $12 - 2y = 2y^2$, so $y^2 + y - 6 = 0$ i y = z = 2 or y = z = -3. Then x = 8 or x = 18 respectively, so the points are (8, 2, 2) and (18, -3, -3). The values of f are 72 and 342 respectively, so (8, 2, 2) is the nearest and (18, -3, -3) is the furthest.