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1. Let f : R → R be a function of C1 class such that for some 0 < k < 1 and all x ∈ R, |f ′(x)| ¬ k. Prove
that y = x+ f(x) is a diffeomeorphism.

Obviously, locally at every point there exists an inverse function of C1 class, since y′(x) = 1 + f ′(x) 6= 0.
Moreover, y(x) is one-to-one. Indeed, if y(x1) = y(x2) and x1 < x2, then there exists c ∈ (x1, x2), such
that y′(c) = 0, which is impossible. Thus, there exists an inverse function on the whole line and it has to
coincide with the local functions of C1 class so it is also of C1 class.

2. Let
E = {(x, y) ∈ R2 : x2 − 2xy + 2y2 = 1}.

Use the Lagrange multipliers method to find points of E which are closest to and farthest from the origin
of the coordinate system.

The calculations in these problem are quite nasty! So we consider d(x, y) = x2 + y2, d′(x, y) = [2x, 2y] on
F (x, y) = x2 − 2xy + 2y2 − 1 = 0, so F ′(x, y) = [2x− 2y,−2x+ 4y]. Thus we are looking for points of E
such that {

2x = λ(2x− 2y)
2y = λ(−2x+ 4y)

.

If λ = 0, then x = y = 0, but this in not in E, so λ 6= 0. Therefore, y = (λ− 1)x/λ, so (λ2− 3λ+ 1)x = 0,
but if x = 0, we get y = 0, so x 6= 0 and then λ2 − 3λ + 1, thus λ = 3±

√
5

2 , but then we get that

y = (±
√
5−1)x
2 and putting it into x2 − 2xy + 2y2 − 1 = 0 one can calculate that

x = ± 1

5± 2
√

5
.

For these four points the least value of d(x, y) is achieved at

x = ± 1

5 + 2
√

5

and then

y = ±−15− 7
√

5
10

.

3. Use the Lagrange multipliers method to find all those points on the ellipse x2+2y2 = 1, which are nearest
to and furthest from the line x+ y = 2.

We can measure the distance from this line using d(x, y) = (x+ y− 2)2. Then d′(x, y) = [2x+ 2y− 2, 2x+
2y − 2] and F = x2 + 2y2 − 1 = 0, so F ′(x, y) = [2x, 4y]. So we are looking for points such that{

2x = λ(2x+ 2y − 2)
4y = λ(2x+ 2y − 2)

,

In particular, x = 2y, and then 4y2 + 2y2 = 1, so y = ±1/
√

6, but x = ±2/
√

6, which gives values of d:
(11−

√
6)/2 and (11 +

√
6)/2 respectively, and is smaller in the first case, i.e. for (2/

√
6, 1/
√

6) - it is the
nearest point and −(2/

√
6,−1/

√
6) is the furthest.

1



4. Find supremum and infimum of f(x, y, z) = x2 − yz on the sphere x2 + y2 + z2 = 1.

Then F (x, y, z) = x2 + y2 + z2 − 1 = 0 and g(x, y, z) = x2 − yz. We get F ′(x, y, z) = [2x, 2y, 2z] and
g′(x, y, z) = [2x,−z,−y]. We look for λ ∈ R, such that [2x,−z,−y] = λ[2x, 2y, 2z], i.e.

2x = 2λx
−z = 2λy
−y = 2λz

If x 6= 0 then λ = 1, thus −y = −4y, so y = 0 = z, and x = ±1. So we get two points in which we may
have extrema: (1, 0, 0) and (−1, 0, 0) (and λ = 1). The value at these points is 1. On the other hand, if
x = 0, then z = λ2z and y = 4λ2y. Both cannot be equal to zero, so λ = ±1/2 and y = ±z, but since
x2 + y2 + z2 − 1 = 0, we get 2y2 = 2z2 = 1. Thus, for λ = 1/2 we have points (0,

√
2/2,−

√
2/2) and

(0,−
√

2/2,
√

2/2), and for λ = −1/2 we have (0,
√

2/2,
√

2/2) and (0,
√

2/2,
√

2/2). In these point the
value of g is respectively −1/2,−1/2, 1/2 and 1/2. So the minimal value is −1/2 and maximal is 1.

5. Find the minimal value of f(x, y, z) = x+ y + z on the sphere x2 + y2 + z2 = a2.

f ′(x, y, z) = [1, 1, 1] and F ′ = [2x, 2y, 2z]. We may assume that a > 0, and then (0, 0, 0) is not on the
sphere and x = y = z, so x = y = z = ± a√

3
. Thus, the maximal value is 3 a√

3
.

6. Prove the following inequality between the arithmetic and square mean, i.e.

x+ y + z

3
¬
√
x2 + y2 + z2

3
,

for x, y, z ­ 0.

It suffices to notice (on the basis of the previous problem) that if x2 + y2 + z2 = a2, we have

x+ y + z

3
¬ a√

3
=

√
a2

3
=

√
x2 + y2 + z2

3
.
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