Mathematical analysis 2, WNE, 2018/2019 meeting 22.

16 May 2019

Problems

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a function of C^1 class such that for some 0 < k < 1 and all $x \in \mathbb{R}$, $|f'(x)| \leq k$. Prove that y = x + f(x) is a diffeomeorphism.
- 2. Let

$$E = \{(x, y) \in \mathbb{R}^2 \colon x^2 - 2xy + 2y^2 = 1\}.$$

Use the Lagrange multipliers method to find points of E which are closest to and farthest from the origin of the coordinate system.

- 3. Use the Lagrange multipliers method to find all those points on the ellipse $x^2 + 2y^2 = 1$, which are nearest to and furthest from the line x + y = 2.
- 4. Find supremum and infimum of $f(x, y, z) = x^2 yz$ on the sphere $x^2 + y^2 + z^2 = 1$.
- 5. Find the minimal value of f(x, y, z) = x + y + z on the sphere $x^2 + y^2 + z^2 = a^2$.
- 6. Prove the following inequality between the arithmetic and square mean, i.e.

$$\frac{x+y+z}{3}\leqslant \sqrt{\frac{x^2+y^2+z^2}{3}},$$

for $x, y, z \ge 0$.

Homework

Group 8:00

Find the maximal and minimal values of $f(x,y) = x^2 - y^2$ on the set $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 4\}$.

Group 9:45

Find the maximal and minimal values of $f(x,y) = 4x^2 + 9y^2$ on the set $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$.