Mathematical analysis 2, WNE, 2018/2019 meeting 22. – homework solutions

16 May 2019

Group 8:00

Find the maximal and minimal values of $f(x,y)=x^2-y^2$ on the set $\{(x,y)\in\mathbb{R}^2\colon x^2+y^2=4\}$. $f'=[2x,-2y],\ F(x,y)=x^2+y^2-4=0,\ F'(x,y)=[2x,2y].$ Thus we are looking for points such that $2x=\lambda 2x,\ -2y=\lambda 2y.$ If x=0, then $y=\pm 2$ (and $\lambda=-1$), but if $x\neq 0$, then $\lambda=1$, so y=0 and $x=\pm 2.$ So we get points $(0,2),\ (0,-2),\ (2,0),\ (-2,0)$ and the values are -4,-4,4 and 4 respectively. So -4 is the minimal value and 4 is the maximal.

Group 9:45

Find the maximal and minimal values of $f(x,y)=4x^2+9y^2$ on the set $\{(x,y)\in\mathbb{R}^2\colon x^2+y^2=1\}$. $f'=[4x,9y],\ F(x,y)=x^2+y^2-1=0,\ F'(x,y)=[2x,2y].$ Thus we are looking for points such that $4x=\lambda 2x,\ 9y=\lambda 2y.$ If x=0, then $y=\pm 1$ (and $\lambda=9/2$), but if $x\neq 0$, then $\lambda=2$, so y=0 and $x=\pm 1.$ So we get points $(0,1),\ (0,-1),\ (1,0),\ (-1,0)$ and the values are 9,9,4 and 4 respectively. So 4 is the minimal value and 9 is the maximal.