Mathematical analysis 2, WNE, 2018/2019 meeting 19. – solutions

7 May 2019

- 1. Find the equation of the plane tangent to the surface described by the following equations at the indicated point.
 - a) $\sqrt[3]{x} + \sqrt[3]{y} + \sqrt[3]{z} = 1$, P = (1, -1, 1),

$$f'(x, y, z) = \left(\frac{1}{3x^{2/3}}, \frac{1}{3y^{2/3}}, \frac{1}{3z^{2/3}}\right).$$

Thus, f'(1,-1,1) = (1/3,1/3,1/3). So the equation for T(M) is x/3 + y/3 + z/3 = 0, which is the same as x + y + z = 0, so the plane tangent to the surface is described by x + y + z = 1.

b) $xyz + x^2 - 3y^2 + z^3 = 14$, P = (5, -2, 3).

$$f'(x, y, z) = (2x + yz, xz - 6y, xy + 3z^2)$$
.

Thus, f'(5, -2, 3) = (4, 27, 17). So the equation for T(M) is 4x + 27y + 17z = 0, so the plane tangent to the surface is described by 4x + 27y + 17z = 17.

2. Find all points on the surface described $z = -x^2 - y^2 + 8x - 6y + 10$, at which the tangent plane is horizontal.

$$f(x, y, z) = -x^2 - y^2 + 8x - 6y + 10 - z$$

Horizontal planes are described by equations of form z=a, so we are looking for points at which two first coordinates of the gradient i.e. $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are zeroes.

$$\frac{\partial f}{\partial x} = -2x + 8 = 0$$

$$\frac{\partial f}{\partial y} = -2y - 6 = 0$$

We get it at x = 4, y = -3, and then z = -16 - 9 + 32 + 18 + 10 = 35. So the only such point is (4, -3, 35).

3. Determine all the points on the surface described by the equation

$$z = \frac{3}{4}y^2 + \frac{1}{24}y^3 - \frac{1}{32}y^4 - x^2,$$

where the tangent plane to the surface is horizontal. Which of these points are local extrema of the function z(x,y)?

Similarly as before we are looking for points at which

$$\frac{\partial f}{\partial x} - 2x = 0$$

$$\frac{\partial f}{\partial y} = \frac{3}{2}y + \frac{1}{8}y^2 - \frac{1}{8}y^3 = 0$$

So x = 0 and y = 0 or $12 + y - y^2 = 0$, thus y = -3 or y = 4. Then respectively z = 0, z = 99/32 and z = 20/3, thus these point are (0,0,0), (0,-3,99/32) and (0,4,20/3).

We now check whether the function z(x,y) has extrema in (0,0), (0,-3), (0,4). We know that the gradient is zero at these points. So we have to check second order partial derivatives. Their matrix is equal to

$$\begin{bmatrix} -2 & 0 \\ 0 & \frac{3}{2} + \frac{1}{4}y - \frac{3}{8}y^2 \end{bmatrix},$$

At (0,0)

$$\left[\begin{array}{cc} -2 & 0 \\ 0 & \frac{3}{2} \end{array}\right],$$

is non-definite, there is no local extremum at this point.

At (0, -3)

$$\left[\begin{array}{cc} -2 & 0\\ 0 & \frac{-21}{8} \end{array}\right],$$

is negative definite, it is a local maximum.

and at (0,4)

$$\left[\begin{array}{cc} -2 & 0\\ 0 & \frac{-7}{2} \end{array}\right],$$

is also negative definite, it is a local maximum.

- 4. Find a diffeomorphism between the following pairs of domains:
 - a) the interior of the triangle with vertices (0,0), (0,1) and (1,0) the interior of the triangle with vertices (0,0), (0,1) and (2,0), Clearly, F(x,y) = (2x,y).
 - b) the interior of the triangle with vertices (0,0), (0,1) i (1,0) and the interior of the square with vertices (0,0), (0,1), (1,1) i (1,0),

We stretch it accordingly: F(x, y) = (x/y, y).

c) the interior of the triangle with vertices (0,0), (0,1) i (1,0) and the interior of the unit circle with centre (0,0),

First we transform it onto a square: F(x,y) = (x/y,y), next we make it symmetrical with respect to (0,0), so G(x,y) = (2x-1,2y-1). Finally we squeeze it along radii. Maximal radii in a circle is 1, but in the square in direction (x,y) it is $m = \frac{\sqrt{x^2+y^2}}{\max(|x|,|y|)}$. So

$$H(x,y) = \begin{cases} (x/m, y/m) & , \text{ for } (x,y) \neq (0,0) \\ (0,0) & , \text{ for } (x,y) = (0,0) \end{cases}$$

Thus,

$$D(x,y) = H(G(F(x,y)) = H(G(x/y,y)) =$$

$$= H(2x/y - 1, 2y - 1) = \begin{cases} \frac{(2x/y - 1, 2y - 1) \cdot \max(|2x/y - 1|, |2y - 1|)}{\sqrt{(2x/y - 1)^2 + (2y - 1)^2}} &, \text{ for } (x,y) \neq (1/4, 1/2) \\ (0,0) &, \text{ for } (x,y) = (1/2, 1/4) \end{cases}$$

d) the interior of the triangle with vertices (0,0), (0,1) i (1,0) and the whole plane \mathbb{R}^2 . First we map it into a square: F(x,y)=(x/y,y), and next we apply function $f(x)=\frac{(x-1/2)}{x(1-x)}$, to both coordinates, which for $x\to 0^+$ converges to $-\infty$ and for $x\to 1^-$ converges to ∞ , i.e. $G(x,y)=\left(\frac{(x-1/2)}{x(1-x)},\frac{(y-1/2)}{y(1-y)}\right)$, so we get the diffeomorphism

$$D(x,y) = G(F(x,y)) = G(x/y,y) = \left(\frac{y(x/y - 1/2)}{x(1 - x/y)}, \frac{(y - 1/2)}{y(1 - y)}\right).$$

5. Find a diffeomorphism $f: A \to B$, where

$$A = \{(x, y) \in \mathbb{R}^2 \colon 1 < x^2 + y^2 < 4\},\$$

$$B = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 9\}.$$

We need a function which will map the interval of radii (1,2) onto (1,3). The function f(r) = 2(r-1)+1 = 2r-1 does it. In other words we have to double the distance of every point from zero and next subtract the unit vector in its direction, so

$$F(x,y) = 2(x,y) - \frac{(x,y)}{\sqrt{x^2 + y^2}}.$$