Mathematical analysis 2, WNE, 2018/2019 meeting 19.

7 May 2019

Problems

- 1. Find the equation of the plane tangent to the surface described by the following equations at the indicated point.
 - a) $\sqrt[3]{x} + \sqrt[3]{y} + \sqrt[3]{z} = 1$, P = (1, -1, 1),
 - b) $xyz + x^2 3y^2 + z^3 = 14$, P = (5, -2, 3).
- 2. Find all points on the surface described $z = -x^2 y^2 + 8x 6y + 10$, at which the tangent plane is horizontal.
- 3. Determine all the points on the surface described by the equation

$$z = \frac{3}{4}y^2 + \frac{1}{24}y^3 - \frac{1}{32}y^4 - x^2,$$

where the tangent plane to the surface is horizontal. Which of these points are local extrema of the function z(x, y)?

- 4. Find a diffeomorphism between the following pairs of domains:
 - a) the interior of the triangle with vertices (0,0), (0,1) and (1,0) the interior of the triangle with vertices (0,0), (0,1) and (2,0),
 - b) the interior of the triangle with vertices (0,0), (0,1) i (1,0) and the interior of the square with vertices (0,0), (0,1), (1,1) i (1,0),
 - c) the interior of the triangle with vertices (0,0), (0,1) i (1,0) and the interior of the unit circle with centre (0,0),
 - d) the interior of the triangle with vertices (0,0), (0,1) i (1,0) and the whole plane \mathbb{R}^2 .
- 5. Find a diffeomorphism $f: A \to B$, where

$$A = \{(x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 < 4\},\$$

$$B = \{(x, y) \in \mathbb{R}^2 \colon 1 < x^2 + y^2 < 9\}.$$

We will be having a short test at the beginning of our next meeting!