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Problems

1. Give an example of continuous functions of two variables, which has two local maxima, but no other local
extrema.

2. Show that the function 2(1−e2y+x2)3−3(1−e2y+x2)2−24x2e2y has exactly one critical point at which
the function has a strict local maximum, but the function is neither bounded above or below.

3. Show that there is no function f(x, y) of C2 class such that ∂f∂x (x, y) = 6xy2 and ∂f∂x (x, y) = 8x2y.

4. Determine if the following functions satisfies Laplace’s equation:

∂f2

∂x2
+
∂f2

∂y2
= 0.

a) f(x, y) =
√
x2 + y2,

b) f(x, y) = ln(
√
x2 + y2),

c) f(x, y) = e−x sin y.

5. Find and classify all the critical points of the following functions:

a) f(x, y) = exy − 2xy,

b) f(x, y, z) = x2 + y2 + z2 − xy + x+ 2z.

Homework

Group 8:00

Find and classify all the critical points of the function f(x, y) = (2x2 + y2)e−x
2−y2 .

Group 9:45

Find and classify all the critical points of the function f(x, y) = (x2 + 2y2)e−x
2−y2 .
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