Mathematical analysis 2, WNE, 2018/2019 meeting 18.

30 April 2019

Problems

- 1. Give an example of continuous functions of two variables, which has two local maxima, but no other local extrema.
- 2. Show that the function $2(1-e^{2y}+x^2)^3-3(1-e^{2y}+x^2)^2-24x^2e^{2y}$ has exactly one critical point at which the function has a strict local maximum, but the function is neither bounded above or below.
- 3. Show that there is no function f(x,y) of C^2 class such that $\frac{\partial f}{\partial x}(x,y) = 6xy^2$ and $\frac{\partial f}{\partial x}(x,y) = 8x^2y$.
- 4. Determine if the following functions satisfies Laplace's equation:

$$\frac{\partial f^2}{\partial x^2} + \frac{\partial f^2}{\partial y^2} = 0.$$

- a) $f(x,y) = \sqrt{x^2 + y^2}$,
- b) $f(x,y) = \ln(\sqrt{x^2 + y^2}),$
- c) $f(x,y) = e^{-x} \sin y$.
- 5. Find and classify all the critical points of the following functions:
 - a) $f(x,y) = e^{xy} 2xy,$
 - b) $f(x, y, z) = x^2 + y^2 + z^2 xy + x + 2z$.

Homework

Group 8:00

Find and classify all the critical points of the function $f(x,y) = (2x^2 + y^2)e^{-x^2 - y^2}$.

Group 9:45

Find and classify all the critical points of the function $f(x,y) = (x^2 + 2y^2)e^{-x^2 - y^2}$.