Mathematical analysis 2, WNE, 2018/2019 meeting 16. – solutions

16 April 2019

1. Let

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} &, \text{ for } (x,y) \neq (0,0), \\ 0 &, \text{ for } (x,y) = (0,0). \end{cases}$$

Show that

a) the point (0,0) is a critical point of the function,

$$\lim_{h \to 0} \frac{\frac{0}{h^2} - 0}{h} = 0,$$

so $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$, thus indeed it is a critical point.

b) all second order partial derivatives $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ exist at (0,0), but

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

We have to calculate first order derivatives in all the other points

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} & , \text{ for } (x,y) \neq (0,0), \\ 0 & , \text{ for } (x,y) = 0. \end{cases}$$

$$\frac{\partial f}{\partial y}(x,y) = \begin{cases} \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2} &, \text{ for } (x,y) \neq (0,0), \\ 0 &, \text{ for } (x,y) = 0. \end{cases}$$

So the second order derivatives at (0,0) are

$$\frac{\partial^2 f}{\partial x^2}(0,0) = \lim_{h \to 0} \frac{\frac{0}{h^4} - 0}{h} = 0,$$

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \lim_{h \to 0} \frac{\frac{-h^5}{h^4} - 0}{h} = -1,$$

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{h \to 0} \frac{\frac{h^5}{h^4} - 0}{h} = 1,$$

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{h \to 0} \frac{\frac{0}{h^4} - 0}{h} = 0.$$

- c) the point (0,0) is not a local extremum of f. Definitely, the function is constant for x = 0.
- 2. Let $f(x,y) = (y x^2)(y 3x^2)$. Show that

a) f'(0,0) = (0,0),

$$\frac{\partial f}{\partial x} = -2x(y - 3x^2) - 6x(y - x^2),$$
$$\frac{\partial f}{\partial y} = (y - 3x^2) + (y - x^2),$$

which for x = y = 0 is (0,0).

- b) for every $(a, b) \in \mathbb{R}^2 \setminus \{(0, 0)\}$, the function h(t) = f(ta, tb) has a local minimum for t = 0, $h(t) = f(ta, tb) = (tb t^2a^2)(tb 3t^2a^2)$, thus $h'(t) = 12a^4t^3 12a^2bt^2 + 2b^2t$, which for t = 0 is 0, so it is a critical point $h''(t) = 36a^4t^2 24a^2bt + 2b^2$ for t = 0 is $2b^2$. For $b \neq 0$ it is > 0, and thus we have a minimum. For b = 0: $h''(t) = 36a^4t^2$, so $h'''(t) = 72a^4t$ equals zero for t = 0, a $h^{(4)}(t) = 72a^2 > 0$ (since b = 0, $a \neq 0$), so we also have a minimum.
- c) f does not have a local minimum at (0,0). For $y = x^2$ the function is constant and equal to zero.
- 3. Let $A = \{(x, y, z) \in \mathbb{R}^2 : 2x 3y + z = 1\}$. Find a point $p \in A$ closest to (3, -2, 1). z = (1 2x + 3y), so the square of the distance between (x, y, z) and p is

$$d(x,y) = (x-3)^2 + (y+2)^2 + (-2x+3y)^2$$

and

$$\frac{\partial d}{\partial x} = 2(5x + 6y - 3),$$
$$\frac{\partial d}{\partial x} = 4(-3x + 5y + 1),$$

Both are equal zero for (x, y) = (-9/7, -11/7), so the minimum is (-9/7, -11/7, -8/7).

4. Find the maximum possible volume of a cylinder whose height plus circumference of the base does not exceed 108cm.

2r + h = 108, so h = 108 - 2r, thus $V(r) = 2\pi r (108 - 2r) = -4\pi r^2 + 216\pi r$, and $V'(r) = -8\pi r + 216\pi$, therefore for r = 27 V' = 0. It is when the volume is greatest (negative second order derivative) and is equal to 2916π cm³.

- 5. Find and classify the local extrema of the following functions:
 - a) $f(x,y) = x^3 + y^3 + 3xy + 3$,

Partial derivatives are $3x^2 + 3y$ and $3y^2 + 3x$, are equal to zero if $y = -x^2$, so $3x^4 + 3x = 0$, i.e. for x = y = 0 or x = -1, y = -1. The matrix of second order derivative is

$$\left[\begin{array}{cc} 6x & 3 \\ 3 & 6y \end{array}\right],$$

at (0,0) it is

$$\left[\begin{array}{cc} 0 & 3 \\ 3 & 0 \end{array}\right],$$

and is non-definite so there is no extremum in this critical point. For (-1, -1) we get

$$\left[\begin{array}{cc} -6 & 3 \\ 3 & -6 \end{array}\right],$$

And the form is negative definite, so we have a local maximum here.

b) $f(x,y) = e^{-x^4 - y^4}$.

Partial derivatives are $-3x^3e^{-x^4-y^4}$ and $-3y^3e^{-x^4-y^4}$, are equal to zero if y=x=0. The matrix of second order derivative is

$$\begin{bmatrix} -9x^{2}e^{-x^{4}-y^{4}} + 9x^{6}e^{-x^{4}-y^{4}} & 9x^{3}y^{3}e^{-x^{4}-y^{4}} \\ 9x^{3}y^{3}e^{-x^{4}-y^{4}} & -9y^{2}e^{-x^{4}-y^{4}} + 9y^{6}e^{-x^{4}-y^{4}} \end{bmatrix},$$

at
$$(0,0)$$
 it is

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right],$$

it does not tell us whether there is a local extremum there, but we see that the power of e becomes more negative if we go away from (0,0), so it is a maximum – the only point at which the function reaches value 1.