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Show that
a) the point (0,0) is a critical point of the function,
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(0,0) = 0, thus indeed it is a critical point.

O°f exist at (0,0), but
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We have to calculate first order derivatives in all the other points
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So the second order derivatives at (0,0) are
0 f . -0
9720 0) = Jim F=— =0,
0% f |
zoy 00 = fim = — =1
82f . ;%i _
dydr (0,0) = lim ==— =1,
o2 f % -0
a2 (00) = lim 25— =0

c¢) the point (0,0) is not a local extremum of f.
Definitely, the function is constant for x = 0.

2. Let f(z,y) = (y — 2?)(y — 32?). Show that



a) f/(070) = (O’O)a

which for 2 =y = 0 is (0,0).

b) for every (a,b) € R?\ {(0,0)}, the function h(t) = f(ta,tb) has a local minimum for ¢ = 0,
h(t) = f(ta,tb) = (tb — t2a®)(tb — 3t2a?), thus A/ (t) = 12a*3 — 12a%bt? + 2b%t, which for ¢t = 0 is 0, so
it is a critical point A" (t) = 36a*t? — 24abt + 2b* for t = 0 is 2b2. For b # 0 it is > 0, and thus we have
a minimum. For b = 0: A" (t) = 36a*t?, so " (t) = 72a*t equals zero for t = 0, a A (t) = 724> > 0
(since b =0, a # 0), so we also have a minimum.

c¢) f does not have a local minimum at (0, 0).
For y = 22 the function is constant and equal to zero.

3. Let A= {(z,y,2) € R?: 2z — 3y + z = 1}. Find a point p € A closest to (3,2, 1).
z = (1 — 2z + 3y), so the square of the distance between (x,y, z) and p is

d(z,y) = (x —3)? + (y +2)* + (=22 + 3y)?

and 5d
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Both are equal zero for (z,y) = (—9/7,—11/7), so the minimum is (-9/7,—11/7,—8/7).

4. Find the maximum possible volume of a cylinder whose height plus circumference of the base does not
exceed 108cm.

2r + h = 108, so h = 108 — 2r, thus V(r) = 277(108 — 2r) = —4nr? + 21677, and V'(r) = —8mr + 216,
therefore for r = 27 V/ = 0. It is when the volume is greatest (negative second order derivative) and is
equal to 29167 cm?.

5. Find and classify the local extrema of the following functions:

a) f(z,y) =2+ y°+ 32y + 3,

Partial derivatives are 322 4+ 3y and 3y? + 3z, are equal to zero if y = —22, so 3z* + 3z = 0, i.e. for
x=y=0o0rx= -1,y =—1. The matrix of second order derivative is
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at (0,0) it is
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and is non-definite so there is no extremum in this critical point. For (=1, —1) we get
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And the form is negative definite, so we have a local maximum here.
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b) flz,y)=e" Y.
Partial derivatives are —3z3e~= ~¥" and —3y3e’z4’y4, are equal to zero if y = z = 0. The matrix of
second order derivative is
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at (0,0) it is
0 0
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it does not tell us whether there is a local extremum there, but we see that the power of e becomes
more negative if we go away from (0,0), so it is a maximum — the only point at which the function
reaches value 1.



