Mathematical analysis 2, WNE, 2018/2019 meeting 16.

16 April 2019

Problems

1. Let

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} &, \text{ for } (x,y) \neq (0,0), \\ 0 &, \text{ for } (x,y) = (0,0). \end{cases}$$

Show that

- a) the point (0,0) is a critical point of the function,
- b) all second order partial derivatives $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ exist at (0,0), but

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

- c) the point (0,0) is not a local extremum of f.
- 2. Let $f(x,y) = (y x^2)(y 3x^2)$. Show that
 - a) f'(0,0) = (0,0),
 - b) for every $(a,b) \in \mathbb{R}^2 \setminus \{(0,0)\}$, the function h(t) = f(ta,tb) has a local minimum for t=0,
 - c) f does not have a local minimum at (0,0).
- 3. Let $A = \{(x, y, z) \in \mathbb{R}^2 : 2x 3y + z = 1\}$. Find a point $p \in A$ closest to (3, -2, 1).
- 4. Find the maximum possible volume of a cylinder whose height plus circumference of the base does not exceed 108cm.
- 5. Find and classify the local extrema of the following functions:
 - a) $f(x,y) = x^3 + y^3 + 3xy + 3$,
 - b) $f(x,y) = e^{-x^4 y^4}$.

Homework

Group 8:00

Find the maximum volume of the parallelepiped for which the sum of all three sides (length, width, height) does not exceeds 108 cm.

Group 9:45

Find the maximum volume of the parallelepiped for which the sum of all three sides (length, width, height) does not exceeds 54 cm.