Mathematical analysis 2, WNE, 2018/2019 meeting 15. – solutions

11 April 2019

- 1. Find the maximal value of function:
 - a) $z(x,y)=1+\frac{4}{3}x^3+4y^3-x^4-y^4$, Partial derivatives: $4x^2-4x^3$ and $12y^2-4y^3$. Are zero for x=0 or x=1 oraz y=0 or y=3. We check the values in those four critical points: z(0,0)=1, z=(0,3)=28, z(1,0)=4/3 i $z(1,3)=28\frac{1}{3}$. Since the function converges to $-\infty$, if $\|(x,y)\|\to\infty$ and is continuous, the maximal value equals $28\frac{1}{3}$.
 - b) $z(x,y) = (1+x^2) \exp(-x^2-y^2)$. Partial derivatives are: $2xe^{-x^2-y^2} - 2x(1+x^2)e^{-x^2-y^2} = -2x^3e^{-x^2-y^2}$ and $-2y(1+x^2)e^{-x^2-y^2}$, and are zero for x=y=0. Then, z(0,0)=1. Notice also that the function converges to 0, for $||(x,y)|| \to \infty$ and is continuous, so the maximal value is 1.
- 2. Find dimensions x, y, z of a rectangular box with volume V = 1000 and minimal possible surface are. Does it make sense to ask about the maximal possible surface area? z = 1000/xy, the surface area is S(x, y) = 2xy + 2yz + 2xz = 2xy + 2000/x + 2000/y and partial

z = 1000/xy, the surface area is S(x,y) = 2xy + 2yz + 2xz = 2xy + 2000/x + 2000/y and partial derivatives are $2y - 2000/x^2$ and $2x - 2000/y^2$, which are zero, for $y = 1000/x^2$ and $x = 1000/y^2$, so $x = 1000 \cdot x^4/1000000$, thus for $x = x^4/1000$, i.e. for x = 10 (x = 0 is not in the domain) and y = 10. Therefore, the minimal surface area we obtain for x = y = z = 10. There is no maximal surface area, the function grows to infinity.

3. Find dimensions x, y, z of a rectangular box of maximal possible volume and surface area of $600cm^2$. 2xy + 2yz + 2xz = 600, so z(x + y) = 300 - 2xy, thus $z = \frac{300 - xy}{x + y}$. Therefore,

$$V(x,y) = \frac{300xy - x^2y^2}{x + y}.$$

Partial derivatives are

$$\frac{-2y^2(x^2+2xy-300)}{(x+y)^2}$$

and

$$\frac{-2x^2(y^2 + 2xy - 300)}{(x+y)^2},$$

thus $x^2 + 2xy = 300$ and $y^2 + 2xy = 300$, thus $x^2 - y^2 = 0$, but since x, y > 0 we get x = y, so $3x^2 = 300$, i.e. x = y = z = 10 which implies that the maximal volume is 1000, since if $||(x, y)|| \to 0$ or $\to \infty$, then $V \to 0$.

- 4. A rectangular box without a lid has volume of 4 litres. What dimensions x, y, z to minimize the surface area of the sides?
 - z = 4000/xy, so the surface area is S(x,y) = xy + 2xz + 2yz = xy + 8000/x + 8000/y. Partial derivatives: $y 8000/x^2$ and $x 8000/y^2$ are zero for $y = 8000/x^2$, so $x = x^4/8000$, thus $x^3 = 8000$, and x = 20. So y = 20 and z = 10.
- 5. Rectangular box is to have volume of 48 litres. The cost of material is 1PLN per m^2 of a side wall, 2PLN per m^2 of a lid and 3PLN per m^2 of the base. Determine the minimal cost of such a box.

Thus xyz = 48 w dm. z = 48/xy, so the cost (in 0,01PLN) is

$$K(x,y) = 2xz + 2yz + 2xy + 3xy = 96/y + 96/x + 5xy.$$

Partial derivatives $-96/x^2 + 5y$ and $-96/y^2 + 5x$, are equal zero for $y = 96/5x^2$, $5x = 96 \cdot 25x^4/96^2$, thus (x = 0 is not in the domain) for $x^3 = 96/5$, i.e. $x = \sqrt[3]{96/5}$ and $y = \sqrt[3]{96^3/5^3 \cdot 5^2/96^2} = \sqrt[3]{96/5}$ and then

$$K(\sqrt[3]{96/5}, \sqrt[3]{96/5}) = 3\sqrt[3]{96^2 \cdot 5} = \sqrt[3]{46080}/100PLN.$$