## Mathematical analysis 2, WNE, 2018/2019 meeting 14. – solutions

## 9 April 2019

1. Calculate the partial derivatives of first and second order of

$$f(x,y) = x^2 - 3xy^2 + 2y^3 + 2y.$$

$$\frac{\partial f}{\partial x}(x,y) = 2x - 3y^2,$$

$$\frac{\partial f}{\partial y}(x,y) = -6xy + 6y^2 + 2,$$

$$\frac{\partial^2 f}{\partial x^2}(x,y) = 2,$$

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = -6y,$$

$$\frac{\partial^2 f}{\partial y^2}(x,y) = -6x + 12y.$$

- 2. Check whether point (0,0) is a local extremum of:
  - a)  $z(x,y) = x^2 + y^2$ ,

Obviously, yes, it is a local minimum and the only point in which the value is 0.

b)  $z(x,y) = x^2 - y^2$ .

Obviously, not. The function decreases along x = 0, and increases along y = 0.

3. Determine the extrema of the function

$$f(x, y, z) = x^2 - 2x - y^3 + 3y + 5z^2.$$

Partial derivatives:  $\frac{\partial f}{\partial x} = 2x - 2$ ,  $\frac{\partial f}{\partial y} = -3y^2 + 3$ ,  $\frac{\partial f}{\partial z} = 10z$ . They are zero for  $x = 1, y = \pm 1, z = 0$ , and these are candidates for extrema: (1, 1, 0) i (1, -1, 0). We calculate second order derivatives to verify them.  $\frac{\partial f}{\partial x^2} = 2$ ,  $\frac{\partial f}{\partial x \partial y} = 0$ ,  $\frac{\partial f}{\partial x \partial z} = 0$ ,  $\frac{\partial f}{\partial y^2} = -6y$ ,  $\frac{\partial f}{\partial y \partial z} = 0$ ,  $\frac{\partial f}{\partial z^2} = 10$ .

Thus  $d^2f = 2h_1^2 - 6yh_2^2 + 10h_3^2$ , which at (1, 1, 0) gives  $2h_1^2 - 6h_2^2 + 10h_3^2$ , which is positive for  $h_1 = 1, h_2 = h_3 = 0$  and negative for  $h_1 = h_3 = 0$  and  $h_2 = 1$ , so it is not an extremum.

However, at (1, -1, 0), it gives  $2h_1^2 + 6h_2^2 + 10h_3^2$ , which is always positive so here we get a minimum f(1, -1, 0) = -3.

4. Does f(x, y, z) = xy + yz + zx have local extrema?

Partial derivatives are y + z, x + z, y + x. If all are equal to zero, we get x = -y, y = z, so x = y = z = 0. And it is not an extremum since the function is constant for x = y = 0.

- 5. Find  $\sup_{(x,y)\in D} f(x,y)$  and  $\inf_{(x,y)\in D} f(x,y)$  for
  - a)  $f(x,y) = \sqrt{x^2 + y^2}$ ,  $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ , Obviously,  $\inf_{(x,y)\in D} f(x,y) = 0$  which is a value for (x,y) = (0,0), and  $\sup_{(x,y)\in D} f(x,y) = 1$  which is the value at the boundary of D.

b)  $f(x,y) = xy^2$ ,  $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 3\}$ ,

We check whether there is an extremum. Partial derivatives are  $y^2$  and 2xy, and are both 0 for y = 0. The function takes then value 0.

Meanwhile for  $y^2=3-x^2$ ,  $y=\pm\sqrt{3-x^2}$  and  $x\in[-\sqrt{3},\sqrt{3}]$  we get  $f(x)=x(3-x^2)=-x^3+3x$ , and has derivative equal to  $-3x^2+3$ , and is 0 for x=1. Then f(x)=-1+3=2. For points  $x=\pm\sqrt{3}$ , the value is 0. Thus  $\sup_{(x,y)\in D}f(x,y)=2$  and  $\inf_{(x,y)\in D}f(x,y)=0$ 

c)  $f(x,y) = x^2 + y^2 - x - y$ , D is a triangle with vertices (0,0), (0,2) and (2,0),

We check the partial derivatives: 2x - 1, 2y - 1. They are zero for x = y = 1/2. It is a point in D and the value there is

$$1/4 + 1/4 - 1/2 - 1/2 = -1/2$$
.

But we also need to check on the edges of the triangle. One edge is given by x=0 and then  $f(y)=y^2-y$  has derivative 2y-1, which is 0 for y=1/2 and value -1/4. Similarly for the edge y=0 we get  $f(x)=x^2-x$  with derivative 2x-1 which is 0 for x=1/2 and then it takes value -1/4. The third edge is y=x and then we get  $f(x)=2x^2-2x$ , the derivative is 4x-2, so x=1/2 and it is the point considered before.

Now the vertices f(0,0) = 0, f(0,2) = 2, f(2,0) = 2.

Thus,  $\sup_{(x,y)\in D} f(x,y) = 2$  and  $\inf_{(x,y)\in D} f(x,y) = -1/2$ .

d)  $f(x,y) = x^2 + y^2 - x$ , D is a square with vertices  $(\pm 1, \pm 1)$ .

The partial derivatives are 2x - 1 and 2y, which equals zero for (1/2, 0). At this point the value is 1/4 - 1/2 = -1/2. Edges:

- x = -1, to  $f(y) = y^2 + 2$ , extremum for y = 0 equal to 2,
- x = 1, to  $f(y) = y^2$ , extremum for y = 0 equal to 0,
- y = -1, to  $f(y) = x^2 x + 1$ , extremum for x = 1/2 equal to 3/4,
- x = 1, to  $f(y) = x^2 x + 1$ , extremum for x = 1/2 equal to 3/4,

and the values at vertices (1,1), (1,-1), (-1,1) and (1,1) are respectively 1,1,3,3.

Thus  $\sup_{(x,y)\in D} f(x,y) = 3$  and  $\inf_{(x,y)\in D} f(x,y) = -1/2$ .