Analiza matematyczna 2, WNE, 2018/2019 ćwiczenia 6. – rozwiązania

7 marzec 2019

1. Prove that every norm generated by an inner product satisfies (the parallelogram law)

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2),$$

for every points $u, v \in \mathbb{R}^n$.

$$||u + v||^2 + ||u - v||^2 = \langle u + v, u + v \rangle + \langle u - v, u - v \rangle = 2\langle u, u \rangle + 2\langle u, v \rangle - 2\langle u, v \rangle + 2\langle v, v \rangle = 2\langle u, u \rangle + 2\langle v, v \rangle = 2(||u||^2 + ||v||^2).$$

2. Prove that every inner product $\langle \cdot, \cdot \rangle$ and the norm $\| \cdot \|$ the norm generated by it satisfy the following condition:

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2),$$

for every points $u, v \in \mathbb{R}^n$.

$$||u+v||^2 - ||u-v||^2 = \langle u+v, u+v \rangle - \langle u-v, u-v \rangle = 2\langle u, v \rangle + 2\langle u, v \rangle = 4\langle u, v \rangle.$$

3. Prove the Jordan-von Neumann Theorem, which states that every norm satisfying the parallelogram law is generated by an inner product (hint: the previous problem).

Let

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2),$$

obviously the function is symmetrical with regard to u and v.

We also get

$$\langle u, u \rangle = \frac{1}{4} (\|u + u\|^2 - \|u - u\|^2) = 4\|u\|^2 / 4 = \|u\|^2 \geqslant 0,$$

and is zero only if u = 0.

We have

$$||x + z + y||^2 + ||x + z - y||^2 = 2(||x + z||^2 + ||y||^2)$$

and

$$||x - z + y||^2 + ||x - z - y||^2 = 2(||x - z||^2 + ||y||^2)$$

subtracting these we get

$$-\|x-z+y\|^2 - \|x-z-y\|^2 + \|x+z+y\|^2 + \|x+z-y\|^2 = 2(-\|x-z\|^2 + \|x+z\|^2)$$

so (by definition of $\langle \cdot, \cdot \rangle$),

$$\langle x + y, z \rangle + \langle x - y, z \rangle = 2 \langle x, z \rangle.$$

Substituting x = (u + v)/2, y = (u - v)/2 and w = z we immediately get

$$\langle u, w \rangle + \langle v, w \rangle = \langle u + v, w \rangle.$$

Applying it multiple times we get $a \in \mathbb{Z}$,

$$\langle au, v \rangle = a \langle u, v \rangle,$$

and applying it inversely we get

$$\langle au, v \rangle = a \langle u, v \rangle,$$

for $a \in \mathbb{Q}$. For any u, v, let $f(a) = a\langle u, v \rangle$ and $g(a) = \langle au, v \rangle$. Both those functions are continuous and they are equal on rationals so they have to be equal for any $a \in \mathbb{R}$.

Then
$$||u|| = \sqrt{4||u||^2/4} = \sqrt{\frac{1}{4}(||u+u||^2 - ||u-u||^2)} = \sqrt{\langle u, u \rangle}.$$

4. Prove that the unit ball for every norm is convex.

Let $x, y \in B$, where B where B is the unit ball. Then for any $t \in [0, 1]$ we have

$$||x + t(y - x)|| = ||(1 - t)x + ty|| \le ||(1 - t)x|| + ||ty|| = (1 - t)||x|| + t||y|| \le (1 - t) + t = 1.$$

- 5. Let $W \subseteq \mathbb{R}^n$ be a convex set such that:
 - a) for every $v \in \mathbb{R}^n$, there exists $t \in \mathbb{R}$, such that $v \in tW = \{tw \colon w \in W\}$,
 - b) for every $w \in W$ and $r \in [-1, 1], rw \in W$,
 - c) there exists R > 0, such that for every $(w_1, \ldots, w_n) \in W$, $w_1^2 + \ldots + w_n^2 \leqslant R$.

Prove that

$$||v|| = \inf\{t > 0 \colon tv \in W\}$$

is a norm in \mathbb{R}^n .

Indeed, if ||v|| = 0, to $v \in \{0\}$ (by the third condition), so v = 0.

We also have $tav \in W$ is and only if $t|a|v \in W$, so ||av|| = |a|||v||.

If $u \in tW$ and $v \in tW$, then $u + v = 2u/2 + 2v/2 \in 2tW$ because W is convex. Thus, $||u + v|| \le ||u|| + ||v||$.