Mathematical analysis 2, WNE, 2018/2019 meeting 6.

7 March 2019

Problems

1. Prove that every norm generated by an inner product satisfies (the parallelogram law)

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2),$$

for every points $u, v \in \mathbb{R}^n$.

2. Prove that every inner product $\langle \cdot, \cdot \rangle$ and the norm $\| \cdot \|$ the norm generated by it satisfy the following condition:

$$\langle u, v \rangle = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2),$$

for every points $u, v \in \mathbb{R}^n$.

- 3. Prove the Jordan-von Neumann Theorem, which states that every norm satisfying the parallelogram law is generated by an inner product (hint: the previous problem).
- 4. Prove that the unit ball for every norm is convex.
- 5. Let $W \subseteq \mathbb{R}^n$ be a convex set such that:
 - a) for every $v \in \mathbb{R}^n$, there exists $t \in \mathbb{R}$, such that $v \in tW = \{tw : w \in W\}$,
 - b) for every $w \in W$ and $r \in [-1, 1], rw \in W$,
 - c) there exists R > 0, such that for every $(w_1, \ldots, w_n) \in W$, $w_1^2 + \ldots + w_n^2 \leqslant R$.

Prove that

$$||v|| = \inf\{t > 0 \colon tv \in W\}$$

is a norm in \mathbb{R}^n .

Homework

Group 8:00

Consider a function ||(x,y)|| = |xy|. Which of the conditions from the definition of the norm are satisfied by this function? Which are not? Why?

Group 9:45

Consider a function ||(x,y)|| = |x+y|. Which of the conditions from the definition of the norm are satisfied by this function? Which are not? Why?