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In the recent years the theory of the generalized Cantor and Baire spaces was extensively
developed (see, e.g. [1], [2], [6], [4] and many others). An important part of the research in this
subject is an attempt to transfer the results in set theory of the real line to 2% and x* (the list
of open questions can be found in [5]).

Throughout this paper, unless it is stated otherwise, we assume that s is an uncountable
regular cardinal number and k > w.

We consider the space 2%, called k-Cantor space (or the generalized Cantor space),
endowed with so called bounded topology with a base {[x]:z € 2<¢}, where for x € 2<%

[z] ={f €2": ftdomx = x}.

If we additionally assume that x<* = k, the above base has cardinality . This assumption
proves to be very convenient when considering the generalized Cantor space and the generalized
Baire space, and is assumed throughout this note, unless stated otherwise (see e.g. [1]).

The above base consists of clopen sets. Notice also that an intersection of less than s of
basic sets is a basic set or an empty set. Therefore, an intersection of less than x open sets is
still open.

A T topological space is said to be k-additive if for any « < k, an intersection of an a-
sequence of open subsets of this space is open. Various properties of k-additive spaces were
considered by R. Sikorski in [7]. Therefore, the generalized Cantor space is a zero-dimensional
k-additive space which is completely normal. The character, density and weight of 2 equal &
(the assumption £<* = k is needed in the case of density and weight).

It is easy to see that A € 2% is closed if and only if A = [T'] for some tree T' ¢ 2<%. Indeed,
if A=|[T] and T is a tree, then if z ¢ A, there exists a < k such that xla ¢ T. Therefore
[zta] €28 N A, so A is closed. On the other hand, if A is closed, let T' = {xta:x € A, < K}.
Then, if a € 2%, and ata € T for all a < k, we have that a € A, since A is closed. For a closed
Ac2r atree T € 2<% such that A =[T] is denoted by T4.

A set A c 2% is called k-closed, if for every limit 8 < k, and ¢ € 28 such that for all o < f3,
tta € Ty, we have t € T'y.

For s,t € 2<%, let

d(s,t) = J{a <min(len(s),len(t)): Vsas(8) =t(53)} .

Classical Knaster-Reichbach Theorem (proved in [3], the authors acknowledged there
that the theorem is actually due to Cz. Ryll-Nardzewski) states, that if P,Q < 2% are closed
nowhere dense subsets of the classical Cantor space, and h: P — () is a homeomorphism, then
there exists a homeomorphism H:2% — 2% such that H [P = h.

In this note we present an analogue of Knaster-Richbach Theorem for the generalized Cantor
space 2¢. This answers an oral question of W. Kubis.

1



Theorem 1 Assume that

(1) PQec2r,

(2) (ta)a<s: (Sa)asn € (2,

(3) (Padacx € P*, {da)ac € Q"

(4) f,9¢€r",

(5) h:P—Q

are such that:

(a) h is a homeomorphism,

(b) P and Q are closed,

(¢c) 25N P = Uagslta] and 28N Q = Uacn[sal,

(d) for each a< B <R, [ta] N [ts] =@ and [sa] N [ss] =2,
(e) f,g are one-to-one,

(f) for every B < k there exists y < k such that for all v < a < K, d(Pa,ta) > B and d(qa, Sa) > 5,

(g9) for alla<k andpe P
d(p.ta) < d(pa,ta),

(h) for all « < Kk and q € @

(i) for all « <k
d(ponta) < d(h(pa), Sf(a))a

() for all a <k
d(Qom Sa) < d(h_l (Qa)atg(a))-

Then there exists a homemorphism H:2% — 2% such that
H!'P=h.
Proof: First notice that there are A, Ay, B1, By € k such that
(i) AjuAy=ByUBy=kg,
(ii)) AinAy=B1nBy =g,

(iii) flA1] = By and g[B;] = f[A2].



For each a € Ay, let fo:[ta] = [Sf(a)] be @ homeomorphism. Similarly, for each o € By, let
9o [Sa] = [tg(a)] be a homeomorphism.
Now set
h(x)  forzeP,

H(x)=1fa(x) forzety]raceA,
gzt (x)  for x € [tya)] A€ By.

It remains to prove that H is a homeomorphism. Actually, notice that it suffices to prove
that for every p € P, H is continuous at p. Let ¢ = h(p) = H(p) € @, and let s € 2<% be such
that s € ¢. Since h is continuous, there exists ¢ € 2<# with ¢ € p such that for all x € P n[t], we
have h(z) € [s].

Notice that

|{ﬁ € AQ:d(Sﬁ, Qﬁ) < len(t) AT C tg(ﬁ)}| < K.

Thus, let < £ be such that 7 > len(t) and for all 5 € Ay such that t,) € [pln], we have
d(sp,qs) > len(t).

Let 0 = max{len(s),n} < k. We prove that H[[p1d]] ¢ [s]. Indeed, if = € [pld] \ P, then
there exists « < k such that z € [t,]. We have that either o € A; or a € A,.

In the first case, we get that p, € [p1d], since § < d(p,t,), but also for all a < x and p € P,

d(p,ta) < d(pa;la)-

Thus, H([ta]) = [s7(a)] € [5], because for all o < &

d(pa: toz) < d(h(pa)a 5f(oc))>

and h(p,) € [s] (and len(s) <0).
On the other hand, if o € Ay, then let 5 € By be such that « = g(5). Assume towards
contradiction, that sz ¢ s. Then h='(gs) ¢ ¢, but then we get

d(gp, sp) < d(h™(gp), ta) <len(t).

This is a contradiction with the choice of 7, thus s ¢ s.
Thus H is continuous at p. O

Lemma 1 Assume that

(1) P.Q <2,

(2) (ta)acn, (Sa)acs € (2°)%,
(3) (Pa)acx € P*, {da)acn € Q"
(4) h:P - Q

are such that:

(a) h is a homeomorphism,

(b) P and Q are closed,

(C) 28N P = Ua<m[ta] and 25 \ Q = Ua<n[5a];



(d) for each a< <k, [ta]N[ts] =@ and [so] N [ss] = @,
(e) for every B < Kk there exists v < k such that for all v < a < K, d(pa,ta) > 5 and d(qa, Sa) > B,

(f) for alla <k and pe P
d(p, ta) < d(pa,ta),

(9) for alla <k and qe @

(h) for all a < K
{B < k:d(ta,pa) < d(357 h(pa))} = K,

(i) for all a <k
{8 < kid(sa,q0) < d(ts,h7(4))}| = 5.

Then there exist f, g € k® such that the premise of Theorem 1 is satisfied.

Proof: By symmetry, it is enough to prove the existence of f. We construct f by induction.
For a < k, let

f(a) =M ({B < r:d(ta, pa) < d(sp, h(pa))} ~ {f(B): B < a}).

O

Theorem 2 Assume that k is strongly inaccessible. Let P,Q) € 2% be k-closed nowhere dense
sets, and let h: P - @) be a homeomorphism. Then there exists a homemorphism H:2% — 2F
such that

H'P=h.

Proof: We start by constructing inductively sequences of sets (Qa)a<r; (Pa)a<s S (P(2<%))"
such that

(a) for a <k, P,,Q, C2°,

(b) Uacw U{[t]:t € Po} =29\ P,

(€) Uacw U{[t]:t € Qa} = 2"\ Q,

(d) for all @<k, and ¢ € 2« such that [t]n P =g and for all S <o and all ue Ps, u¢t, te Py,
)

(e) for all a < k, and s € 2 such that [s]n@Q = @ and for all 5 < o and for all u € Qg, u ¢ s,
S€Q,.

To achieve the above for a < k, put
Po={te2%[t]nP =3 AVYsVuep,u g t},

and
Qa = {Zf € 2% [t] N Q =N VﬁmquQﬁu ¢_ t} .

Notice, that since P, are x-closed, for any limit ordinal a < k, P, = Q. =&



Let
U Pa = {ta:a < K},

a<K

and

U Qo = {sa: < k}.

a<K

be enumerations such that for all o < 8 <« and 7,0 <&, if t, € P, and t5 € P3, then v <4, and
also for all a < f <k and 7,0 <k, if s, € Q, and s5 € (g, then v <d. This is possible since x is
strongly inaccessible.

Since P and @ are k-closed, there exist (pa)a<x € P*, (Ga)a<x € Q" such that

(a) for all « <k and pe P
d(p7ta) S d(pa7ta)7

(b) for all @ <k and q € Q
(g, 50) < d(ga; 5a)-

Notice also, that for all a,y < &, if t, € Pyi1, d(ty,p,) = o, and for all a,y < K, if s, € Qus1,
d(sy,qy) = . Thus, for every < k there exists v < x such that for all v < a < &, d(pa,ta) > B

and d(qq, Sq) > 0.
Notice also, that since P is nowhere dense, we have that for every a < k

|{6 < ’i:d(taapa) < d(sﬂ, h(pa))}| =K.

Indeed, if d(ta,pa) =7 < K, then for every v < d < k, we have that there is no < k such that
s € h(pa) !9, but there exists s € 2<% such that h(p,)1d € s, and [s] n @ = @. Similarly, for
every o < K,

{8 < K:d(sa,4a) < d(ts, h7 (ga))}] = 5.

Thus, the conditions of Lemma 1 are satisfied. O
Problem 1 Does Theorem 2 hold for uncountable reqular k which is not strongly inaccessible?

Problem 2 Does Theorem 2 hold for P,Q < 2% which are nowhere dense and closed but not
k-closed?
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