Knaster-Reichbach Theorem for 2^{κ}

Michał Korch

February 9, 2018

In the recent years the theory of the generalized Cantor and Baire spaces was extensively developed (see, e.g. [1], [2], [6], [4] and many others). An important part of the research in this subject is an attempt to transfer the results in set theory of the real line to 2^{κ} and κ^{κ} (the list of open questions can be found in [5]).

Throughout this paper, unless it is stated otherwise, we assume that κ is an uncountable regular cardinal number and $\kappa > \omega$.

We consider the space 2^{κ} , called κ -Cantor space (or the generalized Cantor space), endowed with so called bounded topology with a base $\{[x]: x \in 2^{<\kappa}\}$, where for $x \in 2^{<\kappa}$,

$$[x] = \{ f \in 2^{\kappa} : f \upharpoonright \text{dom} x = x \}.$$

If we additionally assume that $\kappa^{<\kappa} = \kappa$, the above base has cardinality κ . This assumption proves to be very convenient when considering the generalized Cantor space and the generalized Baire space, and is assumed throughout this note, unless stated otherwise (see e.g. [1]).

The above base consists of clopen sets. Notice also that an intersection of less than κ of basic sets is a basic set or an empty set. Therefore, an intersection of less than κ open sets is still open.

A T_1 topological space is said to be κ -additive if for any $\alpha < \kappa$, an intersection of an α -sequence of open subsets of this space is open. Various properties of κ -additive spaces were considered by R. Sikorski in [7]. Therefore, the generalized Cantor space is a zero-dimensional κ -additive space which is completely normal. The character, density and weight of 2^{κ} equal κ (the assumption $\kappa^{<\kappa} = \kappa$ is needed in the case of density and weight).

It is easy to see that $A \subseteq 2^{\kappa}$ is closed if and only if A = [T] for some tree $T \subseteq 2^{<\kappa}$. Indeed, if A = [T] and T is a tree, then if $x \notin A$, there exists $\alpha < \kappa$ such that $x \upharpoonright \alpha \notin T$. Therefore $[x \upharpoonright \alpha] \subseteq 2^{\kappa} \setminus A$, so A is closed. On the other hand, if A is closed, let $T = \{x \upharpoonright \alpha : x \in A, \alpha < \kappa\}$. Then, if $a \in 2^{\kappa}$, and $a \upharpoonright \alpha \in T$ for all $\alpha < \kappa$, we have that $a \in A$, since A is closed. For a closed $A \subseteq 2^{\kappa}$, a tree $T \subseteq 2^{<\kappa}$ such that A = [T] is denoted by T_A .

A set $A \subseteq 2^{\kappa}$ is called κ -closed, if for every limit $\beta < \kappa$, and $t \in 2^{\beta}$ such that for all $\alpha < \beta$, $t \upharpoonright \alpha \in T_A$, we have $t \in T_A$.

For $s, t \in 2^{\leq \kappa}$, let

$$d(s,t) = \bigcup \{\alpha < \min(\operatorname{len}(s), \operatorname{len}(t)) \colon \forall_{\beta < \alpha} s(\beta) = t(\beta)\}.$$

Classical **Knaster-Reichbach Theorem** (proved in [3], the authors acknowledged there that the theorem is actually due to Cz. Ryll-Nardzewski) states, that if $P, Q \subseteq 2^{\omega}$ are closed nowhere dense subsets of the classical Cantor space, and $h: P \to Q$ is a homeomorphism, then there exists a homeomorphism $H: 2^{\omega} \to 2^{\omega}$ such that $H \upharpoonright P = h$.

In this note we present an analogue of Knaster-Richbach Theorem for the generalized Cantor space 2^{κ} . This answers an oral question of W. Kubiś.

Theorem 1 Assume that

(1) $P, Q \subseteq 2^{\kappa}$,

(2)
$$\langle t_{\alpha} \rangle_{\alpha < \kappa}, \langle s_{\alpha} \rangle_{\alpha < \kappa} \in (2^{<\kappa})^{\kappa},$$

(3)
$$\langle p_{\alpha} \rangle_{\alpha < \kappa} \in P^{\kappa}, \langle q_{\alpha} \rangle_{\alpha < \kappa} \in Q^{\kappa},$$

- (4) $f, g \in \kappa^{\kappa}$,
- (5) $h: P \to Q$

are such that:

- (a) h is a homeomorphism,
- (b) P and Q are closed,

(c)
$$2^{\kappa} \setminus P = \bigcup_{\alpha < \kappa} [t_{\alpha}]$$
 and $2^{\kappa} \setminus Q = \bigcup_{\alpha < \kappa} [s_{\alpha}],$

(d) for each
$$\alpha < \beta < \kappa$$
, $[t_{\alpha}] \cap [t_{\beta}] = \emptyset$ and $[s_{\alpha}] \cap [s_{\beta}] = \emptyset$,

- (e) f, g are one-to-one,
- (f) for every $\beta < \kappa$ there exists $\gamma < \kappa$ such that for all $\gamma < \alpha < \kappa$, $d(p_{\alpha}, t_{\alpha}) > \beta$ and $d(q_{\alpha}, s_{\alpha}) > \beta$,
- (g) for all $\alpha < \kappa$ and $p \in P$

$$d(p,t_{\alpha}) \leq d(p_{\alpha},t_{\alpha}),$$

(h) for all $\alpha < \kappa$ and $q \in Q$

$$d(q, s_{\alpha}) \leq d(q_{\alpha}, s_{\alpha}),$$

(i) for all $\alpha < \kappa$

$$d(p_{\alpha}, t_{\alpha}) \leq d(h(p_{\alpha}), s_{f(\alpha)}),$$

 $(j)\ for\ all\ \alpha<\kappa$

$$d(q_{\alpha}, s_{\alpha}) \leq d(h^{-1}(q_{\alpha}), t_{g(\alpha)}).$$

Then there exists a homemorphism $H: 2^{\kappa} \to 2^{\kappa}$ such that

$$H \upharpoonright P = h$$
.

Proof: First notice that there are $A_1, A_2, B_1, B_2 \subseteq \kappa$ such that

(i)
$$A_1 \cup A_2 = B_1 \cup B_2 = \kappa$$
,

(ii)
$$A_1 \cap A_2 = B_1 \cap B_2 = \emptyset$$
,

(iii)
$$f[A_1] = B_1$$
 and $g[B_2] = f[A_2]$.

For each $\alpha \in A_1$, let $f_{\alpha}:[t_{\alpha}] \to [s_{f(\alpha)}]$ be a homeomorphism. Similarly, for each $\alpha \in B_2$, let $g_{\alpha}:[s_{\alpha}] \to [t_{g(\alpha)}]$ be a homeomorphism.

Now set

$$H(x) = \begin{cases} h(x) & \text{for } x \in P, \\ f_{\alpha}(x) & \text{for } x \in [t_{\alpha}] \land \alpha \in A_{1}, \\ g_{\alpha}^{-1}(x) & \text{for } x \in [t_{g(\alpha)}] \land \alpha \in B_{2}. \end{cases}$$

It remains to prove that H is a homeomorphism. Actually, notice that it suffices to prove that for every $p \in P$, H is continuous at p. Let $q = h(p) = H(p) \in Q$, and let $s \in 2^{<\kappa}$ be such that $s \subseteq q$. Since h is continuous, there exists $t \in 2^{<\kappa}$ with $t \subseteq p$ such that for all $x \in P \cap [t]$, we have $h(x) \in [s]$.

Notice that

$$|\{\beta \in A_2: d(s_\beta, q_\beta) < \operatorname{len}(t) \land t \subseteq t_{q(\beta)}\}| < \kappa.$$

Thus, let $\eta < \kappa$ be such that $\eta \ge \text{len}(t)$ and for all $\beta \in A_2$ such that $t_{g(\beta)} \in [p \upharpoonright \eta]$, we have $d(s_\beta, q_\beta) \ge \text{len}(t)$.

Let $\delta = \max\{\text{len}(s), \eta\} < \kappa$. We prove that $H[[p | \delta]] \subseteq [s]$. Indeed, if $x \in [p | \delta] \setminus P$, then there exists $\alpha < \kappa$ such that $x \in [t_{\alpha}]$. We have that either $\alpha \in A_1$ or $\alpha \in A_2$.

In the first case, we get that $p_{\alpha} \in [p \upharpoonright \delta]$, since $\delta \leq d(p, t_{\alpha})$, but also for all $\alpha < \kappa$ and $p \in P$,

$$d(p,t_{\alpha}) \leq d(p_{\alpha},t_{\alpha}).$$

Thus, $H([t_{\alpha}]) = [s_{f(\alpha)}] \subseteq [s]$, because for all $\alpha < \kappa$

$$d(p_{\alpha}, t_{\alpha}) \leq d(h(p_{\alpha}), s_{f(\alpha)}),$$

and $h(p_{\alpha}) \in [s]$ (and len $(s) \leq \delta$).

On the other hand, if $\alpha \in A_2$, then let $\beta \in B_2$ be such that $\alpha = g(\beta)$. Assume towards contradiction, that $s_{\beta} \not \equiv s$. Then $h^{-1}(q_{\beta}) \not \equiv t$, but then we get

$$d(q_{\beta}, s_{\beta}) \leq d(h^{-1}(q_{\beta}), t_{\alpha}) < \operatorname{len}(t).$$

This is a contradiction with the choice of η , thus $s_{\beta} \subseteq s$.

Thus H is continuous at p.

Lemma 1 Assume that

- (1) $P, Q \subseteq 2^{\kappa}$,
- (2) $\langle t_{\alpha} \rangle_{\alpha < \kappa}, \langle s_{\alpha} \rangle_{\alpha < \kappa} \in (2^{<\kappa})^{\kappa},$
- (3) $\langle p_{\alpha} \rangle_{\alpha < \kappa} \in P^{\kappa}, \langle q_{\alpha} \rangle_{\alpha < \kappa} \in Q^{\kappa},$
- (4) $h: P \to Q$

are such that:

- (a) h is a homeomorphism,
- (b) P and Q are closed,
- (c) $2^{\kappa} \setminus P = \bigcup_{\alpha < \kappa} [t_{\alpha}]$ and $2^{\kappa} \setminus Q = \bigcup_{\alpha < \kappa} [s_{\alpha}],$

- (d) for each $\alpha < \beta < \kappa$, $[t_{\alpha}] \cap [t_{\beta}] = \emptyset$ and $[s_{\alpha}] \cap [s_{\beta}] = \emptyset$,
- (e) for every $\beta < \kappa$ there exists $\gamma < \kappa$ such that for all $\gamma < \alpha < \kappa$, $d(p_{\alpha}, t_{\alpha}) > \beta$ and $d(q_{\alpha}, s_{\alpha}) > \beta$,
- (f) for all $\alpha < \kappa$ and $p \in P$

$$d(p, t_{\alpha}) \leq d(p_{\alpha}, t_{\alpha}),$$

(g) for all $\alpha < \kappa$ and $q \in Q$

$$d(q, s_{\alpha}) \leq d(q_{\alpha}, s_{\alpha}),$$

(h) for all $\alpha < \kappa$

$$|\{\beta < \kappa : d(t_{\alpha}, p_{\alpha}) \le d(s_{\beta}, h(p_{\alpha}))\}| = \kappa,$$

(i) for all $\alpha < \kappa$

$$\left|\left\{\beta < \kappa : d(s_{\alpha}, q_{\alpha}) \le d(t_{\beta}, h^{-1}(q_{\alpha}))\right\}\right| = \kappa.$$

Then there exist $f, g \in \kappa^{\kappa}$ such that the premise of Theorem 1 is satisfied.

Proof: By symmetry, it is enough to prove the existence of f. We construct f by induction. For $\alpha < \kappa$, let

$$f(\alpha) = \bigcap (\{\beta < \kappa : d(t_{\alpha}, p_{\alpha}) \le d(s_{\beta}, h(p_{\alpha}))\} \setminus \{f(\beta) : \beta < \alpha\}).$$

Theorem 2 Assume that κ is strongly inaccessible. Let $P,Q \subseteq 2^{\kappa}$ be κ -closed nowhere dense sets, and let $h: P \to Q$ be a homeomorphism. Then there exists a homeomorphism $H: 2^{\kappa} \to 2^{\kappa}$ such that

$$H \upharpoonright P = h$$
.

Proof: We start by constructing inductively sequences of sets $\langle Q_{\alpha} \rangle_{\alpha < \kappa}$, $\langle P_{\alpha} \rangle_{\alpha < \kappa} \subseteq (\mathcal{P}(2^{<\kappa}))^{\kappa}$ such that

- (a) for $\alpha < \kappa$, $P_{\alpha}, Q_{\alpha} \subseteq 2^{\alpha}$,
- (b) $\bigcup_{\alpha \le \kappa} \bigcup \{ [t] : t \in P_{\alpha} \} = 2^{\kappa} \setminus P,$
- (c) $\bigcup_{\alpha \le \kappa} \bigcup \{ [t] : t \in Q_{\alpha} \} = 2^{\kappa} \setminus Q,$
- (d) for all $\alpha < \kappa$, and $t \in 2^{\alpha}$ such that $[t] \cap P = \emptyset$ and for all $\beta < \alpha$ and all $u \in P_{\beta}, \ u \not\subseteq t, \ t \in P_{\alpha}$,
- (e) for all $\alpha < \kappa$, and $s \in 2^{\alpha}$ such that $[s] \cap Q = \emptyset$ and for all $\beta < \alpha$ and for all $u \in Q_{\beta}$, $u \not \subseteq s$, $s \in Q_{\alpha}$.

To achieve the above for $\alpha < \kappa$, put

$$P_{\alpha} = \left\{ t \in 2^{\alpha} \colon [t] \cap P = \varnothing \land \forall_{\beta < \alpha} \forall_{u \in P_{\beta}} u \not \subseteq t \right\},$$

and

$$Q_\alpha = \left\{ t \in 2^\alpha \text{:} \left[t \right] \cap Q = \varnothing \wedge \forall_{\beta < \alpha} \forall_{u \in Q_\beta} u \not\subseteq t \right\}.$$

Notice, that since P, Q are κ -closed, for any limit ordinal $\alpha < \kappa$, $P_{\alpha} = Q_{\alpha} = \emptyset$.

Let

$$\bigcup_{\alpha < \kappa} P_{\alpha} = \{ t_{\alpha} : \alpha < \kappa \},\,$$

and

$$\bigcup_{\alpha < \kappa} Q_{\alpha} = \{ s_{\alpha} : \alpha < \kappa \}.$$

be enumerations such that for all $\alpha < \beta < \kappa$ and $\gamma, \delta < \kappa$, if $t_{\gamma} \in P_{\alpha}$ and $t_{\delta} \in P_{\beta}$, then $\gamma < \delta$, and also for all $\alpha < \beta < \kappa$ and $\gamma, \delta < \kappa$, if $s_{\gamma} \in Q_{\alpha}$ and $s_{\delta} \in Q_{\beta}$, then $\gamma < \delta$. This is possible since κ is strongly inaccessible.

Since P and Q are κ -closed, there exist $\langle p_{\alpha} \rangle_{\alpha < \kappa} \in P^{\kappa}$, $\langle q_{\alpha} \rangle_{\alpha < \kappa} \in Q^{\kappa}$ such that

(a) for all $\alpha < \kappa$ and $p \in P$

$$d(p, t_{\alpha}) \leq d(p_{\alpha}, t_{\alpha}),$$

(b) for all $\alpha < \kappa$ and $q \in Q$

$$d(q, s_{\alpha}) \leq d(q_{\alpha}, s_{\alpha}).$$

Notice also, that for all $\alpha, \gamma < \kappa$, if $t_{\gamma} \in P_{\alpha+1}$, $d(t_{\gamma}, p_{\gamma}) = \alpha$, and for all $\alpha, \gamma < \kappa$, if $s_{\gamma} \in Q_{\alpha+1}$, $d(s_{\gamma}, q_{\gamma}) = \alpha$. Thus, for every $\beta < \kappa$ there exists $\gamma < \kappa$ such that for all $\gamma < \alpha < \kappa$, $d(p_{\alpha}, t_{\alpha}) > \beta$ and $d(q_{\alpha}, s_{\alpha}) > \beta$.

Notice also, that since P is nowhere dense, we have that for every $\alpha < \kappa$

$$|\{\beta < \kappa : d(t_{\alpha}, p_{\alpha}) \le d(s_{\beta}, h(p_{\alpha}))\}| = \kappa.$$

Indeed, if $d(t_{\alpha}, p_{\alpha}) = \gamma < \kappa$, then for every $\gamma < \delta < \kappa$, we have that there is no $\beta < \kappa$ such that $s_{\beta} \subseteq h(p_{\alpha}) \upharpoonright \delta$, but there exists $s \in 2^{<\kappa}$ such that $h(p_{\alpha}) \upharpoonright \delta \subseteq s$, and $[s] \cap Q = \emptyset$. Similarly, for every $\alpha < \kappa$,

$$\left|\left\{\beta < \kappa : d(s_{\alpha}, q_{\alpha}) \le d(t_{\beta}, h^{-1}(q_{\alpha}))\right\}\right| = \kappa.$$

Thus, the conditions of Lemma 1 are satisfied.

Problem 1 Does Theorem 2 hold for uncountable regular κ which is not strongly inaccessible?

Problem 2 Does Theorem 2 hold for $P,Q \subseteq 2^{\kappa}$ which are nowhere dense and closed but not κ -closed?

References

- [1] Sy-David Friedman, Tapani Hyttinen, and Vadim Kulikov. Generalized Descriptive Set Theory and Classification Theory, volume 1081 of Mem. Amer. Math. Soc. American Mathematical Society, 2014.
- [2] Sy-David Friedman and Giorgio Laguzzi. A null ideal for inaccessibles. preprint, 2014.
- [3] Bronisław Knaster and Marian Reichbach. Notion d'homogénéité et prolongements des homéomorphies. Fund. Math., 40:180–193, 1953.
- [4] Michał Korch and Tomasz Weiss. Special subsets of the generalized Cantor space 2^{κ} and the generalized Baire space κ^{κ} . sent to Math. Logic Quart., http://duch.mimuw.edu.pl/~m_korch/wp-content/uploads/2017/09/special-kappa.pdf, 2018.

- [5] Giorgio Laguzzi, Benedikt Löwe, and Ilya Sharankou. Questions on generalized Baire spaces. $Math.\ Logic\ Quart.,\ 62:439-456,\ 2016.$
- [6] Saharon Shelah. A parallel to the null ideal for inaccessible λ . preprint, 2012.
- [7] Roman Sikorski. Remarks on some topological spaces of high power. Fund. Math., 37:125–136, 1950.