Linear Algebra, WNE, 2018/2019 meeting 1. – solutions

2 October 2018

- 1. Mark on the plane \mathbb{R}^2 the sets of solutions to the following equations:
 - 2x + 3y = 6, This is the line L meeting points (0,2) and (3,0).
 - ax + 3y = 0 depending on parameter $a \in \mathbb{R}$, It is a line meeting the point (0,0) and tilted in such a way that it meets point $(1,\frac{-a}{3})$.
 - 2x + 3y = c depending on parameter $c \in \mathbb{R}$. It is a line parallel to L and meeting point $(\frac{c}{2}, 0)$.

How many are there, and what are the solutions (depending on parameters $a, c \in \mathbb{R}$) of the following systems of equations:

• $\begin{cases} 2x + 3y = 6 \\ ax + 3y = 0 \end{cases}$, If a = 2 this system does not have any solution, so the set of solutions is empty. Otherwise, it has exactly one solution $(\frac{6}{2-a}, \frac{2a}{a-2})$.

 $\bullet \begin{cases}
2x + 3y = 6 \\
2x + 3y = c
\end{cases}$

c=6 the set of solutions is exactly the line L. Otherwise, the system does not have any solution.

2. Solve (e.g. calculating subsequent variables by substitution) the following systems of equations:

$$\bullet \begin{cases}
 x + 2y - z = 6 \\
 2x + 5y - 2z = 2 \\
 x + 3y + z = 5
\end{cases}$$

$$x = 6 - 2y + z, \text{ we get}$$

$$\begin{cases} 12 - 4y + 2z + 5y - 2z = 2 \\ 6 - 2y + z + 3y + z = 5 \end{cases}$$

therefore,

$$\begin{cases} y = -10 \\ y + 2z = -1 \end{cases},$$

thus, 2z = -1 + 10, so $z = \frac{9}{2}$ and $x = \frac{61}{2}$.

$$\bullet \begin{cases} x+y+w+z=4 \\ 2x+y+w+z=9 \\ x+2y+w+z=9 \\ x+y+2w+z=10 \end{cases}$$

Subtracting the first equation from the second one we get that x=5. Subtracting the first from the third, we get y=5, and similarly, subtracting the first from the forth, we get w=6. Thus, 16+z=4, so z = -12.

1

3. Find all the roots of polynomial $-2x^4 - 4x^3 + 32x^2 + 4x - 30$.

We immediately guess that 1 is a root of this polynomial. Therefore, we divide it by (x-1) (e.g. in the usual method). We get $-2x^3-6x^2+26x+30$ (because $(-2x^3-6x^2+26x+30)\cdot(x-1)=-2x^4-4x^3+32x^2+4x-30)$. Next, we guess that also -1 is a root and we divide the polynomial by x+1, getting $-2x^2-4x+30$. Now by usual method, we get that the other roots are -5 and 3.