Linear algebra, WNE, 2018/2019 meeting 25. – solutions

17 January 2019

- 1. Using simplex method solve the following linear programming problems
 - $2x_1 x_2 \rightarrow max$, with constraints:

$$4x_1 + 4x_2 \leqslant 12,$$

$$x_1 \leqslant 2, x_2 \leqslant 2,$$

$$x_1 \geqslant 0, x_2 \geqslant 0.$$

First, we write out this problem in a standard form $-2x_1 + x_2 \rightarrow min$, with constraints:

$$4x_1 + 4x_2 + x_3 = 12,$$

$$x_1 + x_4 = 2,$$

$$x_2 + x_5 = 2,$$

$$x_1, x_2, x_3, x_4, x_5 \geqslant 0.$$

Simplex array for basic variables x_3, x_4, x_5 :

Vertex (0, 0, 12, 2, 2) has one improving edge and one aggravating edge. The bounds for the improving edge are $\mathcal{F} = \{3, 2\}$, where the lower value is related to the second row. So we drop x_4 from the basic variables and add x_1 :

Vertex (2,0,4,0,2) has only aggravating edges, so we are in an optimal vertex. The cost value is -4, so in the original problem we get (2,0) with objective value 4.

• $3x - 2y \rightarrow max$, with constraints

$$-3x + 2y \geqslant 8$$
,

$$x - y \leq 0$$
,

$$x \geqslant 0, y \geqslant 0.$$

First, we write out the problem in a standard form $-3x + 2y \rightarrow \min$

$$-3x + 2y - a = 8$$

$$x - y + b = 0$$

$$x, y, a, b \geqslant 0.$$

We do not see any feasible basic solution so we add an additional variable m and we modify the problem: $-3x + 2y + Mm \rightarrow \min$

$$-3x + 2y - a + m = 8$$

$$x - y + b = 0$$

$$x, y, a, b, m \geqslant 0.$$

where M should be considered to be a very big number so the algorithm should drop the variable m, to minimize the cost value. So we get the following simplex array

$$\begin{bmatrix}
-3 & 2 & 0 & 0 & M & 0 \\
-3 & 2 & -1 & 0 & 1 & 8 \\
1 & -1 & 0 & 1 & 0 & 0
\end{bmatrix}$$

and after the reduction of columns related to basic variables (b and m) we get:

$$\begin{bmatrix} -3+3M & 2-2M & M & 0 & 0 & -8M \\ -3 & 2 & -1 & 0 & 1 & 8 \\ 1 & -1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

We have a negative value in the second column, so we we add y to basic variables. Since in the third row we have a negative value, we can choose only the second row, and indeed it means that we are dropping the artificial variable m from the set of basic variables. After reduction $(w_2 \cdot \frac{1}{2}, w_1 + (2+2M)w_2, w_3 + w_2)$ we get:

$$\begin{bmatrix} 0 & 0 & 1 & 0 & -1 + M & -8 \\ \frac{-3}{2} & 1 & -\frac{1}{2} & 0 & \frac{1}{2} & 4 \\ -\frac{1}{2} & 0 & -\frac{1}{2} & 1 & \frac{1}{2} & 4 \end{bmatrix}$$

We do not have any improving edges, so we are in an optimal vertex x = 0, y = 4, and the cost value is 8, so the objective in the original problem is -8.

• $8x + u \rightarrow max$, with constraints:

$$2x + 4y + 8u = 10$$
,

$$3y + z - u = 3,$$

$$t + 6u = 12,$$

$$x, y, z, t, u \geqslant 0.$$

First we write out the problem in a standard form $-8x - u \rightarrow \min$, with constraints:

$$2x + 4y + 8u = 10,$$

$$3y + z - u = 3,$$

$$t + 6u = 12,$$

$$x, y, z, t, u \geqslant 0.$$

We can take basic variables x, z, t and we get the following simplex array then

				-1							31	
1	2	0	0	4	5		1	2	0	0	4	5
0	3	1	0	-1	3	$w_0 + 8w_1$	0	3	1	0	-1	3
0	0	0	1	6	12		0	0	0	1	6	12

The vertex (5,0,3,12,0) has only aggravating edges, so we are in an optimal vertex, with cost -40, so in the original problem the objective value is 40.