Linear algebra, WNE, 2018/2019 meeting 20.

11 December 2018

Problems

- 1. Consider in \mathbb{R}^4 with the standard scalar product the subspaces $V = \{(x, y, z, t) : x y + 4z + 5t = 0\}$ and W = lin((1, 0, -1, 2), (1, 1, 1, 1)). Find orthonormal bases of V^{\perp} and W^{\perp} .
- 2. Check whether in \mathbb{R}^4 there exists a vector α , such that $\frac{1}{2}(1,1,1,1), \frac{1}{2}(-1,-1,1,1), \frac{1}{2}(-1,1,-1,1), \alpha$ is an orthonormal basis and the forth coordinate of (2,4,6,2) in this basis equals 3.
- 3. In \mathbb{R}^3 , find the orthogonal projection of $\alpha = (1, 1, 1)$ onto $V = \{(x, y, z) : x + 2y z = 0\}$ and the orthogonal projection of this vector onto line L = lin((1, 2, 3)).
- 4. Find the image of α from the previous problem under orthogonal reflection across V and under orthogonal reflection across L.
- 5. In \mathbb{R}^4 find the formula for the linear transformation of orthogonal projection onto

$$W = lin((2, 1, 0, 1), (1, 0, 0, 1))$$

for the linear transformation of orthogonal reflection across W.

Homework

Group 8:00

- 1. In \mathbb{R}^4 , find the orthogonal projection of (4,2,3,1) onto subspace $W = \{(x,y,z,t) : x+y-z+2t=0\}$ and the image of (0,0,1,2) under orthogonal reflection across W.
- 2. Find the formula for the linear transformation $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ of orthogonal projection onto

$$W = \{(x, y, z) \colon x - y + 2z = 0\},\$$

and for the linear transformation $\psi \colon \mathbb{R}^3 \to \mathbb{R}^3$ of orthogonal reflection across W.

Group 9:45

- 1. In \mathbb{R}^4 , find the orthogonal projection of (4,2,1,3) onto $W = \{(x,y,z,t) : x+y+2z-t=0\}$ and the image of (0,0,2,1) under orthogonal reflection across W.
- 2. Find a formula for the linear transformation $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ of the orthogonal projection onto

$$W = \{(x, y, z) \colon x + 2y - z = 0\},\$$

and of the linear transformation $\psi \colon \mathbb{R}^3 \to \mathbb{R}^3$ of orthogonal reflection across W.