Linear algebra, WNE, 2018/2019 meeting 20. – homework solutions

11 December 2018

Group 8:00

1. In \mathbb{R}^4 , find the orthogonal projection of (4,2,3,1) onto subspace $W = \{(x,y,z,t) : x+y-z+2t=0\}$ and the image of (0,0,1,2) under orthogonal reflection across W.

The projection onto W is the vector minus its projection onto W^{\perp} , i.e. (1,1,-1,2), so

$$(4,2,3,1) - \frac{\langle (4,2,3,1), (1,1,-1,2) \rangle}{\langle (1,1,-1,2), (1,1,-1,2) \rangle} (1,1,-1,2) = (4,2,3,1) - \frac{5}{7} (1,1,-1,2) = \frac{1}{7} (23,9,26,-3).$$

Similarly the projection of (0,0,1,2) equals to

$$(0,0,1,2) - \frac{\langle (0,0,1,2), (1,1,-1,2) \rangle}{\langle (1,1,-1,2), (1,1,-1,2) \rangle} (1,1,-1,2) = (0,0,1,2) - \frac{3}{7} (1,1,-1,2) = \frac{1}{7} (-3,-3,10,8).$$

So the image under reflection is

$$\frac{1}{7}(-6, -6, 20, 16) - (0, 0, 1, 2) = \frac{1}{7}(-6, -6, 13, 2).$$

2. Find the formula for the linear transformation $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ of orthogonal projection onto

$$W = \{(x, y, z) \colon x - y + 2z = 0\}$$

for the linear transformation $\psi \colon \mathbb{R}^3 \to \mathbb{R}^3$ of orthogonal reflection across W.

First notice that $\{(1,1,0),(-2,0,1)\}$ is a basis of W, and $\{(1,-1,2)\}$ is a basis of W^{\perp} . Let φ be the projection, and ψ be the reflection. $\mathcal{A} = \{(1,1,0),(-2,0,1),(1,-1,2)\}$ is a eigenvectors basis of φ and of ψ , with eigenvalues 1,1,0 and 1,1,-1 respectively. Thus,

$$M(\varphi)_{\mathcal{A}}^{\mathcal{A}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, M(\psi)_{\mathcal{A}}^{\mathcal{A}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Meanwhile, $M(\mathrm{id})^{st}_{\mathcal{A}}=\left[\begin{array}{ccc}1&-2&1\\1&0&-1\\0&1&2\end{array}\right]$, so it is easy to calculate

$$M(\mathrm{id})_{st}^{\mathcal{A}} = (M(\mathrm{id})_{\mathcal{A}}^{st})^{-1} = \frac{1}{6} \begin{bmatrix} 1 & 5 & 1 \\ -2 & 2 & 2 \\ 1 & -1 & 2 \end{bmatrix}.$$

Hence,

$$M(\varphi)_{st}^{st} = M(\mathrm{id})_{\mathcal{A}}^{st} \cdot M(\varphi)_{\mathcal{A}}^{\mathcal{A}} \cdot M(\mathrm{id})_{st}^{\mathcal{A}} = \frac{1}{6} \begin{bmatrix} 5 & 1 & -2 \\ 1 & 5 & 2 \\ -2 & 2 & 2 \end{bmatrix}$$

$$M(\psi)_{st}^{st} = M(\mathrm{id})_{\mathcal{A}}^{st} \cdot M(\psi)_{\mathcal{A}}^{\mathcal{A}} \cdot M(\mathrm{id})_{st}^{\mathcal{A}} = \frac{1}{3} \begin{bmatrix} 2 & 1 & -2 \\ 1 & 2 & 2 \\ -2 & 2 & 1 \end{bmatrix}$$

and thus, $\varphi((x,y,z)) = \frac{1}{6}(5x+y-2z,x+5y+2z,-2x+2y+2z), \psi((x,y,z)) = \frac{1}{3}(2x+y-2z,x+2y+2z,-2x+2y+2z)$.

Group 9:45

1. In \mathbb{R}^4 , find the orthogonal projection of (4,2,1,3) onto $W = \{(x,y,z,t) : x+y+2z-t=0\}$ and the image of (0,0,2,1) under orthogonal reflection across W.

The projection onto W is the vector minus its projection onto W^{\perp} , i.e. (1,1,2,-1), so

$$(4,2,1,3) - \frac{\langle (4,2,1,3), (1,1,2,-1) \rangle}{\langle (1,1,2,-1), (1,1,2,-1) \rangle} (1,1,2,-1) = (4,2,1,3) - \frac{5}{7} (1,1,2,-1) = \frac{1}{7} (23,9,-3,26).$$

Similarly, the projection of (0, 0, 2, 1) is

$$(0,0,2,1) - \frac{\langle (0,0,2,1), (1,1,2,-1) \rangle}{\langle (1,1,2,-1), (1,1,2,-1) \rangle} (1,1,2,-1) = (0,0,2,1) - \frac{3}{7} (1,1,2,-1) = \frac{1}{7} (-3,-3,8,10).$$

So the reflection:

$$\frac{1}{7}(-6,-6,16,20)-(0,0,2,1)=\frac{1}{7}(-6,-6,2,13).$$

2. Find a formula for the linear transformation $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ of the orthogonal projection onto $W = \{(x,y,z)\colon x+2y-z=0\}$, and of the linear transformation $\psi \colon \mathbb{R}^3 \to \mathbb{R}^3$ of orthogonal reflection across W.

Notice, that $\{(-2,1,0),(1,0,1)\}$ is a basis of W, on the other hand $\{(1,2,-1)\}$ is a basis of W^{\perp} . Let φ be the projection, and ψ be the reflection. $\mathcal{A} = \{(-2,1,0),(1,0,1),(1,2,-1)\}$ is an eigenvectors basis of φ , and also of ψ with eigenvalues 1,1,0 and 1,1,-1, respectively so

$$M(\varphi)_{\mathcal{A}}^{\mathcal{A}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, M(\psi)_{\mathcal{A}}^{\mathcal{A}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$$

Meanwhile, $M(\mathrm{id})^{st}_{\mathcal{A}}=\left[\begin{array}{ccc} -2 & 1 & 1\\ 1 & 0 & 2\\ 0 & 1 & -1 \end{array}\right]$, so it is easy to calculate that

$$M(\mathrm{id})_{st}^{\mathcal{A}} = (M(\mathrm{id})_{\mathcal{A}}^{st})^{-1} = \frac{1}{6} \begin{bmatrix} -2 & 2 & 2\\ 1 & 2 & 5\\ 1 & 2 & -1 \end{bmatrix}.$$

Therefore,

$$M(\varphi)_{st}^{st} = M(\mathrm{id})_{\mathcal{A}}^{st} \cdot M(\varphi)_{\mathcal{A}}^{\mathcal{A}} \cdot M(\mathrm{id})_{st}^{\mathcal{A}} = \frac{1}{6} \begin{bmatrix} 5 & -2 & 1\\ -2 & 2 & 2\\ 1 & 2 & 5 \end{bmatrix}$$

$$M(\psi)_{st}^{st} = M(\mathrm{id})_{\mathcal{A}}^{st} \cdot M(\psi)_{\mathcal{A}}^{\mathcal{A}} \cdot M(\mathrm{id})_{st}^{\mathcal{A}} = \frac{1}{3} \begin{bmatrix} 2 & -2 & 1\\ -2 & -1 & 2\\ 1 & 2 & 2 \end{bmatrix}$$

Hence, $\varphi((x,y,z)) = \frac{1}{6}(5x - 2y + z, -2x + 2y + 2z, x + 2y + 5z), \psi((x,y,z)) = \frac{1}{3}(2x - 2y + z, -2x - y + 2z, x + 2y + 2z).$

2