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1 Finding roots of a polynomial

1.1 Method

If the degree of a polynomial > 2 we guess the first root checking the integers near zero. Assume that we have
find a root a. Using Bezout’s Theorem, we divide (similarly as numbers) the polynomial by (z — a), getting to
a polynomial of degree lower by one, and I continue using this polynomial.

When a polynomial of degree two is obtained, we calculate the roots by calculating A.

1.2 Example

We find the roots of w(z) = 2% — 2% — 2122 + 2 + 20. It is easy to see that 1 is a root, indeed w(1) =
1—-1-21+1+20=0. Divide w(z) by (z — 1):

3 +0x? —2lz  —20
ot 23 2122 +x 420 :(z-—1)

[
0x3  —212?
023 —022
—21x2 +x
—21z2 421z
—20x  +20
—20x  +20

0

We get v(r) = 23 — 212 — 20. Again, we guess that —1 is a root. Indeed, —1+ 21 = 0. We divide v(x) by = + 1.

- —20
3 4022 21z —20 :(x+1)
x4
—r? 21z
—? -
—20x -20
—20x —-20

0

We get 22 — x — 20 and now it is possible to calculate the roots in the usual way. A = (—1)? —4(—20) = 81, so
z1 =252 = —4and z, = 42 = 5. So, finally w(z) = (z —1)(z+ 1)(z +4)(x — 5) and the roots are —1,1, —4, 5.

1.3 Exemplary problems
Find the roots of polynomial z% + 823 — 22 — 68z + 60.



2 Solving a system of linear equations using Gaussian-elimination
method

2.1 Method

We write out a matrix of the considered system by writing the coeffitients and free coefficient in the subsequent
rows. Next, we transform the matrix into an echelon form using an appropriate sequence of permitted operations.
There are three types of permitted operations:

e adding (or subtracting) to a row another row multiplied by a number,
e swapping two rows,
e multiplying a row by a non-zero number.

An echelon form satisfies the following conditions. All the zero rows should be beneath all the non-zero rows.
In every row the first non-zero number (called the leading coefficient) if further to the right than the leading
coefficient in the previous row. To achieve an echelon form we obtain zeroes using the operations under subse-
quent leading coefficients starting from the leftmost column. To obtain zeroes below a leading coefficient use
the first-type operation and subtract from a row the row with leading coefficient multiplied by such a number
to obtain zero in the considered position. The other two types of operations are used at this stage mainly to
simplify the calculations.

After achieving an echelon form we reduce it by multiplying the rows by numbers in such a way to obtain 1
as every leading coefficient. We also have to subtract the rows to obtain zeroes above every leading coefficient.
Usually it is best to do this starting with the rightmost column.

Three cases are then possible:

e the system is inconsistent (does not have any solutions). If this is the case, it can be observed in the last
non-zero row. This is the case if in this row we have zeroes on the left-hand side of equation and the
non-zero number in the column of free coeflicients (actually, this is clear already in a non-reduced echelon
form).

e the system has exactly one solution, if in every column (except from the column of free coefficients) there
is a leading coeflicient. It suffices now to write out this solution.

e otherwise the system has infinitely many solutions, and in this case we have to write out the general
solution, by leaving all the basic variables (from columns with leading coefficients) on the left-hand side
of equations and moving everything else to the right-hand side.

2.2 Examples

1.
2z 4+ 5y — 10z = —1 2 5 —10] -1
r+3y—2z=0 — 1 3 =210 wlﬁwg
—a + 52 = 33 -10 5 ]33
1 3
2 5
-1 0 5 |33 3 3|33

1 3 -2 10 -21 0

-2 10 1 3 =-2]0
10| -1 | wy — 2w, w3+w; | 0 -1 —6|—1 w3+3wg
0
1
0
0

3
1
0 -1 -6 |-1 wg-(—l),wg-(—15> 1 6 1 w1 + 2ws, wy — bws
0 0 -—-15] 30 0 1 1|-2
1 3 0 —4 1 0 0] —43
0 1 0 13 w1—3wg 01 0| 13
00 1 -2 0 0 1| =2

So this system has exactly one solution, and the solution is (—43,13, —2).



2a—3b+5c—d=2 2 _3
—8a +12b—26c+6d=4 — | -8 12 726 wo + 4w, w3 — 3wy
6a — 9b+ 18¢ — 4d = —4 6 -9 18
2 -3 5 —-1]-2 2 — 5 —-1 =2
0O 0 -6 2 |-—4 w2<—>w§ 0 0 3 -1 2 w3+2w3
0 0 3 -1 2 0O 0 -6 2 -4
3 5 _1 | _
0 0 3 1|2 |o-tuetlo ¢ 1 TH 2 w0
- wy:-5,W2 g 31| 3 w1 — ;W2
o0 0 oo |—2"30 0 0o 0|0 |—25
0 0 1 —% % — 9 3 1 2 3
0 0 0 010 c=3+3d
So every vector of form( ‘Sb—ld b, 2—|— 3d,d) is a solution for any b,d € R.
3.
3$1+£2+1‘3—6 1 1 6
—2x1 —x3 = — -2 0 —-1|-4
Swe + 2wq, 3wg — dwi, wy — 2w
521 + 322 + 23 = 10 |: 3 1 10 2 1 3 1, %4 1
621 + 8a0 — a3 = 13 8 —-1]13
3 1 1|6 31 116 31 116
0 2 -110 49 _3 0 2 —-110 o 0 2 —-110
0 —4 2 |0 |EBI2WWaTIHRL G o o |0 BT 0 0 |1
0 6 =31 0 0 0|1 0 0 010

This is an echelon form, and there is no need to reduce it further, because we see that this system is
inconsistent. There is a contradiction on the last non-zero row (0 = 1).

2.3 Exemplary problems

Solve the following systems of equations.

$1+2I2+4CE3+$4:O
—3z1 4+ 2+ 323+ 524 =0
bx1 4+ 229+ T3 =0

a—b+c=2

26 —c=1
—a+b—c=0
—a+8b+Tc=—-4

3r+2y+32=4
r+y+z2=38
S5t +3y+6z2=9



3 Finding a polynomial given by its values in some points

3.1 Method

If some values of the considered polynomial are given for some arguments, we substitute those arguments under
x in the general expression (a,z" +a,_12" 1 +...+a1x+ag), and end up with equations describing coefficients
ag, - - . ,ay. Then, we shall solve the obtained system of equations.

Sometimes, the problem suggests using the Viete’a formulas. For a polynomial of second degree (axzo+bz+c)

we have:
I + o = —g
c )
12 = 4

which imply equations describing the coefficients if the sum or the product of roots is given. Then, at the end
we shall check whether those roots actually exist.

3.2 Example

Does there exist a polynomial w(z) = az? + bx + ¢ of degree two such that w(—3) = 2, w(1) = —2 and which
has both real roots with product —8. If the answer is in the positive find it.
We get the following system of equations.

9a —3b+c=2
a+b+c=-2
8a+c=0
Which has to be solved.
9 -3 1| 2 1 1 1|-=2
— 1 1 1| -2 wy <> ’LUg 9 -3 1 2 Wy — 9’11]1,’(1)3 — 8wy
8 0 1] 0 8 0 1] 0
1 1 1| -2 1 1 1 1| -2
0 —-12 —-8|20 [wy-=| 0 =3 —=2| 5 3ws — 8w
0 -8 —7/16 | —3]0 —8 —7]|16 ;
1 1 1 | -2 1 1 1 1 1|-2 9
0 —3 -2 5 wg-(—g),w3~(—5> 0 1 % —g ’LU1—’LU3,’LUQ—§H)3
0 0 -5/ 8 00 1|-3
110 —§ 10 0] 3
01 0|2 wy — wy 01 0|2
0 0 1 —§ 0 0 1 —%

Therefore, a = %, b= f% c= 7%_ We check whether the roots actually exist A = % +4.
— ¢ is the considered polynomial.

the case, so z°

3
5 5

T —

3.3 Exemplary problems

1. Find a polynomial w(z) of degree 3, such that w(0) = —1,w(1) = 3,w(2) = 7,w(-1) = 5.

2. Find a polynomial w(z) of degree 2, such that w(—1) = 4, w(2) = —2, with two real roots sum of which

equals 2.

_ 4
—75>0. This is



4 Finding for which values of a parameter a system of equations is
inconsistent or has exactly one solution

4.1 Method

We transform a matrix of the considered system of equations into an echelon form (there is no need to reduce it)
and consider what value is is needed. Recall that a system is inconsistent if in an echelon form the last non-zero
row has zeroes on the left-hand side of the equality, and a non-zero number as the free coefficient. It has exactly
one solution, if it has a leading coefficient in all the columns (except from the column of free coefficients).

4.2 Example
For which real numbers s,t € R the system
3r1+x9+23=06
—2.131 — T3 = —4
5x1 + 3x2 + x3 = 10
6x1+ (b —t)ze —x3 =35

is inconsistent, and for which it has exactly one solution. We transform the matrix into an echelon form:

3 1 116 3 1 1 6
2 0 —1]|-4 0 2 —1| o0
— 5 3 1 10 3ws + 2w1, 3wz — dwi, wy — 2wq 0 -4 9 0 w3 4 2wa, Wy — two
6 2—t —1| s 0 t -3|s—12
31 1 6 31 1 6
0 2 -1 0 o 02 -1 0
00 0 0 W Wl g 0 3—¢t|s—12
0 0 —3—t|s—12 00 0 0

The system has exactly one solution, if there is a leading coefficient in all the columns (on the left-hand side
of equality). Here, this is the case if and only if ¢ ## —3. Then regardless of s the system has exactly one
solution. If, on the other hand, t = —3, there are two possibilities. Either s = 12, and this row is a zero row
(an the system has infinitely many solutions), or s # 12, and then we have a contradiction (and the system is
inconsistent). So, finally:

t # —3 = there is exactly one solution
t = —3,s # 12 = the system is inconsistent,
t = —3,s = 12 = there are infinitely many solutions.

4.3 Exemplary problems

Check for which s,t € R the system
20 + 5y — sz = —1
z+3y—22=0
—x+5z=t

is inconsistent, and for which it has exactly one solution.



5 Checking whether a vector is a linear combination of a given sys-
tem of vectors

5.1 Method
We shall check whether a vector 8 = (b1,...,b,) is a linear combination of a1 = (ai1,...a1n),
as = (a21,...a2p), ..., = (ag1,...agn). I the anwer is in the positive, there exist coefficients c¢1,...,cx

such that (by,...,b,) = c1(a11,...a1n) + c2(a21,...a2,) + ... + ci(aki, ... ar,). This equality considered on
subsequent coordinates, gives the following system of equations:

aii1C1 + az1Co + ...+ Ap1Cr = b1

a12€1 + a22¢o + ...+ apacy = by

a1nC1 + G2nC2 + ... + apncr = by,

This system consists of n equations, and the coefficients c; ... cp are the variables in it, so vector § is a linear
combination of the given system of vectors, if the considered system of equations is consistent

In other words, in the subsequent columns we put the vectors aq, as, ..., ag, 8, and we transform the matrix
to an echelon form and check whether the last non-zero row generates a contradiction.

5.2 Example

We check whether a vector (6, —4, 10, 13) is a linear combination of (3, -2, 5,6), (1,0, 3,8), (1, —1,1,—1). Putting
those vectors in the columns we get the matrix which was already transformed to an echelon form in the third
example in the second topic.

31 116 31 116
2 0 —1| -4 02 —1]0
5 3 1]/10] 77100 o]l1
6 8 —1]|13 00 010

Thus, this is an inconsistent system, and so the considered vector is not a linear combination of the given system
of vectors.

5.3 Exemplary problems

1. Check  whether the vectors (1,2,1,2,1,3), (7,7,1,4,1,1) are linear combinations of
(1,3,1,2,5,3), (4,5,1,3,3,2).

2. For which real numbers r € R vector (r,8,6) is a linear combination of (3,4,5), (1,4,4), (7,4,7)?



6 Checking whether a system of vectors is linearly independent

6.1 Methods
6.1.1 First method

A system of vectors is linearly independent, if it is not possible to get a zero vector using a non-trivial linear
combination of those vectors. The operation on the rows of matrix are exactly non-trivial linear combinations
and when transforming a matrix into an echelon form we will always get a zero row if only it is possible.

Thus, we put the vectors in rows of a matrix, and transform it into an echelon form. The last row is a
non-zero row if and only if the system is linearly independent. It is linearly dependent if and only if the last
row in an echelon form is a zero row.

6.1.2 Second method

A system of vectors ayq, ..., ap if and only if when a1y +. .. +arar =0, then a; = ... = ax = 0. In other words
if and only if the only coefficients that can be used in a linear combination which gives the zero vector are zeroes.
Similarly as before the vector equation aja; + ...+ agar = 0 is actually a system of linear equations describing
the coefficients ay, ..., ay, if we write out equations for subsequent coordinates. The question is whether the
system given by a matrix in which in the subsequent columns we have vectors o, ao, ..., ag, 0 has any solution
except from the zero solution. In other words, whether this system has more than one solution.

To sum up, to check whether a system of vectors is linearly independent, we put those vectors in columns
of a matrix along with zero column of free coefficients, and check whether this system has exactly one solution
(whether there is a leading coefficient in every column (except from the column of free coefficients)). If this is
the case the system is linearly independent. Otherwise, it is linearly dependent.

6.2 Examples

1. We check whether system (2,—3,5,—1,—-2),(—8,12,—-26,6,4), (6, -9, 18, —4, —4) is linearly independent
using the first method (I put the vectors in rows of a matrix). This matrix was already considered in the
second topic.

2 -3 5 -1 =2 2 -3 5 -1 =2
-8 12 —-26 6 4 —-...—>]10 0 3 -1 2
6 -9 18 -4 —4 0 0 0 O 0

We get a row of zeroes, so the system is not linearly independent (it is linearly dependent).

2. We check whether system (2,1, —1), (5,3,0),(—10,2,5) is linearly independent using the second method.
We put the vectors in the columns. This matrix was already considered in the second topic.

2 5 =100 1 3 -2 10
1 3 2/0|—=...-10 -1 —-610
-1 0 5 0 0 0 -—-15|0

We get a leading coefficient in all columns (except from the column of free coefficients), thus there is
exactly one solution (the zero vector), and so the considered system is linearly independent.

6.3 Exemplary problems
Check whether the following systems of vectors are linearly independent.
e (1,0,2),(2,3,1),(4,3,5),
o (1,-1,1,1,-2),(4,4,-4,-4,0),(3,1,3,-1,3),(-1,0,1,0,0), (0, —1,0,1,0).



7 Finding coordinates of a vector with respect to a given basis

7.1 Metoda
We will find the coordinates of § = (b1, ..., by,) with respect to a basis a1 = (a11, ... a1,), @2 = (@21, ...a2,), .. .,
ar = (ag1,...agn), so coeflicients ci, ..., ¢k, such that (b1,...,b,) = c1(a11,...a1n) + c2(a21,...a2,) + ... +

ck(ag1, - .- akn). This equation translates into the system of equations for the coordinates.

ayicy +agica + ...+ agicy = by

a12¢1 + agaco + ... + agacp = bo

A1nC1 + a2,C2 + ... + apnCr = by,

which is a system of n equations with variables ¢; ...cg. Since we consider a basis, we know that this system
has exactly one solution. This solution gives the coefficients.

So, to find the coordinates we put in the columns of a matrix the vectors of the considered basis along with
the considered vector as the column of free coefficients and we solve this system.

7.2 Example
We find the coordinates of (—1, 0, 33) with respect to basis (2,1, —1), (5, 3,0), (=10, 2,5). The system of equation
20 + 5y — 10z = -1

r+3y—22=0
—x+ 52 =33

was already solved in the second topic. The solution is (—43,13,—2), thus (—1,0,33) = —43(2,1,-1) +
13(5,3,0) — 2(—10,2,5).

7.3 Exemplary problems

Find the coordinates of (1,2,3,—1,5) € R5 with respect to the basis (1,—1,1,1,-2), (0,-1,0,0,0),
(371737_173)7 (_130717070)3 (07_1a03170)'



8 Finding a basis and dimension of a space given as a set of linear
combinations

8.1 Method

We notice that all the permitted operations on the rows of a matrix can be reversed. Therefore, doing those
operations does not change the set of all linear combinations of rows of a matrix. Additionally, in an echelon
form the non-zero rows are linearly independent. This implies the method of finding a basis when given a system
of vectors which spans a considered space. We put those vectors in rows of a matrix and transform the matrix
into an echelon form. The non-zero rows constitute a basis of the considered space. The number of vectors in
a basis is called the dimension.

8.2 Example

We will find a basis and dimension of lin((2, —3,5, -1, —2), (—8,12,—-26,6,4), (6,—9, 18, —4, —4)). The matrix
with such rows was already transformed into echelon form in the second topic.

2 -3 5 -1 =2 2 -3 5 -1 =2
-8 12 —-26 6 4 —-...—»]0 0 3 -1 2
6 -9 18 -4 -4 0 0 0 O 0

Thus, (2,-3,5,—1,—2),(0,0,3,—1,2) is a basis, and the dimension equals 2.

8.3 Exemplary problems

Find a basis and dimension of spaces spanned by the following systems of vectors.
e (1,2,1,3),(2,5,4,4),(1,3,3,1),
e (3,2,1,2),(9,6,3,6),(6,6,6,5), (6,8, 10,6),
e (1,2,1),(0,1,1),(1,3,2).

10



9 Find a basis and dimension of a space described by a system of
linear equations

9.1 Method

First, we obtain the general solution, and next generate those vectors by substituting 1 under each parameter
and zero under the rest of them. Obviously, such a system of vectors generates by linear combinations all
possible solutions. Moreover, it is easy to check that such system is linearly independent.

9.2 Example

We will find basis and dimension of a space given by the following system of equations.

2a —3b+5¢c—d=0
—8a + 12b — 26¢c +6d =0
6a —9b+18¢c—4d =0

We have solved a similar system in the second topic, and we know that the general solution takes the following

form
{a 8y 1d
1
C—gd

which in parametric form gives (%b - %d, b, %d, d) for b,d € R. Substituting b=1,d =0 and b =0,d = 1 we get
basic vectors: (2,1,0,0), (—%, 0,3,1). The dimension equals two.

9.3 Exemplary problems

Find a basis and dimension of spaces described by the following systems of equations:

521 + 222 + 8x3 =0
6x1 — 3x2 —4x3 =0
Txy 4+ 4xo 4+ 923 =0
4x1 — dxo + 423 =0

1 +3x9+ 23+ 524 =0
21‘1 + 7:1?2 + 91’3 + 2584 =0
41 + 1329 + 1123 4+ 12224 =0

201 —x9 +x3+ 224+ 325 =0
6x1 — 322 + 223 +4x4 + 55 =0
6x1 — 329 +4x3 + 8x4 + 1325 =0
4r1 — 229 + 23 + 24 + 225 =0

6r+4y+52+2w+3t=0
3z +2y+4z+w+2t=0
3xr+2y—2z24+w=0

9z 4+ 6y +2+3w+2t=0

11



10 Finding a system of equations describing a space of linear com-
binations of a given system of vectors

10.1 Metoda

Consider a system of vectors a1 = (a11,...,a1n), 02 = (a21,...,62,), ...,k = (ak1,...,ak). We would like to
find a system of equations describing the space spanned by «q,...,a,. The given vectors have to be solutions
to every equation in the system which we are looking for. Consider one such equation: cyxy +...c,z, = 0. We
know that aq,...,ax are solutions to this equation, so we get a system of equations which has to be satisfied
by all the equations in the system we are looking for.

ajic1 + agecs + ... +aipc, =0

as1¢1 + assco + ...+ aspe, =0

agici + agoco + ...+ agncy, =0

We solve this system, and calculate a basis 81 = (by1,...b1n), .-, 81 = (b1, - - ., bin) of the space of its solutions.
Recall that this is the space of possible coefficients of the system of linear equations which we are looking for.
Thus, we can write out this system using the vectors from the basis as coefficients in subsequent equations.

bllxl + blg.’EQ + ...+ blnxn =0
bo1x1 + bogxo + ...+ bopx, =0

bjrx1 +bprs + ...+ bz, =0

This is the system we are looking for, because we know, that any equation which is solved by all the given
vectors can be achieved as a linear combination of those equations.

To sum up, we find a basis of a space of solutions of a homogeneous system of equations given by a matrix
with the given vectors as its rows. The vectors from the obtained basis are the coefficients in the system we are
looking for.

10.2 Example

Find a system of equations describing the space spanned by (2,-3,5,-1),
(—8,12,—26,6), (6,—9,18, —4). We have to solve the following system first

2a —3b+5¢—d=0
—8a + 12b — 26¢c+6d =0
6a —9b+18¢c—4d =0

This system was considered in the ninth topic, and we know that the basis of the space of its solution takes the fol-

lowing form: (%, 1,0,0),
(f%, 0, %, 1). Therefore, the following system of equations describes the considered space.

%ml +x2=0

7%1‘1 + %Ig +£C4 = 0

10.3 Exemplary problems

Find systems of equations describing the following linear subspaces
lin((2,1,4),(3,5,-1),(3,-2,13),(7,7,7), (-4, —9,6)),

lin((3,2,1,1), (5,0,2,3), (4,1,4,5), (4,1, -1, —1)),
lin((2,7,-1,2,6),(3,1,4,2,2), (4,-5,9,2,—2), (5,15,2,6, 14)).

12



11 Completing if possible a basis of a given subspace uso=ing only
vectors from another given subspace

11.1 Method

Assume that we are given two subspaces V,WW C R™ along with their bases. We would like to complete the
basis of V' to a basis of R™ using vectors from W. So, we put all the vectors into rows of a matrix, first the
vectors from the basis of V', and below we put the vectors from the basis of W. Next, we try to transform this
matrix into echelon form, but without using the operation of swapping the rows. It may be that the final form
will be an echelon form, but with some of the rows swapped. If we get less than n non-zero rows, then it is
not possible to complete the basis in this way (bases of V and W together do not span the whole space ). If |
on the other hand, there are n non-zero rows, we take to the basis which we are constructing the rows of the
original matrix corresponding to those rows.

11.2 Example

Let (1,-1,1,1,-2),(4,4,—4,-4,0),(3,1,3,—1,3) be a basis of V, and (-1,0,1,0,0),(0,—1,0,1,0),
(—1,0,0,0,1) be a basis of W. We complete the basis of V to a basis of R® using only vectors from W.
We put those vectors in a matrix and transform it:

1 -1 1 1 =2 1 -1 1 1 =2 1 -1 1 1 =2
4 4 -4 -4 0 o 1 -1 -1 1 o 1 -1 -1 1
313_13%040_49%00_40_5
-1 0 1 0 O o -1 2 1 =2 0 0o 1 0 -1
0o -1 0 1 O 0O -1 0 -1 0 0 0 -1 -2 1
-1 0 0 0 1 o -1 1 1 -1 0o 0 0 0 O

1 -1 1 1 =2

0 1 -1 -1 1

_>0074Of5

o 0 0 o0 1

o 0 0 -2 -1

o 0o 0 0 O

We get 5 non-zero rows, so it is possible to complete the basis. The vectors which complete the basis V' to a
basis of R® are
(-1,0,1,0,0),(0,-1,0,1,0).

11.3 Exemplary problems

Let (-1,0,1,0,0),(0,-1,0,1,0),(—1,0,0,0,1) be a basis of W. Check whether it is possible to complete the
system (4,3,2,-3,—6),(1,1,—4,-1,3),(2,0,3,0, —5) to a basis of R® using only vectors from W.
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