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ABSTRACT
We study the problem of covering a polygon without any
acute interior angles, using a preferably minimum number of
squares. The squares are allowed to overlap and they must
lie entirely within the polygon. We show an O(n log n +
µ(P )) time algorithm which covers any n-vertex input poly-
gon with at most 10.5n+µ(P ) squares, where µ(P ) denotes
the minimum number of squares required to cover P . In the
hole-free case our algorithm runs in linear time.

1. INTRODUCTION
One of the fundamental topics of computational geometry
is how to decompose polygons into simpler objects, such as
triangles, squares, rectangles, convex polygons. Considered
polygons can contain polygonal holes. If the objects are al-
lowed to overlap, then we call the decomposition a covering.

Considerable attention has received the problem of covering
the polygon P with a minimum number of squares, all in-
ternal to the polygon, whose union is P . One application
for this problem is storage images [13].

The rectilinear case, i.e. when the polygon and the squares
have sides that are vertical or horizontal, has been treated
in several papers [1, 2, 11, 13]. Authors use a boolean (zero-
one) matrix, where one represents a point inside the polygon
and zero – a point outside it. A complexity is measured in
terms of the number of points in the matrix, denoted p. For
most practical applications p � n. Aupperle, Conn, Keil
and O’Rourke [1] show that the rectilinear case is NP-hard
for polygons containing holes. For the hole-free case they
present an O(p1.5) algorithm. Bar-Yehuda and Ben-Hanoch
[2] provide a linear time algorithm for such the case. Scott
and Iyenger [13] present an algorithm to find, in O(n log n)
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time, a minimal cover for polygons with holes. However,
their algorithm does not yield a globally minimum cover.
Morita [11] presents a parallel algorithm, which finds a min-
imal (not minimum) square cover for such polygons. The
sequential running time of this algorithm is O(p).

The problem of covering polygons with a minimum num-
ber of rectangles has also been treated in several papers
[3, 5, 7, 8, 10]. One application for it is the fabrication of
masks for VLSI chips. Culberson and Reckhow [12] show
that covering orthogonal polygons with the minimum num-
ber of ortogonal rectangles is NP-hard, even when the given
polygon is hole-free. Levcopoulos [7] presents an algorithm

which covers the polygon P with O(n log n + µ
′

(P )) rectan-

gles in O(n log n+µ
′

(P )) time, where µ
′

(P ) is the minimum
number of rectangles needed to cover P . In [8] a different
heuristic is presented, guaranteeing an O(log n) approxima-
tion factor in polynomial time (Ω(n6)), provided that the
vertices of the polygon have polynomially bounded integer
coordinates.

In our paper [15] we consider the problem of covering poly-
gons with a minimum number of squares. Our research
was motivated by the paper of Levcopoulos and Gudmunds-
son [9]. They present two algorithms which cover an ar-
bitrary polygon P , without any acute interior angles, with
squares. Algorithm A1 covers P using 14µ(P ) squares in
time O(n2 + µ(P )), where µ(P ) is the minimum number of
squares needed to cover P . Algorithm A2 uses 12n + µ(P )
squares and the running time is O(n log n + µ(P )). In our
paper we present algorithm which covers polygon P with at
most 10.5n + µ(P ) squares in time O(n log n + µ(P )).

2. THE VORONOI DIAGRAM OF P
Let S be a set of points and segments in the plane, such
that:

• segments intersect only at endpoints,

• two endpoints of each segment belong to the set S.

Every point is assigned to the nearest element from S. The
set of points equidistant from at least two elements is the
generalized Voronoi diagram V (S). The diagram is the union
of lines, half-lines, segments and sections of parabo



Let P be an arbitrary polygon without any acute interior
angles, with n vertices and w concave vertices. V (P ) is
the part of generalized Voronoi diagram V (S) lying within
P , where S consists of all edges and vertices of P . V (P )
partitions P into n + w regions, where each segment and
each concave vertex induces a Voronoi region. Every point
lying in a region induced by d, where d is either an edge or a
concave vertex, lies at least as close to d as to any other point
of the boundary of P . Each Voronoi circle cV (p, r) with the
center in p ∈ V (P ) and the radius r equal to the shortest
distance from p to the boundary of P , lies entirely within
P . The diagram can be computed in O(n log n) time [4, 6]
for an arbitrary polygon and in linear time for a hole-free
polygon [14].

3. PARTITIONING INTO CELLS
Let f be a Voronoi region induced by g ∈ S. If g is an edge of
P , then we partition f into cells by drawing segments, called
sides of cells, which connect Voronoi vertices of f with their
perpendicular projections on g. The part of g bounding
the cell is called its base. If g is a concave vertex of P ,
then we partition region f by drawing segments connecting
all its Voronoi vertices with g. A cell may be a triangle,
a trapezoid, an area bounded by two segments and a part
of paraboloid (the cell induced by a concave vertex), or an
area bounded by three segments and a part of paraboloid
(the cell induced by an edge of P ). Note that every cell is
bounded by a proper Voronoi edge.

Let T be the set of all trapezoidal cells in P . A cell k ∈ T
is a funnel, if the angle between the proper Voronoi edge
and the shorter side of the cell is smaller than 135o, and the
length of its base is greater than the length of the shorter
side; otherwise it is an ordinary trapezoid. If a cell k 6∈ T ,
then k is called a non-trapezoid. In this paper F denotes the
set of all funnels in P and O denotes the set of all ordinary
trapezoids in P .

Two cells sharing a proper Voronoi edge are called a pair of
cells.

Theorem 1. The number of proper edges in V(P) is at
most 3n, where n is the number of vertices in the polygon P.

Corollary 1. The number of pairs of cells is not greater
than 3n.

We classify each pair of cells k1k2 as follows:

1. a pair of trapezoids; k1 and k2 are induced by edges of
P , Fig. 1(a);

2. a pair of non-trapezoids:

(a) a pair of triangles; k1 and k2 are induced by edges
of P , Fig. 1(b);

(b) a pair of triangles; k1 and k2 are induced by con-
cave vertices of P , Fig. 1(c);

(c) a pentagon; k1 is induced by a concave vertex of
P and k2 is induced by an edge of P , Fig. 1(d).
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Figure 1: (a) A pair of trapezoids. (b) Triangles
induced by edges of P . (c) Triangles induced by
concave vertices of P . (d) A pentagon.

A sequence of trapezoids is a maximal sequence p1, . . . , pk,
k ≥ 2 such that:

• pi ∈ T , i = 1, . . . , k,

• the longer side of pi is the shorter side of pi+1,
i = 1, . . . , k − 1,

• pi ∈ F ⇒ pi+1 ∈ O, i = 1, . . . , k − 1.

We say that a trapezoid t is adjacent to a pair of non-
trapezoids n1n2 if a side of either n1 or n2 is the shorter
side of t. Even if two sides of t have the same length, we call
one of them the shorter side (we fix at the beginning which
one is shorter). Note that at most four trapezoids may be
adjacent to n1n2.

4. THE ALGORITHM
Our algorithm is based on the following scheme.

1. Compute V (P ).

2. Partition each Voronoi region into cells.

3. Assign each cell to one of the groups as follows:

(a) Fix sequences of trapezoids and then divide each
of them into groups consisting of two consecutive
cells (if the number of trapezoids in the sequence
is odd, then the last group has three cells).

(b) Assign each non-trapezoid n1 to the group in-
duced by the pair of non-trapezoids n1n2 (n2 shares
with n1 a proper Voronoi edge).

(c) Assign the remaining trapezoids to one of the fol-
lowing group:

i. if t is adjacent to a pair of non-trapezoids
n1n2, then add t to the group induced by
n1n2;

ii. if t is a funnel that has not been assigned to
any sequence of trapezoids and any pair of
non-trapezoids, then t is a separate group.

4. Cover each group with squares.

The following lemma guarantees that each cell will be cove-
red by our algorithm.

Lemma 1. Each cell belongs to exactly one of the groups.



In the fourth step our algorithm covers groups of cells. At
the beginning it covers all funnels, and then the remaining
cells in the groups. The covering of funnels may require
usage of large number of squares. Fortunately, we can make
use of their appearance in the group and reduce the number
of squares that cover the remaining cells. In [15] we give
a detailed analysis of all the cases. We also prove that our
algorithm uses µ(P ) squares plus - perhaps - O(n) additional
squares. In average the surplus of squares is not greater than
3.5 per one pair of cells.

Theorem 2. Our algorithm covers P with at most 10.5n+
µ(P ) squares.

There are two main reasons why our algorithm uses less
squares than the algorithm presented in [9]. Firstly, we can
better cover some pairs of non-trapezoids. Secondly, if we
consider groups of cells, we can use a smaller number of
larger squares that lie within the polygon P .

4.1 Time analysis
We can construct V (P ) in O(n log n) time, if P is an arbi-
trary polygon [6, 4], and in O(n) time, if P is a hole-free
polygon [14]. Because there are at most 6n cells (see Corol-
lary 1), we can split Voronoi regions into the cells in O(n)
time, and then assign each cell to the group in O(n) time.

In full version of our paper [15] we show that each group of
cells may be covered in O(s) time, where s is the number
of squares used for covering the considered group of cells.
There are at most 6n cells, so P may be covered in O(n+s) =
O(n + µ(P )) time.
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